- 841. Законы логики
Содержание и специфика основных законов логики. Свойства человеческой мысли вычленять вещи из окружающего мира и рассматривать их раздельно. Диалектические противоречия процесса познания и их выражения в форме формально-логических противоречий и гипотез.
- 842. Законы логики
Предмет и основные законы логики. Понятие как логическая форма. Логические действия с понятиями. Определение количества и качества суждений, их связка. Умозаключение как форма мысли, простой категорический силлогизм. Доказательство и опровержение.
Исследование сделки залога гражданином-собственником его жилого помещения в обеспечение обязательств по банковскому кредиту коммерческой организации. Противодействие способам уклонения от материальной ответственности должника-гражданина перед кредиторами.
Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
- 845. Замечательные кривые
Точная формула провисающей цепочки Галилея. Разгадка секрета цепной линии: график показательной функции. Связь между кривой и формой висящей цепочки: поиск уравнения линии. Подобие цепных линий, определение коэффициента подобия в преобразовании кривой.
Плоская алгебраическая кривая и радиус-вектор прямой на некоей постоянной величине. Уравнения декартовых координат, трисекция угла с помощью конхоиды. Циклоидальные кривые, их разновидности и Архимедова спираль, однородная и нерастяжимая тяжелая нить.
Понятия первого и второго замечательного предела и их следствия. Раскрытию неопределенностей разного вида. Преобразования над дробью. Применение замечательного предела в финансово-экономических задачах. Определение денежного вклада, положенного в банк.
Применение на практике первого и второго замечательного предела. Использование в практических задачах формулы, которая представляет собой следствие второго замечательного предела. Последствия перестановки числителя и знаменателя в данных пределах.
Доказательства теоремы, характеризующей решетку из зон Бриллюэна, компьютерное построение, восстановление потерянных деталей. Квазипериодическое замощение плоскости, свойства: инфляция и дефляция, перенос и поворот. Физические приложения квазикристаллов.
История возникновения геометрии и тригонометрии. Первые методы нахождения неизвестных параметров треугольника. История жизни знаменитых геометров. Теорема Пифагора. Теория пределов. Понятие прямоугольной системы координат. Геометрические фигуры.
Решение задач с помощью здравого смысла и строгой логики рассуждений, подтвержденных точными расчетами. Определение вероятности получения наибольшего приданого при случайном выборе одного билетика из пяти. Изучение лексикографического порядка подсчета.
Определение понятия математики — науки о количественных отношениях и пространственных формах действительного мира. Исследование значения числовых терминов. Ознакомление с процессом зарождения математики в Египте и Вавилоне. Изучение обозначения дробей.
Структура розподілів випадкових величин з незалежними кодами. Тополого-метричні і фрактальні властивості розподілу випадкової неповної суми збіжного знакододатного ряду з випадковими незалежними доданками при деяких обмеженнях на швидкість збіжності ряду.
Розробка схеми кодування дійсних чисел та особливості структури сингулярного розподілу випадкових величин. Аналіз фрактальних властивостей множин (міра Хаусдорфа) в просторі нескінченних послідовностей символів згідно законів теорії ймовірностей.
Означення та властивості векторів. Визначення векторних проекцій на осі координат через модулі та кути у скалярній формі. Застосування теореми косинусів. Пошук напруженості електростатичного поля міх двома зарядами з урахуванням принципу суперпозиції.
Обчислення площ фігур, об'єму тіла і площ поверхонь з допомогою подвійного інтегралу. Обчислення та механічний зміст криволінійних інтегралів першого і другого роду. Визначення центру ваги площі. Розрахунок роботи при переміщенні одиниці маси по контуру.
Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.
Особливості алгоритмічного підходу до доведення теорем з допомогою логіки предикатів. Аналіз математичної логіки, її місце у математичній науці. Знайомство з буквами формальної арифметики. Значення застосування логіки предикатів для доведення теорем.
Висвітлення основних джерел невизначеності при відборі абітурієнтів до ВНЗ за результатами ЗНО. Застосування для вирішення цього завдання методів багатокритеріального прийняття рішень. Розробка програмної реалізації мовою R методів головного критерію.
Аналіз нового погляду на метод рухомого симплексу, що розширює можливості точкового числення Балюби-Найдиша та дозволить спростити побудову поверхонь типу лупа. Огляд особливостей моделювання складних процесів n-параметричного функціонального простору.
Розкриття методу Фур’є для різних типів гіперболічних рівнянь: неоднорідних, вільних коливань струни. Загальна перша крайова задача. Крайові задачі зі стаціонарними неоднорідностями. Задачі без початкових умов. Загальна схема методу поділу змінних.
Розгляд педагогічної технології, при якій типова подача учителем нового теоретичного матеріалу та виконання школярами домашнього завдання змінюються місцями. Вивчання математики на випередження. Використання поданих учителем коротеньких відеоуроків.
Поняття подвійного інтегралу, достатні умови його існування та головні властивості. Основні правила обчислення та побудова графіків. Особливості заміни змінних у подвійному та потрійному інтегралів. Основні правила їх застосування до задач механіки.
Особливість засвоєння учнями змісту теореми, що виражає властивість бісектриси трикутника та її доведення. Застосування формулювання теореми до розв’язування задач на обчислення відрізків у трикутнику. Дослідження метричних співвідношень в колі.
Поняття "наближене рівняння" та "степеневі ряди". Наближене обчислення значень функцій за допомогою рядів. Використання рядів для розв’язання рівнянь. Обчислення визначених інтегралів та інтегрування диференціальних рівнянь за допомогою рядів Фур’є.
Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
Розробка методів відшукання розв’язків крайових задач. Суть простої модифікації формули Даламбера. Аналіз теорії диференціальних рівнянь у частинних похідних. Побудова наближених періодичних рішень завдань для квазілінійних гіперболічних тотожностей.
- 868. Застосування теорії графів при розв’язанні завдань різних видів та вивчення елементів теорії графів
Розглянуто формальне визначення, спосіб подання графів, обґрунтування вибору програмних засобів. Наведені основні алгоритми на графах та можливості їх практичного застосування. Програмна реалізація алгоритмів та можливості мови програмування Visual Basic.
Розгляд алгоритму зведення рівняння поверхні другого порядку до канонічного вигляду та побудова їх, заданих загальним рівнянням, основні поняття. Дослідження форми і зображення ліній, поверхонь, з використанням їх канонічних рівнянь у загальному вигляді.
Основні найпростіші тригонометричні та лінійні рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розкладання рівняння на множники. Рівність однойменних функцій. Системи тригонометричних рівнянь. Рішення, засновані на обмеженості функцій.