Ортогональные разложения на группах корней из единицы
Для различных приложений функций нескольких переменных построен алгебраический подход к построению многочленов, формулы которых содержат символьные переменные. Примеры демонстрируют эффективность и широкий охват решаемых научно-технических задач.
Рубрика | Математика |
Предмет | Математика |
Вид | статья |
Язык | русский |
Прислал(а) | Клюжев Н.А. |
Дата добавления | 08.05.2021 |
Размер файла | 733,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.
презентация [104,8 K], добавлен 17.09.2013Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.
курсовая работа [107,1 K], добавлен 29.04.2011Определение и примеры симметрических многочленов от трех и нескольких переменных. Решение систем уравнений с тремя неизвестными. Освобождение от иррациональности в знаменателе. Разложение на множители. Основная теорема об антисимметрических многочленах.
курсовая работа [303,5 K], добавлен 12.04.2012Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.
реферат [86,3 K], добавлен 30.10.2010Теория высшей алгебры в решении задач элементарной математики. Программы для нахождения частного и остатка при делении многочленов, наибольшего общего делителя двух многочленов, производной многочлена; разложения многочленов на кратные множители.
дипломная работа [462,8 K], добавлен 09.01.2009Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.
курсовая работа [2,5 M], добавлен 30.06.2011Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.
курсовая работа [296,3 K], добавлен 12.12.2010Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.
дипломная работа [733,7 K], добавлен 20.07.2011Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.
контрольная работа [62,7 K], добавлен 14.08.2010Роль многочленов Чебышева в теории приближений и их использование в качестве узлов при интерполяции алгебраическими многочленами. Преимущества разложения функции по полиномам Чебышева. Разработка программы численного расчета решения подобной задачи.
контрольная работа [184,2 K], добавлен 13.05.2014