Аксиоматика теории вероятности. Построение вероятностного пространства
История возникновения понятия вероятности и ее классическое определение. Построение вероятностного пространства и теорема о продолжении меры. Определение и свойства вероятностного пространства и вероятностной меры. Аксиомы существования вероятности.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.10.2009 |
Размер файла | 38,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ВВЕДЕНИЕ
Случай, случайность -- с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут нет места для математики--какие уж законы в царстве Случая! Но и здесь наука обнаружила интересные закономерности--они позволяют человеку уверенно чувствовать себя при встрече со случайными событиями.
Как наука теория вероятности зародилась в 17в. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр. Азартными называют те игры, в которых выигрыш зависит главным образом не от умения игрока, а от случайности. Схема азартных игр была очень проста и могла быть подвергнута всестороннему логическому анализу. Первые попытки этого рода связаны с именами известных учёных--алгебраиста Джероламо Кардана (1501- 1576) и Галилео Галилея (1564--1642). Однако честь открытия этой теории, которая не только даёт возможность сравнивать случайные величины, но и производить определенные математические операции с ними, принадлежит двум выдающимися ученым--Блезу Паскалю (1623--1662) и Пьеру Ферма. Ещё в древности было замечено, что имеются явления, которые обладают особенностью: при малом числе наблюдений над ними не наблюдается никакой правильности, но по мере увеличения числа наблюдений всё яснее проявляется определенная закономерность.
Аксиоматика теории вероятности
Пусть - пространство элементарных событий, - алгебра событий (алгебра подмножеств множества). В основании теории вероятностей лежат следующие пять аксиом.
1. Алгебра событий является - алгеброй событий.
Система событий называется - алгеброй, если для всякой последовательности событий,, их объединение, пересечение и дополнения, также принадлежат, т.е.,, являются также событиями. Таким образом, - алгебра - это система событий, замкнутая относительно операций дополнения, счетного объединения и счетного пересечения.
2. На - алгебре событий для любого определяется функция, называемая вероятностью и принимающая числовые значения из интервала [0,1]:.
Данная аксиома - это аксиома существования вероятности - как функции на со значениями из интервала. Следующие три аксиомы определяют свойства функции.
3. Для любых двух событий, таких, что
(15.1)
- аксиома сложения вероятностей.
Отсюда следует, что для конечного числа несовместных событий
. (15.2)
4. Пусть,, - попарно несовместные события: и пусть. Тогда
. (15.3)
Соотношение (15.3) называется аксиомой счетной аддитивности вероятности или аксиомой непрерывности вероятности. Второе связано со следующей интерпретацией равенства (15.3). Событие следует понимать как предел последовательности
. (15.4)
При этом равенство (15.3) можно понимать как свойство непрерывности функции: или
(15.5)
- которое позволяет операцию предела вынести за функцию. Это обусловлено тем, что из условия (15.5) следует (15.3):
. (15.6)
5. . (15.7)
Пятая аксиома указывает на то, что пространство элементарных событий - есть достоверное событие. Таким образом, содержит в себе все события, которые можно рассматривать в данной задаче.
Пространство элементарных событий, - алгебра событий и вероятность на, удовлетворяющие аксиомам 1-5, образуют так называемое вероятностное пространство, которое принято обозначать.
Отметим, что система аксиом 1-5 не противоречива, так как существуют, удовлетворяющие этим аксиомам и не полна, так как вероятность можно определить многими способами в рамках аксиом 2-5. Понятие вероятностного пространства (или система аксиом 1-5) содержит лишь самые общие требования, предъявляемые к математической модели случайного явления, и не определяет вероятность однозначно. Последнее возможно только с учетом дополнительных условий, заданных в постановке рассматриваемой задачи.
Аксиоматика теории вероятности.
Построение вероятностного пространства.
Последовательно строим вероятностное пространство.
Этап 1:
Имеется испытание. В результате проведения испытания может наблюдаться одно событие из серии событий e. Все события из системы e называются наблюдаемыми. Введем предположение, что если события A М e, B М e наблюдаемы, то наблюдаемы и события.
Система событий F называется полем событий или алгеброй событий, если для двух произвольных событий A, B М F выполняется:
Дополнения
(A+B) О F, (AЧ B) О F
все конечные суммы элементов из алгебры принадлежат алгебре
все конечные произведения элементов из алгебры принадлежат алгебре
все дополнения конечных сумм и произведений принадлежат алгебре.
Таким образом, систему мы расширяем до алгебры или поля F путем включения всех конечных сумм, произведений, и их дополнений. Т.е. считаем, что в результате проведения испытания наблюдаемая система является полем или алгеброй.
Множество всех подмножеств конечного числа событий является наблюдаемой системой - алгеброй, полем.
Этап 2:
Каждому событию A О F ставим в соответствие число P(A), которое называется вероятностью наступления события A. Такая операция задает вероятностную меру.
Вероятностная мера - числовая скалярная функция, аргументами которой являются элементы из системы алгебры F. Введенная вероятностная мера удовлетворяет системе из трех аксиом.
P(U)=1.
