Воспоминания о Д.И. Зайцеве (к 70-летию со дня рождения известного советского алгебраиста)

Условия конечности и факторизация в бесконечных группах. Биография воспитанника Пермской алгебраической школы С.Н. Черникова доктора физико-математических наук Д.И. Зайцева (1942-1990 гг.). Группы со слабыми условиями максимальности и минимальности.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 26.04.2019
Размер файла 21,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие алгебраической системы (группы), ключевые условия, которым она удовлетворяет и ее нейтральный элемент. Основные свойства группы. Мультипликативные и аддитивные циклические подгруппы и группы. Теорема Лагранжа и характеристика следствий из нее.

    курсовая работа [173,6 K], добавлен 10.01.2015

  • Первая краевая задача и граничное условие 1-го рода. Задачи с однородными граничными условиями. Задача с главными неоднородными условиями и ее вариационная постановка. Понятие обобщенного решения. Основные условия сопряжения и условия согласования.

    презентация [71,8 K], добавлен 30.10.2013

  • Примеры алгебраических групп матриц, классические матричные группы: общая, специальная, симплектическая и ортогональная. Компоненты алгебраической группы. Ранг матрицы, возвращение к уравнениям, совместимость. Линейные отображения, действия с матрицами.

    курсовая работа [303,7 K], добавлен 22.09.2009

  • Жизнь и деятельность известного итальянского математика позднего Средневековья Леонардо из Пизы, известного как Фибоначчи. Последовательность цифр, именуемая рядом Фибоначчи, ее свойства. Коэффициент пропорциональности, называемый золотым сечением.

    презентация [159,5 K], добавлен 29.11.2011

  • Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.

    курсовая работа [197,3 K], добавлен 29.09.2014

  • Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.

    курсовая работа [177,7 K], добавлен 22.09.2009

  • Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.

    курсовая работа [527,0 K], добавлен 26.09.2009

  • Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.

    реферат [1,6 M], добавлен 29.05.2009

  • Факторизуемые группы с Х-перестановочными силовскими подгруппами. Классическая теорема Холла о разрешимых группах. Нахождение признаков сверхразрешимости группы на основе условий Х-перестановочности ее подгрупп. Доказательство тождества Дедекинда.

    курсовая работа [229,4 K], добавлен 02.03.2010

  • Использование теоретико-числового и алгебраического метода доказательства, с наглядной геометрической верификацией, который был изобретен П. Ферма. Верификация метода бесконечных (неопределенных) спусков, который применяется для доказательства теоремы.

    научная работа [796,8 K], добавлен 11.01.2008

  • Биография И.Р. Шафаревича. Основные вехи жизненного пути ученого. Методология И.Р. Шафаревича. Труды по алгебре, теории алгебраических чисел и алгебраической геометрии. Спорные моменты в его работах. Президент Московского математического общества.

    курсовая работа [110,7 K], добавлен 11.02.2007

  • Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.

    курсовая работа [541,3 K], добавлен 27.03.2011

  • Сопряженный оператор. Сопряженная однородная задача. Условия разрешимости. Если иметь дело с граничными условиями общего вида можно выразить какие-либо два из граничных значений через два других.

    реферат [61,1 K], добавлен 29.05.2006

  • Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.

    курсовая работа [1,1 M], добавлен 22.09.2009

  • Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.

    курсовая работа [634,5 K], добавлен 24.11.2021

  • Рассмотрение философско-математических и логических исследований А.Ф. Лосева, представленных в труде "Хаос и структура", "Философия числа", образованный на стыке двух наук: математики и философии. Учение А.Ф. Лосева об актуализации гилетических чисел.

    курсовая работа [45,1 K], добавлен 20.08.2012

  • Алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. Функции и свойства рядов, их физический смысл.

    курсовая работа [1,8 M], добавлен 20.05.2015

  • Биография Л. Эйлера - выдающегося математика, внесшего значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Полжизни провёл он в России, где внёс существенный вклад в становление отечественной науки.

    презентация [3,2 M], добавлен 07.06.2009

  • Доказательство теорем Силова о конечных группах, которые представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы G гарантируют существование подгрупп такого порядка. Нахождение силовских р-подгрупп.

    курсовая работа [161,3 K], добавлен 31.03.2011

  • Биография и творческий путь Гнеденко - советского математика, специалиста по математической статистике. Выявление его вклада в развитие теории вероятностей. Описание статистических методов управления качеством. Суммирование независимых случайных величин.

    курсовая работа [27,5 K], добавлен 10.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.