Основные понятия теории вероятностей - вероятность события

Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.

Рубрика Математика
Вид доклад
Язык русский
Дата добавления 17.12.2015
Размер файла 19,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Доклад на тему:

«Основные понятия теории вероятностей - вероятность события»

Выполнила:

Ученица 2 курса ВО

СМУ им. Шаталова

Губская Людмила

Содержание

Введение

1. Теоретическая часть

2. Практическая часть

3. Свойства вероятности

4. Теоремы нахождения вероятности «событий»

Заключение

Введение

Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, линии; в механике - понятия силы, массы, скорости, ускорения и т.д. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие - это значит свести его к другим, более известным. Очевидно, процесс определения одних понятий через другие должен где-то заканчиваться, дойдя до самых первичных понятий, к которым сводятся все остальные и которые сами строго не определяются, а только поясняются.

Такие основные понятия существуют и в теории вероятностей. В качестве первого из них введем понятие события.

1. Теоретическая часть

Под «событием» в теории вероятностей понимается всякий факт, который в результате опыта может произойти или не произойти.

Приведем несколько примеров событий:

А - появление герба при бросании монеты;

В - появление трех гербов при трехкратном бросании монеты;

С - попадание в цель при выстреле;

D - появление туза при вынимании карты из колоды;

Е - обнаружение объекта при одном цикле обзора радиолокационной станции;

F - обрыв нити в течение часа работы ткацкого станка.

Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одни - большей, другие - меньшей, причем для некоторых из этих событий мы сразу же можем решить, какое из них более, а какое менее возможно. Например, сразу видно, что событие А более возможно, чем В и D. Относительно событий С, Е и F аналогичных выводов сразу сделать нельзя; для этого следовало бы уточнить условия опыта. Так или иначе, ясно, что каждое из таких событий обладает той или иной степенью возможности. Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число мы назовем вероятностью события.

Таким образом, мы ввели в рассмотрение второе основное понятие теории вероятностей - понятие вероятности события. Вероятность события есть численная мера степени объективной возможности этого события.

Заметим, что уже при самом введении понятия вероятности события мы связываем с этим понятием определенный практический смысл, а именно: на основании опыта мы считаем более вероятными те события, которые происходят чаще; мало вероятными - те, которые почти никогда не происходят. Таким образом, понятие вероятности события в самой своей основе связано с опытным, практическим понятием частоты события.

Сравнивая между собой различные события по степени их возможности, мы должны установить какую-то единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т.е. такого события, которое в результате опыта непременно должно произойти. Пример достоверного события - выпадение не более 6 очков при бросании одной игральной кости.

Если приписать достоверному событию вероятность, равную единице, то все другие события - возможные, но не достоверные - будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.

Противоположностью по отношению к достоверному событию является невозможное событие, т.е. такое событие, которое в данном опыте не может произойти. Пример невозможного события - появление 12 очков при бросании одной игральной кости. Естественно приписать невозможному событию вероятность, равную нулю.

Таким образом, установлены единица измерения вероятностей - вероятность достоверного события - и диапазон изменения вероятностей любых событий - числа от 0 до 1.

2. Практическая часть

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через w1, w2, w3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w1 - появился белый шар; w2, w3 - появился красный шар; w4, w5, w6 - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: w2, w3, w4, w5, w6.

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит w2, или w3, или w4, или w5, или w6. В этом смысле событие А подразделяется на несколько элементарных событий (w2, w3, w4, w5, w6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

Р (A) = m / n,

где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

3. Свойства вероятности

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно: вероятность численный теорема

Р (А) = m / n = 0 / n = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно:

0 < Р (А) < 1

Итак, вероятность любого события удовлетворяет двойному неравенству

0 <= Р (A) < 1.

Далее приведены теоремы, которые позволяют по известным вероятностям одних событий находить вероятности других событий.

4. Теоремы нахождения вероятности «событий»

Современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Ограничимся изложением на языке теории множеств тех понятий, которые рассмотрены выше.

Пусть в результате испытания наступает одно и только одно из событий wi, (i = 1, 2, ..., n). События wi, называют элементарными событиями (элементарными исходами). Уже отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий W, а сами элементарные события - точками пространства W.

Событие А отождествляют с подмножеством (пространства W), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество W, элементы которого есть исходы, благоприятствующие В, и т.д. Таким образом, множество всех событий, которые могут наступить в испытании, есть множество всех подмножеств W. Само W наступает при любом исходе испытания, поэтому W - достоверное событие; пустое подмножество пространства W - невозможное событие (оно не наступает ни при каком исходе испытания).

Заметим, что элементарные события выделяются из числа всех событий тем, что каждое из них содержит только один элемент W.

Каждому элементарному исходу wi, ставят в соответствие положительное число pi - вероятность этого исхода, причем

По определению, вероятность Р(А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Отсюда легко получить, что вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.

Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно n, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1 / n. Пусть событию А благоприятствует m исходов. Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р (А) = 1 / n + 1 / n + .. + 1 / n.

Учитывая, что число слагаемых равно m, имеем

Р (А) = m / n.

Получено классическое определение вероятности.

Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопре-деляемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р (А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

P(W) = l.

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

Заключение

Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.

Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

Размещено на Allbest.ru


Подобные документы

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка [777,8 K], добавлен 24.12.2010

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

    задача [104,1 K], добавлен 14.01.2011

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.

    презентация [1,5 M], добавлен 19.07.2015

  • Основные понятия комбинаторики. Определение теории вероятности. Понятие математического ожидания и дисперсии. Основные элементы математической статистики. Условная вероятность как вероятность одного события при условии, что другое событие уже произошло.

    реферат [144,6 K], добавлен 25.11.2013

  • Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

    реферат [402,7 K], добавлен 03.12.2007

  • Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.

    реферат [1,4 M], добавлен 18.02.2014

  • Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.

    контрольная работа [157,5 K], добавлен 04.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.