Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.
Методика определения и оценки вероятности попадания студенту "счастливого" билета на экзамене. Анализ вероятности того, что среди 12 новорожденных будет 10 девочек. Разработка закона распределения случайной величины и вычисление математического ожидания.
Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".
Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.
Анализ возможных значений случайной величины и вычисление вероятности их появления. Использование формулы Бернулли в определении вероятности наступления событий, построение графика функции распределения. Расчет математического ожидания и дисперсии.
Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
Построение функции распределения и многоугольника распределения. Применение гауссовского приближения для центрованной и нормированной величины общих выплат. Определение актуарной современной стоимости временной пожизненной ренты, выплачиваемой раз в год.
Формулировка комбинаторных правил суммы и произведения. Комбинаторные схемы выбора. Формулы для числа размещений и сочетаний в схемах выбора. Определения суммы, произведения, разности событий, противоположного события. События на диаграммах Эйлера-Венна.
Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.
Особенности определения вероятности возникновения ошибки при различных процессах и применение схемы Бернулли. Математическое ожидание для случайной величины, распределенной по биномиальному закону. Расчет генеральной и выборочной дисперсии чисел.
- 4392. Основы теории графов
История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.
- 4393. Основы теории графов
Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.
- 4394. Основы теории графов
Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".
Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
- 4396. Основы теории игр
Игра как математическая модель конфликтной ситуации. Основные понятия теории игр, ее ключевые понятия. Парные матричные игры с нулевой суммой. Характеристика методов решения матричных игр. Выбор пары альтернатив. Статистические игры (игры с "природой").
Математические модели объектов управления в обычных и частных производных. Динамические звенья и структурные схемы систем управления. Понятие матрицы передаточной функции. Сущность первой теоремы Ляпунова и определение устойчивости линейных систем.
Характеристика детерминированной и вероятностной математической модели. Сущность стохастической неопределенности и Марковского случайного процесса. Изображение потока событий на оси времени. Понятие уравнения Колмогорова для вероятностей состояний.
- 4399. Основы теории множества
Понятие множества, его структура и главные элементы, существующие операции и порядок их реализации, способы задания. Сущность и методика пересечения, объединения, вычитания. Механизм и основные правила нахождения декартового произведения множества.
Понятие качества, методы его оценки на основе измерений свойств объекта и на основе коэффициентов "трудности". Операционные основы построения производственно-квалитативных функций. Основная формула теории управления с обратной связью и ее приложения.
Важнейшие классы и методы случайных процессов. Конечномерные распределения винеровского процесса. Дискретная цепь Маркова. Евклидово пространство случайных величин. Корреляционная теория. Теорема Фубини. Производная и интеграл. Канонические разложения.
Анализ случайных погрешностей, дающих возможность с определенной гарантией вычислить действительное значение измеренной величины и оценить ее ошибки. Интервальная оценка с помощью доверительной вероятности. Определение минимального количества измерений.
Интервальная оценка с помощью доверительной вероятности. Определение минимального количества измерений. Методика выявления грубых ошибок и опыты. Кривые распределения Стьюдента для различных значений. Генеральная и выборочная совокупность измерений.
Анализ содержания предположений, которые легли в основу теории случайных ошибок. Сравнительная характеристика генеральной и выборочной совокупности измерений. Определение минимального количества измерений. Методика определения коэффициента Кохрена.
- 4405. Основы теории статистики
Определение сущности статистического наблюдения. Разработка интервального вариационного ряда распределения. Ознакомление с абсолютными величинами. Рассмотрение степенных средних: средней арифметической, гармонической, квадратической и геометрической.
- 4406. Основы теории управления
Принцип разомкнутого управления. Элементарные звенья систем управления. Расчет системы автоматической стабилизации заданного значения выходной координаты. Статический расчет системы автоматической стабилизации заданного значения выходной координаты.
Построение адаптивной мультипликативной модели Хольта-Уинтерса. Расчет индекса момента, относительной силы и скорости изменения цен. Определение точных и обыкновенных процентов по простой процентной ставке с точным и приближенным числом дней ссуды.
Множества в векторных пространствах. Продолжение положительных функционалов и операторов. Равномерность и топология метрического пространства. Теорема Жордана и простые картины. Выпуклые функции и сублинейные функционалы, алгебра ограниченных операторов.
- 4409. Основы численных методов
Понятие и закономерности реализации численных факторов. Этапы решения задач на ЭВМ. Правила округления чисел. Приближенное решение нелинейных уравнений. Аналитический, геометрический метод отделения корней. Метод итерации. Достаточное условие сходимости.
- 4410. Основы эконометрики
Характеристики вариационного ряда. Вычисление выборочной средней смещенной оценки дисперсии. Расчет точечной оценки параметра распределения методом моментов. Влияние новой технологии на среднюю производительность. Уравнение тренда для временного ряда.
