• Сущность алгоритма Свенна, его задачи. Характеристика методов поразрядного поиска, перебора, деления отрезка пополам, золотого сечения. Главные задачи многомерной безусловной минимизации. Метод градиентного спуска с дроблением шага, наискорейшего спуска.

    курсовая работа (1,1 M)
  • Приведение численных методов решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений, определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач программирования.

    учебное пособие (123,3 K)
  • Изучение метода трапеций с последующей обработкой на компьютере. Вычисление приближенного значения определенного интеграла с точностью 10-4 методом трапеций, разработка алгоритма решения в программной среде Microsoft Excel, его проверка в среде MathCAD.

    контрольная работа (1,4 M)
  • Сегментация междустрочных просветов и строк в изображении текстового документа на основе непрерывного гранично-скелетного представления изображения. Выполнение аппроксимации геометрических искажений всего документа в форме двумерного патча Безье.

    автореферат (963,4 K)
  • Вычисление значения аппроксимирующих функций в узлах аппроксимации. Проверка (аналитически) условий сходимости применяемых методов решения уравнений. Условие унимодальности и выбор начального отрезка оптимизации. Определение параметров многочлена.

    курсовая работа (48,3 K)
  • Исследования различных методов интегрирования дифференциальных уравнений по точности вычисления. Структурная схема алгоритма и листинг программы Matlab. Реализация методов Эйлера, Эйлера-Коши и Рунге-Кутта 3 порядка. Экстраполяционный метод Адамса.

    лабораторная работа (171,7 K)
  • Основы вычислительной математики. Задачи численного интегрирования. Интерполяционная формула Лагранжа. Вывод формулы Симпсона, правила Рунге, метод двойного просчета, схема уточнения значений интеграла, процесс Эйтнена. Подсчет погрешности результата.

    реферат (1,8 M)
  • Исследование магнитного поля внутри проводника. Вычисление зависимости поля от радиальной координаты при растущей амплитуде токов. Условия фазовых сдвигов, обусловленных электромагнитной индукцией. Трансформация амплитудных и фазовых зависимостей.

    статья (246,4 K)
  • Матричная коррекция системы линейных алгебраических уравнений по минимуму полиэдральной нормы с условием неотрицательности. Методы решения задач коррекции несовместных линейных систем. Структурная коррекция систем линейных алгебраических уравнений.

    автореферат (664,4 K)
  • Схема Гаусса с выбором главного элемента. Метод единственного деления. Метод квадратного корня. Метод Халецкого. Итерационные методы. Методы получения характеристического многочлена. Частичная проблема собственных значений. Метод вращения с преградами.

    методичка (203,2 K)
  • Понятие сингулярных чисел, проблема нахождения их собственных значений. Вычисление сингулярного разложения матрицы с использованием метода вращений Якоби. Разработка и тестирование на примерах программы для вычисления сингулярного разложения матриц.

    лабораторная работа (21,7 K)
  • Теоретические аспекты электрохимической защиты. Рассмотрение вопросов численного расчета электрических полей в системах катодной электрохимической защиты сооружений от коррозии. Обзор основных методов расчета параметров электрохимических систем.

    статья (20,4 K)
  • Программы, позволяющие решать алгебраические уравнения различными методами: EMSolutionLight, Task Light, SMath Studio. Реализация программы на языке Delphi, выполняющей решения алгебраических уравнений методом простых итераций и деления отрезка пополам.

    курсовая работа (265,7 K)
  • Известные формулы теории матриц для обыкновенных дифференциальных уравнений. Вычисление оболочек составных и со шпангоутами простейшим методом "сопряжения участков интервала интегрирования". Свойства переноса краевых условий в методе С.К. Годунова.

    монография (1,1 M)
  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья (94,1 K)
  • Появление и совершенствование быстродействующих электронных вычислительных машин. Исследование естественнонаучных проблем средствами вычислительной математики. Решение уравнения методом половинного деления. Нахождение экстремумов функции методом перебора.

    курсовая работа (627,8 K)
  • Характеристика решения первой краевой задачи конечно-разностным и методом прогонки. Их особенности, описание и специфика применения к конкретному случаю. Код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.

    курсовая работа (53,0 K)
  • Ознакомление с основными методами решения нелинейных уравнений. Исследование и характеристика специальных способов решения определенных интегралов: правых прямоугольников и трапеций. Рассмотрение и анализ особенностей методов Эйлера и Рунге-Кутта.

    контрольная работа (1,7 M)
  • Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.

    реферат (108,2 K)
  • Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.

    лекция (103,1 K)
  • Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.

    контрольная работа (186,0 K)
  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа (759,7 K)
  • Решение нелинейных уравнений численными методами: методом половинного деления, методом Ньютона. Определение промежутков, содержащих корни. График функции cos(x)ch(x)+1=0. Создание функции нахождения точных значений корней с помощью программы MatLab.

    лабораторная работа (789,9 K)
  • Использование программы Excel для решения нелинейных уравнений. Отделение корней, алгоритм метода хорд. Уточнение корней методами касательных (Ньютона) и простой итерации. Команда подбор параметра для решения задач поиска определенного целевого значения.

    курсовая работа (1,4 M)
  • Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.

    статья (42,4 K)
  • Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.

    лекция (474,7 K)
  • Значение модуля производной функции. Вычисления со строгим учетом предельных абсолютных погрешностей. Преобразование системы к виду, необходимому для применения метода Зейделя. Определение абсолютной погрешности для приближенного решения системы.

    контрольная работа (15,1 K)
  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие (606,9 K)
  • Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.

    творческая работа (1,3 M)
  • Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.

    курсовая работа (161,5 K)