О классах неинвариантных подгрупп в непериодических группах

Особенность описания периодических групп, содержащих бесконечную абелеву подгруппу и имеющих конечное множество классов неинвариантных сопряженных подгрупп. Проведение исследования ступени разрешимости всякой неинвариантной разрешимой подгруппы группы G.

Рубрика Математика
Предмет Математика
Вид статья
Язык русский
Прислал(а) С.И. Фаерштейн
Дата добавления 26.04.2019
Размер файла 54,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.

    курсовая работа [527,0 K], добавлен 26.09.2009

  • Характеристика и определение общих свойств слабо нормальных подгрупп и их конечных групп. Доказательство новых критериев принадлежности группы насыщенной формации. Критерии разрешимости и метанильпотентности групп в терминах слабо нормальных подгрупп.

    курсовая работа [176,0 K], добавлен 02.03.2010

  • Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.

    курсовая работа [260,7 K], добавлен 06.06.2012

  • Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.

    курсовая работа [177,7 K], добавлен 22.09.2009

  • Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.

    курсовая работа [163,6 K], добавлен 07.03.2010

  • Понятие f-субнормальных подгрупп, их основополагающие характеристики. Построение теории f-субнормальных подгрупп и теории субнормальных подгрупп Виландта. Локальные наследственные формации, обладающие решеточным свойством для f-субнормальных подгрупп.

    курсовая работа [464,9 K], добавлен 22.09.2009

  • Факторизуемые группы с Х-перестановочными силовскими подгруппами. Классическая теорема Холла о разрешимых группах. Нахождение признаков сверхразрешимости группы на основе условий Х-перестановочности ее подгрупп. Доказательство тождества Дедекинда.

    курсовая работа [229,4 K], добавлен 02.03.2010

  • Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.

    курсовая работа [523,5 K], добавлен 26.09.2009

  • Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).

    дипломная работа [272,8 K], добавлен 14.02.2010

  • Цепь как совокупность вложенных друг в друга подгрупп. Описание и применение теоремы Гольфанда. F-абнормальная максимальная подгруппа из G либо p-нильпотентна как бипримарная группа Миллера-Морено. Понятие группы Фробениуса с циклической подгруппой.

    курсовая работа [270,6 K], добавлен 07.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.