Рассмотрим конечную или бесконечную систему попарно несовместных событий, каждое из которых принадлежит алгебре F.
Алгебра событий называется s - алгеброй, если эта система событий содержит в себе все конечные суммы и произведения из алгебры F и их дополнения, а также все бесконечные суммы и произведения из алгебры и их дополнения.
Пример: В пространстве R1 зададим в качестве поля событий все конечные интервалы вида aі x> b, b№ a.
Распространение этой алгебры на s - алгебру приводит к понятию борелевской алгебры, элементы которой называются борелевскими множествами. Борелевская алгебра получается не только расширением поля вида aі x> b, но и расширением полей вида a> xі b, aі xі b.Над наблюдаемым полем событий F задается счетно-аддитивная мера - числовая скалярная функция, элементами которой являются элементы поля F, т.е. события. Она удовлетворяет следующим трем условиям-аксиомам теории вероятности.
P(A) - число, принадлежащее сегменту [0, 1] и называющееся вероятностью наступления события A.
P(A) О [0, 1] P(U)=1.
Теорема о продолжении меры.
Построим минимальную s - алгебру, которой принадлежит поле событий F (например, борелевская s - алгебра - это минимальная s - алгебра, которая содержит поле всех полуинтервалов ненулевой длины).
Тогда доказывается, что счетно-аддитивная функция P(A) однозначно распространяется на все элементы минимальной s - алгебры и при этом ни одна из аксиом не нарушается.
Таким образом, продленное P(A) называется s - аддитивной мерой.
s - алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.
Но в аксиоматической теории вероятности считается, что может произойти любое событие из s - алгебры.
Расширение поля наблюдаемых событий на s - алгебру связано с невозможностью получить основные результаты теории вероятности без понятия s - алгебры.
Определение вероятностного пространства.
Вероятностным пространством называется тройка (W, s, P), где
W - пространство элементарных событий, построенное для данного испытания;
s - s -алгебра, заданная на W - системе возможных событий, которая интересует исследователя, в результате проводимых испытаний;
P - s - аддитивная мера, т.е. s - аддитивная неотрицательная функция, аргументами которой являются аргументы из s - алгебры и удовлетворяющая трем аксиомам теории вероятности.
P(A) - называется вероятностью наступления события A.
Вероятность достоверного события равна 1 P(W)=1.
Вероятность суммы несовместных событий равна сумме вероятностей.
k - возможно бесконечное число.
Следствие: Вероятность невозможного события равна 0.
По определению суммы имеет место неравенство W +V=W. W и V несовместные события.
По третьей аксиоме теории вероятности имеем:
P(W +V)=P(Q)=P(U)=1
P(W)+P(V)=P(W)
1+P(V)=1
P(V)=1
Пусть W состоит из конечного числа элементарных событий W ={E1, E2,..., Em} тогда по определению. Элементарные события несовместны, тогда по третей аксиоме теории вероятности имеет место.
Пусть некоторое событие AМ W состоит из k элементарных событий, тогда {Ei1, Ei2,..., Eik}
Доказать: Если AМ B, то P(B)і P(A), B=A+C, A и C несовместны.
* Пусть B=A+C, A и B несовместны. Тогда по третей аксиоме теории вероятности P(B)=P(A+C)=P(A)+P(C) т.к. 1і P(C)і 0 - положительное число, то P(B)і P(A).
Классическое определение вероятности.
Пусть W состоит из конечного числа элементарных событий и все элементарные события равновероятны, т.е. ни одному из них из них нельзя отдать предпочтения до испытания, следовательно, их можно считать равновероятными.
Тогда достоверное событие m - количество равновероятных событий.
Пусть произвольное событие Тогда, т.е. событие A состоит из k элементарных событий.
Если элементарные события являются равноправными, а, следовательно, и равновероятными, то вероятность наступления произвольного события равна дроби числитель которой равен числу элементарных событий, входящих в данное, а знаменатель - общее число элементарных событий.
Построение вероятностного пространства
Последовательно строим вероятностное пространство.
Этап 1:
Имеется испытание. В результате проведения испытания может наблюдаться одно событие из серии событий . Все события из системы называются наблюдаемыми. Введем предположение, что если события A , B наблюдаемы, то наблюдаемы и события .
Система событий F называется полем событий или алгеброй событий, если для двух произвольных событий A, B F выполняется:
Дополнения
(A+B) F, (AB) F
все конечные суммы элементов из алгебры принадлежат алгебре
все конечные произведения элементов из алгебры принадлежат алгебре
все дополнения конечных сумм и произведений принадлежат алгебре.
Таким образом, систему мы расширяем до алгебры или поля F путем включения всех конечных сумм, произведений, и их дополнений. Т.е. считаем, что в результате проведения испытания наблюдаемая система является полем или алгеброй.
Множество всех подмножеств конечного числа событий является наблюдаемой системой - алгеброй, полем.
Этап 2:
Каждому событию A F ставим в соответствие число P(A), которое называется вероятностью наступления события A. Такая операция задает вероятностную меру.
