• Вычисление вероятности с помощью теоремы Пуассона, функции распределения и неравенства Маркова. Нахождение математического ожидания и дисперсии, коэффициента корреляции, среднего квадратического отклонения и функции распределения случайной величины.

    контрольная работа (327,6 K)
  • Рассмотрение примеров расчета вероятности заданного события. Определение вероятности попадания в мишень, выбора обуви первого и второго сорта, вычисление последней цифры телефона. Изучение закона распределения случайных величин рядом распределения.

    контрольная работа (44,1 K)
  • Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.

    реферат (153,1 K)
  • Численный метод нахождения значений собственных функций дискретных полуограниченных снизу операторов. Оценки остатков сумм рядов Рэлея–Шредингера поправок теории возмущений. Вычисление оператора Лапласа с возмущающей функцией комплексного переменного.

    статья (435,8 K)
  • По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.

    задача (99,6 K)
  • Знакомство с особенностями вычисления значения функции в заданной точке с помощью разложения в ряд Тейлора, анализ проблем. Общая характеристика гиперболических функций, способы определения. Рассмотрение вопросов о разложимости функции в ряд Тейлора.

    контрольная работа (2,1 M)
  • Рассмотрение обобщения векторного метода вычисления индекса Пуанкаре на многомерный случай (при некоторых ограничениях), пример, иллюстрирующий данный метод. Искомый индекс плоского векторного поля. Наиболее весомая ненулевая линейная компонента.

    статья (28,5 K)
  • Вычисление интегралов в пределах и функциях, нахождение точки пересечения парабол. Разложение подинтегральных выражений на простые дроби и интегрирование по частям, нахождение точки пресечения линий, решения и расчёты функций интегрируемых значений.

    контрольная работа (498,3 K)
  • Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.

    контрольная работа (197,0 K)
  • Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.

    задача (65,7 K)
  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа (466,5 K)
  • Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.

    курсовая работа (376,6 K)
  • Особенности методики построения корреляционной таблицы, вычисление с ее помощью параметров уравнения. Определение параболической регрессии по формуле Крамера. Оценка надежности корреляционного отношения, вариация факторного и результативного признака.

    курсовая работа (144,2 K)
  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция (149,3 K)
  • История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.

    курсовая работа (443,5 K)
  • Понятие о кубатурных формулах. Метод ячеек для вычисления кратных интегралов. Последовательное интегрирование, кубатурная формула типа Симпсона. Принципы построения программ с автоматическим выбором шага. Блок-схема и листинг программы, результаты.

    курсовая работа (186,0 K)
  • Проблема вычисления интеграла линейной интегральной оценки. Уравнение, описывающее свободное движение ошибки регулирования системы. Определение значение параметра, при котором интегральная оценка имеет минимум. Примерный вид кривых изменения ошибки.

    лекция (218,4 K)
  • Теоретические и практические характеристики метода скалярных произведений для нахождения максимального по модулю собственного числа симметричной матрицы и соответствующего ему вектора собственных значений. Программное обеспечение, реализующее этот метод.

    курсовая работа (160,8 K)
  • Построение в прямоугольной системе координат заданного треугольника. Нахождение внутреннего угла треугольника. Составление уравнения медианы и уравнения высоты. Вычисление производных заданных функций. Исследование заданных функций, построение графика.

    контрольная работа (538,5 K)
  • Вычисление определителя четвертого порядка, способов разложения его по элементам. Характеристика основных свойств определителей. Исследование системы линейных алгебраических уравнений (основных понятий и определений). Методы применения формулы Крамера.

    презентация (5,9 M)
  • Схема Горнера как общепринятый способ вычисления многочленов. Открытие в 1955 году универсальной схемы нового типа для многочлена шестой степени. Общая универсальная схема с предварительной обработкой коэффициентов. Параметры универсальной схемы.

    контрольная работа (37,7 K)
  • Способы определения объема многогранниками, правильной шестиугольной призмы. Вычисление площади правильного шестиугольника способом разбивки на шесть треугольников. Разность объема треугольной призмы и двух пирамид. Объем прямоугольного параллелепипеда.

    презентация (202,4 K)
  • Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

    контрольная работа (115,0 K)
  • Задача численного интегрирования функций, квадратурные формулы вычисления однократного интеграла. Выявление погрешностей используемых значений и функций, разработка вычислительного алгоритма, расчет конкретного интеграла по формуле правых прямоугольников.

    контрольная работа (407,1 K)
  • Особенность концепций численного интегрирования. Главная характеристика методов левых, правых и средних прямоугольников. Основной анализ оценки абсолютной погрешности. Примеры применения способов при приближенном вычислении определенных интегралов.

    контрольная работа (1,6 M)
  • Функция распределения случайной величины. Вычисление математического ожидания (среднего значения), дисперсии и среднего квадратического (стандартного) отклонения рассматриваемой случайной величины. Построение ряда распределения и графика функции.

    контрольная работа (732,7 K)
  • Вычисление прямоугольных координат межевых пунктов. Прямоугольные координаты дополнительных пунктов и высоты. Преобразование прямоугольных координат Гаусса-Крюгера из одной зоны в другую. Порядок вычисления длин сторон и площади съемочной трапеции.

    курсовая работа (471,5 K)
  • Математическое моделирование эмиссии из катодов малых размеров. Представление новой модели теплопереноса в кремниевом нанокатоде, позволяющая учитывать его частичное проплавление. Значения физических параметров, используемые в численном моделировании.

    дипломная работа (3,2 M)
  • Вычисление потока векторного поля через полную поверхность пирамиды в направлении нормали. Вычисление циркуляции векторного поля по замкнутому контуру путем применения теоремы Стокса к контуру и ограниченной им поверхности. Теорема Остроградского.

    реферат (79,7 K)
  • Получение двусторонних оценок предела максимального среднего для периодической функции, зависящей от времени и основных переменных, и дифференциального включения с постоянной частью. Доказательство теоремы существования предела максимального среднего.

    статья (480,2 K)