Появление отвлеченного понятия натурального числа вместе с развитием письменности. Система счисления - способ записи (изображения) чисел. Единичная ("палочная") система. Древнеегипетская десятичная непозиционная и вавилонская шестидесятеричная системы.
Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.
- 903. Дроби
Основное свойство дроби. Умножение и деление десятичных дробей. Обозначение множества рациональных чисел. Сокращение обыкновенных дробей. Сложение и вычитание десятичных дробей. Десятичное число как удобная форма записи дроби с указанными знаменателями.
Характеристика дробно-линейного программирования как вида нелинейного программирования. Этапы решения подобных задач симплексным методом и посредством нахождения области допустимых решений. Возможности применения на практике математической модели задачи.
Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.
Содержательные основы концепции философии числа пифагорейцев. Стадии формирования математических учений Платона и Аристотеля. Определение числовой гармонии. Значение теоретических подходов к вещественности числа для философии математики Аристотеля.
"Начала" - основная книга Эвклида, самый знаменитый учебник в истории. Расположение материала по тринадцати книгам так, чтобы трудности не возникали преждевременно (планиметрия, арифметика, несоизмеримые величины, стереометрия). Пятый постулат Эвклида.
Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.
Теоретические основы эвклидовости в математике. Кольца целостности. Евклидовы кольца. Матрицы над евклидовым кольцом. Линейные уравнения и системы линейных уравнений над кольцом целостности. Системы линейных уравнений над произвольным евклидовым кольцом.
Понятие кольца как непустого множества К с определенными на нем бинарным алгебраическими операциями сложения и умножения, требования к аксиомам. Разновидности кольца К и основные требования, предъявляемые к каждому из них, простейшие свойства и значение.
Характеристика умов наявностi властивостей iнерцiї та зменшення розмiрiв носiя. Вивчення стартовиго руху носiя розв’язку в залежностi вiд локальних властивостей початкової функцiї. Аналіз локалiзацiї та обмеженостi розв’язків задачі Коши-Неймана.
- 912. Египетские дроби
Изучение египетских дробей, принятых в египетской системе счисления. Исследование способов представления чисел в древности. Преимущества и недостатки позиционных и непозиционных систем счисления. Рассмотрение содержания математических папирусов.
- 913. Его величество граф
Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.
- 914. Ейлерові графи
Основні означення та властивості графів. Використання матриць інцилентності та суміжності для подання графі. Подання графа списками пар і суміжності. Розгляд ейлерової ломиголовки "Кенігзберзьких мостів". Алгоритм Флері побудови ейлерового циклу.
Застосування методів топологічної алгебри, теорії лінійних просторів до вивчення ізоморфізмів вільних топологічних та паратопологічних груп. Класифікація відображень, що мають праві обернені. Побудова еквівалентних за Марковим просторів і відображень.
Встановлення критерію топологічної еквівалентності функцій, що задані на колі та приймають скінченне число критичних значень. Визначення значення неперервних функцій в термiнах iнварiанта в їх локальних екстремумах, що утворюють змії певного типу.
Новий метод доведення, що заснований на порівнянні монотонних функцій із степеневими. Точні межі показників у вкладеннях класів Макенхаупта в класи Геринга й в обернених вкладеннях. Необхідні та достатні умови для монотонної зовнішньої функції.
Визначення виду формули за допомогою таблиці істинності. Основні елементи абстрактної алгебри. Фіктивні, значимі змінні для функцій. Розгляд таблиці Келі в дискретній математиці. Множини з алгебраїчними операціями. Рівняння групи з оберненими елементами.
Історичні відомості про векторну алгебру (поняття та її основні засновники). Вектори і лінійні дії з векторами. Вектори в системі координат. Скалярний добуток векторів. Система координат. Векторний добуток двох векторів. Мішаний добуток векторів.
Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).
Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).
Особливості розбудови матриці відношення. Основні принципи оперування елементами теорії множин. Алгоритм проведення операцій над множинами, основні властивості відношень і реалізація операцій над множинами засобами програмування за допомогою мови C++.
Особливості встановлення належності певного предмету до об'єму поняття. Відношення належності між множинами та їхніми елементами. Визначення суті універсальної та порожньої множин. Формулювання закону оберненого відношення між змістом та обсягом поняття.
Русский математик Ермаков Василии Петрович: биография, математические труды, педагогическая деятельность и история получения звания экстраординарного профессора. Жизнь и вклад в развитие математики древнегреческих ученых Евдокса Книдского и Эвклида.
Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
Простые элементарные доказательства знаменитых теорем Гаусса, Абеля, Галуа, Кронекера о построение правильных многоугольников и неразрешимости уравнений в радикалах. Рассмотрение основных идей алгебры. Порядок извлечения корней из комплексных чисел.
- 927. Женщины - математики
Толкование к астрономическому сочинению Птолемея и знаменитым геометрическим “Началам" Евклида Гипатии Александрийской. Математические исследования С. Ковалевской. Научная и общественная деятельность Н. Бари. Сотрудничество Н. Лобачевского и С. Яновской.
- 928. Женщины-математики
Ознакомление с жизненным путем женщин-ученых - Гипатии Александрийской, Софьи Ковалевской, Нины Бари, Елизаветы Литвиновой, Надежды Гернет, Клавдии Латышкиной, Людмилы Келдыш и Ольги Ладыжевской; их вклад в развитие математики как научной дисциплины.
Описание жизненного пути и научной деятельности женщин-ученых: Гипатии Александрийской, Марии Склодовской-Кюри и Софье Ковалевской. Открытие радия, радиоактивности, рентгеновских лучей Марией Кюри, ее гибель от общения с радиоактивными веществами.
Изучение роли и места задач с жизненным содержанием в раскрытии содержательно-прикладного значения школьного курса геометрии и в решении общих образовательных задач, стоящих перед школой. Формирование ключевых и предметных компетенций по математике.