Основные распределения математической статистики
Построение графика плотности нормального распределения. Его изменение графика при увеличении и уменьшении значения математического ожидания, степени свободы. Определение критерия хи-квадрат, t-критерия Стьюдента, точного критерия Фишера, их использование.
Рубрика | Математика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 27.03.2022 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение, доказательство свойств и построение графика функции распределения. Вероятность попадания непрерывной случайной величины в заданный интервал. Понятие о теореме Ляпунова. Плотность распределения "хи квадрат", Стьюдента, F Фишера—Снедекора.
курсовая работа [994,4 K], добавлен 02.10.2011Определение математического ожидания и среднеквадратического отклонения с целью подбора закона распределения к выборке статистических данных об отказах элементов автомобиля. Нахождения числа событий в заданном интервале; расчет значения критерия Пирсона.
контрольная работа [336,3 K], добавлен 01.04.2014Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.
задача [140,0 K], добавлен 17.11.2011Закон и свойства нормального распределения случайной величины. На основе критерия согласия Пирсона построение гистограммы, статистической функции и теоретической кривой и определение согласованности теоретического и статистического распределения.
курсовая работа [894,5 K], добавлен 30.10.2013Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.
реферат [105,5 K], добавлен 01.01.2011Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.
контрольная работа [390,7 K], добавлен 29.05.2014Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.
курсовая работа [549,1 K], добавлен 07.08.2013Определение среднего квадратичного отклонения. Расчет значения критерия Стьюдента, значения доверительных границ с его учетом. Обоснование выбора математической модели прогнозирования. Параметры по методу наименьших квадратов, наработка до отказа.
контрольная работа [394,1 K], добавлен 18.06.2014Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.
контрольная работа [97,1 K], добавлен 26.02.2012Графическое изображение теоретической и эмпирической функций плотности распределения; критерии их согласования. Определение доверительных интервалов для математического ожидания. Расчет диапазона рассеивания значений при заданной вероятности риска.
контрольная работа [519,8 K], добавлен 11.06.2011Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция [387,7 K], добавлен 12.12.2011Нахождение плотности, среднеквадратического отклонения, дисперсии, ковариации и коэффициента корреляции системы случайных величин. Определение доверительного интервала для оценки математического ожидания нормального распределения с заданной надежностью.
контрольная работа [200,3 K], добавлен 16.08.2010Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
контрольная работа [38,5 K], добавлен 25.03.2015Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.
контрольная работа [114,3 K], добавлен 11.02.2014Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.
презентация [131,8 K], добавлен 01.11.2013Определение вероятность срабатывания устройств при аварии. Расчет математического ожидания, дисперсии и функции распределения по заданному ряду распределения. Построение интервального статистического ряда распределения значений статистических данных.
контрольная работа [148,8 K], добавлен 12.02.2012Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.
контрольная работа [91,7 K], добавлен 15.11.2011Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.
контрольная работа [59,7 K], добавлен 26.07.2010Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.
курсовая работа [134,2 K], добавлен 31.05.2010Построение полигона относительных частот, эмпирической функции распределения, кумулянты и гистограммы. Расчет точечных оценок неизвестных числовых характеристик. Проверка гипотезы о виде распределения для простого и сгруппированного ряда распределения.
курсовая работа [216,2 K], добавлен 28.09.2011