Решение систем линейных уравнений по методу наименьших квадратов

Рассмотрен метод наименьших квадратов - метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от экспериментальных входных данных. Практическое решение задачи методом наименьших квадратов.

Рубрика Математика
Предмет Вычислительная линейная алгебра
Вид курсовая работа
Язык русский
Прислал(а) Афонасова Я.Д.
Дата добавления 06.12.2023
Размер файла 540,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.

    курсовая работа [77,1 K], добавлен 02.06.2011

  • Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.

    реферат [383,7 K], добавлен 19.08.2015

  • Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

    лабораторная работа [166,4 K], добавлен 13.04.2016

  • Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.

    курсовая работа [471,3 K], добавлен 07.03.2015

  • Основные виды линейных интегральных уравнений. Метод последовательных приближений, моментов, наименьших квадратов и коллокации. Решение интегральное уравнение методом конечных сумм и методом моментов. Ненулевые решения однородной линейной системы.

    контрольная работа [288,4 K], добавлен 23.10.2013

  • Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.

    презентация [100,3 K], добавлен 16.12.2014

  • Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.

    курсовая работа [1,9 M], добавлен 12.02.2013

  • Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.

    курсовая работа [1,0 M], добавлен 29.01.2010

  • Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.

    курсовая работа [304,9 K], добавлен 07.09.2012

  • Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.

    реферат [82,0 K], добавлен 05.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.