Преобразование прямоугольных координат на плоскости. Кривые второго порядка

Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.

Рубрика Математика
Предмет Аналитическая геометрия
Вид лекция
Язык русский
Прислал(а) afafwfa
Дата добавления 29.09.2013
Размер файла 127,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • Нормальное и каноническое уравнение окружности и эллипса. Понятие эксцентриситета как отношения фокусного расстояния к длине большой оси эллипса. Уравнение и координаты точки, принадлежащей эллипсу. Влияние отношение малой и большой полуосей на фигуру.

    презентация [184,4 K], добавлен 21.09.2013

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.

    контрольная работа [133,5 K], добавлен 12.01.2011

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.

    реферат [202,6 K], добавлен 26.01.2011

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

  • Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

    лекция [160,8 K], добавлен 17.12.2010

  • Определение связи между полярными и прямоугольными координатами. Рассмотрение уравнений прямой, окружности, эллипса, гиперболы и параболы в полярных координатах. Представление в исследуемой системе координат спирали Архимеда. Построение графиков функций.

    курсовая работа [1,2 M], добавлен 10.02.2012

  • Гипербола и ее свойства. Каноническая система координат. Понятие эксцентриситета, его зависимость от отношения мнимой и действительной полуосей. Уравнение директрис. Определение центра, оси, вершин, фокусов, эксцентриситета и асимптоты заданной гиперболы.

    презентация [3,9 M], добавлен 02.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.