Вероятностная мера - числовая скалярная функция, аргументами которой являются элементы из системы алгебры F. Введенная вероятностная мера удовлетворяет системе из трех аксиом.
P(U)=1.
Рассмотрим конечную или бесконечную систему попарно несовместных событий, каждое из которых принадлежит алгебре F.
. Если , то .
Алгебра событий называется - алгеброй, если эта система событий содержит в себе все конечные суммы и произведения из алгебры F и их дополнения, а также все бесконечные суммы и произведения из алгебры и их дополнения.
Пример: В пространстве R1 зададим в качестве поля событий все конечные интервалы вида axb, ba.
Распространение этой алгебры на - алгебру приводит к понятию борелевской алгебры, элементы которой называются борелевскими множествами. Борелевская алгебра получается не только расширением поля вида axb, но и расширением полей вида axb, axb.
Над наблюдаемым полем событий F задается счетно-аддитивная мера - числовая скалярная функция, элементами которой являются элементы поля F, т.е. события. Она удовлетворяет следующим трем условиям-аксиомам теории вероятности.
. P(A) -
число, принадлежащее сегменту [0, 1] и называющееся вероятностью наступления события A.
P(A) [0, 1] P(U)=1.
Пусть имеется A1, A2, A3,..., Ak - система попарно несовместных событий
Если , то .
Теорема о продолжении меры
Построим минимальную - алгебру, которой принадлежит поле событий F (например, борелевская - алгебра - это минимальная - алгебра, которая содержит поле всех полуинтервалов ненулевой длины).
Тогда доказывается, что счетно-аддитивная функция P(A) однозначно распространяется на все элементы минимальной - алгебры и при этом ни одна из аксиом не нарушается.
Таким образом, продленное P(A) называется - аддитивной мерой.
- алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.
Но в аксиоматической теории вероятности считается, что может произойти любое событие из - алгебры.
Расширение поля наблюдаемых событий на - алгебру связано с невозможностью получить основные результаты теории вероятности без понятия - алгебры.
Определение вероятностного пространства
Вероятностным пространством называется тройка (, , P), где
- пространство элементарных событий, построенное для данного испытания;
- -алгебра, заданная на - системе возможных событий, которая интересует исследователя, в результате проводимых испытаний;
P - - аддитивная мера, т.е. - аддитивная неотрицательная функция, аргументами которой являются аргументы из - алгебры и удовлетворяющая трем аксиомам теории вероятности.
. P(A) - называется вероятностью наступления события A.
Вероятность достоверного события равна 1 P()=1.
Вероятность суммы несовместных событий равна сумме вероятностей
, .
k - возможно бесконечное число.
Следствие:
Вероятность невозможного события равна 0.
По определению суммы имеет место неравенство +V=. и V несовместные события.
По третей аксиоме теории вероятности имеем:
P(+V)=P(Q)=P(U)=1
P()+P(V)=P()
1+P(V)=1
P(V)=1
Пусть состоит из конечного числа элементарных событий ={E1, E2,..., Em} тогда по определению . Элементарные события несовместны, тогда по третей аксиоме теории вероятности имеет место
Пусть некоторое событие A состоит из k элементарных событий, тогда {Ei1, Ei2,..., Eik}
Доказать: Если AB, то P(B)P(A), B=A+C, A и C несовместны.
* Пусть B=A+C, A и B несовместны. Тогда по третей аксиоме теории вероятности P(B)=P(A+C)=P(A)+P(C) т.к. 1P(C)0 - положительное число, то P(B)P(A).
Классическое определение вероятности
Пусть состоит из конечного числа элементарных событий и все элементарные события равновероятны, т.е. ни одному из них из них нельзя отдать предпочтения до испытания, следовательно, их можно считать равновероятными.
Тогда достоверное событие m - количество равновероятных событий
, ,
Пусть произвольное событие Тогда , т.е. событие A состоит из k элементарных событий.
Если элементарные события являются равноправными, а, следовательно, и равновероятными, то вероятность наступления произвольного события равна дроби числитель которой равен числу элементарных событий, входящих в данное, а знаменатель - общее число элементарных событий.
Подобные документы
Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.
реферат [42,6 K], добавлен 24.04.2009Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция [287,5 K], добавлен 02.04.2008Общее представление о событии. Понятие действительного, случайного и невозможного события. Даниил Бернулли, Христиан Гюйгенс, Пьер-Симон Лаплас, Блез Паскаль, Пьер Ферма и их вклад в развитие теории вероятностей. Формирование вероятностного мышления.
презентация [1,6 M], добавлен 03.05.2011Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.
курсовая работа [328,1 K], добавлен 18.11.2011Число возможных вариантов, благоприятствующих событию. Определение вероятности того что, проектируемое изделие будет стандартным. Расчет возможности, что студенты успешно выполнят работу по теории вероятности. Построение графика закона распределения.
контрольная работа [771,9 K], добавлен 23.12.2014Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.
задача [104,1 K], добавлен 14.01.2011Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.
презентация [1,3 M], добавлен 21.01.2014Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.
контрольная работа [390,7 K], добавлен 29.05.2014Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.
курс лекций [1,1 M], добавлен 08.04.2011