Выбор стратегии в теории игр
Решение игры в чистых стратегиях. Построение платежных матриц. Понятие и поиск седловой точки. Определение гарантированного и вероятностного выигрыша. Применение метода Гаусса при решении системы неравенств. Минимизация математического ожидания игрока.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.12.2016 |
Размер файла | 168,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные определения теории биматричных игр. Пример биматричной игры "Студент-Преподаватель". Смешанные стратегии в биматричных играх. Поиск "равновесной ситуации". 2x2 биматричные игры и формулы для случая, когда у каждого игрока имеется две стратегии.
реферат [84,2 K], добавлен 13.02.2011Определение матричных игр в чистых стратегиях. Смешанные стратегии и их свойства. Решения игр матричным методом. Метод последовательного приближения цены игры. Отыскание седлового элемента. Антагонистические игры как первый класс математических моделей.
контрольная работа [855,7 K], добавлен 01.06.2014Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.
курсовая работа [807,2 K], добавлен 03.04.2015Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы. Примеры решения задач с игральными костями, выигрыша в лотерею, вероятности брака и др. Биноминальный закон распределения: решение математического ожидания и дисперсии.
контрольная работа [74,4 K], добавлен 31.05.2010Принятие решений как особый вид человеческой деятельности. Рациональное представление матрицы игры. Примеры матричных игр в чистой и смешанной стратегиях. Исследование операций: взаимосвязь задач линейного программирования с теоретико-игровой моделью.
курсовая работа [326,4 K], добавлен 05.05.2010Расчет денежных расходов предприятия на выпуск изделий, при выражении их стоимости при помощи матриц. Проверка совместимости системы уравнений и их решение по формулам Крамера и с помощью обратной матрицы. Решение алгебраических уравнений методом Гаусса.
контрольная работа [576,6 K], добавлен 28.09.2014Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка [303,7 K], добавлен 14.03.2011Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа [210,4 K], добавлен 23.04.2013Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.
контрольная работа [88,2 K], добавлен 19.01.2014Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.
лекция [45,4 K], добавлен 02.06.2008Задачи на элементы теории вероятности и математической статистики. Решение систем линейных уравнений методом Крамера; методом Гаусса. Закон распределения дискретной случайной величены. Построение выпуклого многоугольника, заданного системой неравенств.
контрольная работа [96,1 K], добавлен 12.09.2008Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.
контрольная работа [209,4 K], добавлен 15.12.2011Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа [63,2 K], добавлен 24.10.2010Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.
контрольная работа [98,6 K], добавлен 19.04.2015Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.
дипломная работа [790,0 K], добавлен 30.09.2009Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа [1,4 M], добавлен 07.09.2010Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.
контрольная работа [1,1 M], добавлен 26.03.2014Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа [212,0 K], добавлен 01.05.2010Общая схема методов спуска. Метод покоординатного спуска. Минимизация целевой функции по выбранным переменным. Алгоритм метода Гаусса-Зейделя. Понятие градиента функции. Суть метода наискорейшего спуска. Программа решения задачи дискретной оптимизации.
курсовая работа [90,8 K], добавлен 30.04.2011Закон распределения суточного дохода трамвайного парка, оценка доверительного интервала для математического ожидания и дисперсии суточного дохода. Особенности определения математического ожидания рассматривающейся случайной величины при решении задач.
курсовая работа [69,5 K], добавлен 02.05.2011