Аналіз діяльності Бублика Бориса Миколайовича, здобутки видатного вченого в прикладній математиці та кібернетиці. Оцінка його організаційної роботи на посаді декана факультету кібернетики, історія створення і розвитку кафедри моделювання складних систем.
Разработка системы управления угловым движением твердого тела. Использование формализованных методов выпуклого анализа. Определение опорной функции эллипсоида. Математическое программирование динамических систем. Интегрирование по схеме Минковского.
Изучение теории возвратных последовательностей и возможное применение её части на факультативах в школьном курсе математики. Примеры возвратных задач. Вывод формул вычисления любого члена возвратной последовательности. Базис возвратного уравнения.
Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.
Функции с ограниченным (конечным) изменением. Определение, общие условия существования интеграла Стилтьеса. Интегрирование по частям. Приведение интеграла Стилтьеса к интегралу Римана. Сведение криволинейного интеграла второго типа к интегралу Стилтьеса.
История квантовой криптографии: принцип неопределённости Гейзенберга и основные квантовые протоколы ВВ84 и В92. Типовые структуры квантовых систем распределения ключей, структура системы с поляризационным, фазовым и временным кодированием сигнала.
Возможность существования статического равновесия для магнитно взаимодействующих тел. Справедливость теоремы Ирншоу. Устойчивость относительных равновесий для магнитного диполя, взаимодействующего с аксиально и зеркально симметричным магнитным полем.
Характеристика моделирования объемов реализации услуг при использовании многомерной линейной функциональной зависимости. Анализ оценок потребления электроэнергии населением региона с учетом неопределенности множества природно-климатических факторов.
Принципы формирования и модулярного строения фрактальных структур в определенном структурированном пространстве на основе инъективно полученных фракталов Вичека (FV), канторова множества F(CM(1/3)) и итерационной последовательности точек F(IC(1/2)).
Структурные элементы ячейки 2D пространства. Вероятные структурные состояния с учетом кристаллической и фрактальной компонент. Основные классы вероятных фрактал содержащих структур ячеистого 2D пространства. Элементарные ячейки модулярных структур.
Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Учения о тригонометрических величинах. Греческая наука и ионийская школа натурфилософии.
Развитие математического метода. Аксиомы и методы доказательства. Преобразование математики в период От Евклида до начала 19 в. Появление неевклидовой геометрии. Современная математика. Тесная взаимосвязь данной науки и реального физического мира.
Единицы измерения разных народов. Измерение больших расстояний в древности. Совпадения в старину меры веса с мерой стоимости товара. Измерения в Древней Руси. Принятие в 1960 году Генеральной конференцией по мерам и весам Международной системы единиц.
Характеристика математики как науки о количественных отношениях и пространственных формах действительного мира, особенности ее назначения. Появление счетных функций: умножения, деления, сложения и вычитания чисел, первые геометрические понятия и цифры.
Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.
Творческая эволюция или мысли о возникновении "нового". Немного о геометрии и динамике. Гиперболические динамические системы. Диффеоморфизм Аносова. Изгибная подкова Смейла. Аттрактор Смейла. Анализ теорем динамической и топологической классификации.
Основные условия возрастания функции на заданном отрезке. Теорема о достаточном условии убывания функции, ее геометрическая интерпретация. Порядок нахождения интервалов монотонности. Анализ взаимосвязи между значением аргумента и значением функции.
Изучение понятия "функция" в математике. Рассмотрение функциональной зависимости и её графического изображения. История возникновения области допустимых значений. Порядок решения дробно-рациональных и иррациональных уравнений, задач и неравенств.
- 829. Володимир Левицький
Біографія українського математика, доктора філософії, професора Львівського університету, основоположника математичної культури нашого народу - Володимира Левицького. Його роботи з теорії аналітичних функцій, диференціальних та інтегральних рівнянь.
Исторические сведения о возникновении и распространении магических квадратов. Основные теории их построения и преобразования. Методы построения и свойства мало исследованных совершенных магических квадратов. Решение математических комбинаторных задач.
Формирование, развитие и взаимовлияние математики и философии Древней Греции. Милетская математическая школа, заложившая основы математики как доказательной науки. Роль математики в формировании элейской философии. Система философии математики Аристотеля.
Условия конечности и факторизация в бесконечных группах. Биография воспитанника Пермской алгебраической школы С.Н. Черникова доктора физико-математических наук Д.И. Зайцева (1942-1990 гг.). Группы со слабыми условиями максимальности и минимальности.
Характер поведения динамической системы, описываемой нестационарным временным рядом. Метод "фазового портрета". Восстановление в заданном классе системы дифференциальных или разностных уравнений на базе скалярного временного ряда наблюдаемого процесса.
Исследование разновидности ошибок, возникающих при постановке математической задачи. Изучение основных этапов построения аппроксимирующей функции по эмпирической формуле. Линейная и квадратичная зависимость координат. Очерк интерполяционной кривой.
Аналіз формулювання означення вписаного та центрального кутів. Знаходження кутової міри вписаного кута трикутника не користуючись транспортиром. Основна характеристика розвитку вмінь щодо використання геометричних понять під час розв’язування задач.
Систематизация и объединение знаний по геометрии. Основные теоремы об описанной и вписанной окружности, их доказательства. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности и решение с их помощью задач.
Вписанная, описанная окружности, взаимное расположение прямой и окружности, площади фигур, свойства прямоугольного треугольника. Задачи с окружностью, описанной около треугольника, вписанной в треугольник, описанной и вписанной около четырехугольника.
Патогенетичні механізми розвитку антифосфоліпідного синдрому - аутоімунне захворювання, яке характеризується наявністю в крові антифосфоліпідних антитіл до заряджених фосфоліпідів мембран клітин. Роль оксиду азоту в ішемічних ушкодженнях головного мозку.
Математичне моделювання впливу електричних параметрів схеми під’єднання осцилографа на характеристики вимірювальної системи імпульсів високої напруги. Проектування під’єднання осцилографа до високовольтного подільника напруги. Показники точності системи.
Доведення існування магнітно потенційної ями і дослідження впливу топології надпровідних тіл на стійкість статичної рівноваги. Виявлення і математичний аналіз фізичних механізмів забезпечення стійкості у системах з магнітною ямою та магнітною левітацією.
