Пространства Орлича, порожденные параметризованными функциями Юнга векторного аргумента
Функция Юнга и ее свойства. Пространство Орлича и норма Амемии. Полнота пространства Орлича. Критерии сходимости и фундаментальности последовательности функций. Привлечение нетривиальных сведений из выпуклого анализа. Теория нормированных пространств.
| Рубрика | Математика |
| Предмет | Математика |
| Вид | статья |
| Язык | русский |
| Прислал(а) | И.В. Шрагин |
| Дата добавления | 26.04.2019 |
| Размер файла | 238,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.
реферат [249,4 K], добавлен 21.01.2011Общая теория топологических и векторных пространств, внутренняя логика развития; аксиоматика. Структура построения нормированного пространства; рассмотрение и развитие понятия банахова пространства как определённого типа векторных пространств с нормой.
реферат [14,9 K], добавлен 11.01.2011Элементы общей теории многомерных пространств. Понятие векторного многомерного пространства на основе аксиоматики Вейля. Евклидово векторное пространство. Четырёхмерное пространство, его пределение и исследование. Применение многомерной геометрии.
дипломная работа [1,0 M], добавлен 24.02.2010Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.
реферат [375,9 K], добавлен 04.12.2011Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.
курсовая работа [1,4 M], добавлен 15.06.2009Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.
курсовая работа [481,4 K], добавлен 28.04.2011Понятие и характерные свойства обобщенных функций и обобщенных производных, их отличительные признаки и направления анализа. Решение и определение данных величин на основе специальных теорем. Сущность и структура, элементы пространства Соболева.
презентация [179,4 K], добавлен 30.10.2013Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.
курсовая работа [232,5 K], добавлен 12.10.2009Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
дипломная работа [354,0 K], добавлен 08.08.2007Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.
дипломная работа [273,3 K], добавлен 08.08.2007


