Застосування методів ліївських та умовних симетрій для дослідження симетрійних властивостей і знаходження точних розв’язків нелінійних рівнянь та систем, які узагальнюють класичні рівняння Шредінгера, Гамільтона-Якобі, конвекції-дифузії, Нав’є-Стокса.
Особливості застосування ліївського методу до групової класифікації системи нелінійних рівнянь хемотаксису. Огляд застосування нелокальних перетворень еквівалентності системи нелінійних рівнянь дифузії для лінеаризації, побудови нелокальних анзаців.
Спеціальні заміни змінних для проведення редукції і ефективного пошуку точних розв'язків нелінійних рівнянь реакції-дифузії, які є узагальненнями симетрійних і умовно-симетрійних анзаців. Частинні розв'язки рівняння Колмогорова–Петровського–Піскунова.
Построение окружностей и касательных к ним. Формула Эйлера, инверсия и её свойства. Внутренние и внешние точки круга с границей. Треугольники, их отличия от подобия. Геометрия Мора-Маскерони, построения с помощью циркуля и линейки, их значение.
Понятие многочлена в математике. Степень и корни многочлена. Свойства корней многочлена в теореме Виета. Доказательства теорем о свойствах симметрических многочленов. Использование теоремы Виета и теории симметрических многочленов для решения задач.
Виды и принципы симметрии. Правильность строения тела и фигуры в математике, физике, искусстве, живой и неживой природе, симметрия слов и чисел. Разнообразие симметрии растений, животных, кристаллов, архитектуры. Понятие и сущность асимметрии живого.
Определение понятия и видов симметрии. Описание проявлений симметрии в науке, исследование ее примеров в природе и технике. Изучение математических мотивов в филологии. Выделение основных направлений применения симметрии как основы красоты в творчестве.
- 4328. Симметрия в природе
История геометрического учения о симметрии. Принцип симметрии Пьера Кюри. Симметрия органического и неорганического мира. Внешняя и внутренняя симметрия кристаллов. Значение симметрии для жизнедеятельности человека. Симметрия поля земного тяготения.
Сущность понятия "симметрия". Центр, плоскость симметрии фигуры. Церковь Покрова Богородицы на Нерли как пример симметрии в искусстве. Кижи, церковь Преображения. Ехвастия, мозайка апсиды собора Св. Софии в Киеве. Микеланджело, гробница Джулиано Медичи.
- 4330. Симметрия вокруг нас
Анализ понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Изучение осевой, центральной, переносной и зеркальной симметрии. Характеристика видов симметрии, присущих животному и растительному миру. Загадка снежинок.
- 4331. Симметрия многочленов
Симметрия геометрических фигур и группы движений плоскости. Умножение движений, имеющих общую неподвижную точку. Симметрия многочленов от двух переменных. Квадратурные формулы для окружности. Многочлены, обладающие симметрией правильных многогранников.
Ось симметрии как прямая, относительно которой данные фигуры симметричны. Равность симметричных фигур. Геометрическое построение симметричных фигур, совмещение передвижением по плоскости фигур. Симметричные фигуры в природе, строительстве и украшениях.
- 4333. Симплекс-метод
Составление математической модели прямой и двойственной задачи. Расчет плана выпуска продукции с помощью симплекс-метода, который обеспечивает максимальную прибыль. Матрица стоимости перевозки единицы продукции. Оптимизируемая форма двойственной задачи.
- 4334. Симплекс-метод
Зміст і сутність методу розв’язання задач лінійного програмування за допомогою скерованого руху по опорних планах до знаходження розв’язку. Табличний, штучний та модифікований базис симплекс-методу. Розробка алгоритму математичної моделі завдання.
- 4335. Симплекс-метод
Алгоритм симплексного метода решения задач линейного программирования. Пример решения задачи симплексным методом. Вычисление оценки разложений векторов условий по базису опорного решения. Рассмотрение причин использования двухфазного симплекс-метода.
Недостатки геометрической интерпретации в решении задач линейного программирования. Принципиальные отличия вычислительных методов решения задач. Сущность симплекс–метода. Примеры решения задач линейного программирования с использованием симплекс-метода.
Подготовка задачи к применению симплекс-метода. Решение задачи определения оптимальной производственной программы, записанной в симметричном виде. Анализ особенностей получения неотрицательного базисного решения. Симплекс-метод с искусственным базисом.
Визначення сутності симплекс-методу, як ітераційної обчислювальної процедури. Характеристика порядку розв’язування задачі лінійного програмування симплексним методом. Розгляд системи обмежень у векторній формі. Вивчення критерія оптимальності плану.
Побудова відображення вкладення інваріантних многовидів для цілком інтегровних алгебраїчно-поліноміальних гамільтонових систем. Рівняння паралельного перенесення зв'язності на асоційованому розшаруванні до джет-многовиду для динамічної системи Бюргерса.
Розробка аналітичного методу побудови відображення вкладення інваріантних тороїдальних многовидів для інтегровних алгебраїчно-поліноміальних гамільтонових систем. Узагальнення диференціально-геометричної теорії Картана, дослідження геометричних об'єктів.
Дослідження сумісності сингулярних інтегральних рівнянь з додатковими умовами. Обґрунтування застосування до них методів проекційно-ітеративного типу. Характеристика підходу до розв’язання сингулярних інтегральних рівнянь з ненульовим індексом, їх аналіз.
Розробка методу, за допомогою якого можна побудувати теорію Нетера та дослідити властивості нових класів дискретних систем типу Вінера-Хопфа на основі теорії сингулярних інтегральних рівнянь та їх систем. Характеристика теорії розв’язності систем.
Розвиток математичної теорії сингулярних збурень самоспряжених операторів переважно скінченного рангу. Застосування та дослідження властивостей самоспряжених операторів, пов'язаних із комплексною проблемою моментів та відповідних блочних матриць Якобі.
Области применения равносильных преобразований алгоритмов. Схемы представления алгоритмов и алгебра событий. Соответствие событий переходам в инверсном графе. Способы регулярного выражения алгоритма. Определение последующих степеней символьных матриц.
Рассмотрение синтеза схем с помощью генетических алгоритмов, в основе которых лежит принцип биологической эволюции и естественного отбора. Генетический алгоритм – эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования.
Алгоритм побудови візуальних образів поверхні функції з рекурсивним уточненням області визначення. Розробка методу синтезу візуальних М-образів локальних геометричних характеристик на основі "базових" візуальних М-образів. Дослідження поверхні функції.
Сущность и значение ацикличности вторичной структуры алгебраической байесовской сети. Характеристика первичной и вторичной структуры алгебраической байесовской сети. Преобразование первичной структуры алгебраической байесовской сети к ацикличной.
Параметри другого роду частково зрівноважених блок-схем, побудованих за допомогою компактних лінійок задля упорядкування класифікації частково зрівноважених блок-схем. Алгоритмічно-програмні засоби генерації блок-схем на базі математичного забезпечення.
Моделирование схемы ячейки умножителя и выбора наборов, обеспечивающих выполнение условий С-тестируемости схемы и обнаруживающих все неисправности константного типа на входах-выходах умножителя и внутренних узлах каждой ячейки на веньтильном уровне.
Вирішення задачі синтезу оптимального управління. Розрахунок виразів для сімейства парабол; аналіз положення вихідної точки M0 відносно лінії переключень, розрахунок рівняння параболи, по якій вона рухається. Аналіз оптимальної траєкторії та управління.