Научная рациональность и философский разум

Формирование античной науки в лоне философии. Понятие бесконечного у Аристотеля. Христианство и генезис новоевропейского естествознания. Специфика новоевропейского типа рациональности. XX век: философское осмысление и критика научной рациональности.

Рубрика Философия
Вид учебное пособие
Язык русский
Дата добавления 14.11.2013
Размер файла 591,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

До тех пор, утверждает Кассирер, пока математики не подойдут к определению множества через закон его построения, а будут основывать свои теории на логике Аристотеля, удовлетворительного обоснования теории множеств они не смогут предложить. Другими словами, для обоснования теории множеств Кассирер предлагает опять-таки установить примат отношения над вещью, примат «функции» над «субстанцией». «Заслуга интуиционизма по отношению ко всем этим попыткам,-- пишет Кассирер, -- состоит в том, что он восстанавливает примат отношения... Он сознательно отказывается от всякой попытки глубже заложить фундамент чистой теории числа путем рассмотрения этой теории как частного случая общей теории множеств и логического "дедуцирования" натуральных чисел из понятия классов и множеств»76.

На место дедуцирования у интуиционистов встает «полная индукция», которую нельзя смешивать с общераспространенным понятием индукции, обозначающим «эмпирическое обобщение»; индукция, о которой идет здесь речь, отличается от эмпирической. «Истинная математическая индукция, -- говорит Кассирер, -- не ищет пути ко всеобщему, а указывает этот путь, -- более того, она сама и есть этот путь. И ее подлинный указатель -- это не то «индуктивное умозаключение», которое переходит от некоторого данного множества случаев к гипотетическому допущению или утверждению относительно всех случаев, а так называемое «умозаключение от п к п+1». В этом умозаключении определения, найденные и доказанные на единичных случаях, на отдельных числах, не складываются вместе и затем переносятся на другие, тоже единичные случаи, а в известной мере имеет место восхождение к абсолютному принципу числа: признается, что то же самое основное отношение, которое в числовом ряду связывает некоторый член с непосредственно следующим за ним членом, распространяется на весь этот ряд и определяет его во всех его частях»77.

В основе таким образом понятого принципа «полной индукции» лежит тот самый «априорный синтез», на котором зиждется неокантианская логика отношений вообще. Характерно, что здесь Кассирер и Наторп тесно соприкасаются с точкой зрения на обоснование математики, высказанной А. Пуанкаре в его работе «Наука и гипотеза». Кассирер ссылается в этой связи также на Вейля, согласно которому «полная индукция», понятая как умозаключение от п к п+1, есть математическая праинтуиция, не нуждающаяся в дальнейших доказательствах78.

Таким образом, неокантианцы видят преимущество интуиционизма в том, что он в своем обосновании математики исходит не из отношений вещей (независимо от того, понимать ли эти вещи как эмпирические или идеальные предметы), а из отношений чистого полагания, которые можно свести в конце концов к функциям полагания единства и различия, и на этой базе утверждает априорность положений математики и специфически математическую очевидность. Это дает возможность интуиционистам, в отличие от их оппонентов, показать необходимость вводимых ими ограничений.

Построение по «математической индукции», в основе которой лежит «праинтуиция» положительного целого числа и с которой интуиционизм отождествляет математическую деятельность, признается почти всеми интуиционистами, начиная с Л. Кронекера79 и Л. Брауэра и кончая «полуинтуиционистами» -- Вейлем, Пуанкаре и др. А это построение весьма близко по своему логическому основанию к теории числа, развитой Наторпом и Кассирером и изложенной нами выше.

Однако, принимая основной исходный принцип интуиционизма, неокантианцы не во всем согласны с тем логическим его обоснованием, которое дают ему интуиционисты, по крайней мере некоторые из них. Если интуиционизм возводит математику к праинтуиции числа, то сама эта интуиция не может означать созерцания конкретных вещей, а только созерцание чистого метода построения индивидуумов, называемых числами. Знание закона полагания предшествует тому, что полагается посредством этого закона. «Только в том случае, -- пишет Кассирер, -- если современный «интуиционизм» проникнется этой идеалистической идеей и поймет себя как выражение этой идеи, он сможет полностью развернуть свою силу в критике оснований математики и доказать ее на деле. Конечно, сам идеализм должен быть при этом понят как строго «объективный» идеализм: предметная сфера математики не может быть основана на психологическом акте счета, а должна быть основана на чистой идее числа»80.

Этому требованию вполне удовлетворяет интуиционизм, как он представлен, например Л. Брауэром. Кассирер согласен с Брауэром, когда тот заявляет, что математика есть «гораздо больше деятельность, чем теория». Но математическая деятельность, по Кассиреру, есть чисто интеллектуальная деятельность, протекающая не во времени, -- напротив, она сама впервые делает возможным тот основной момент, на котором зиждется самопротекание времени, -- момент рядополагания (Reihung). Математика не может опираться на эмпирическую последовательность моментов, на психологический акт счета, как на свой фундамент, -- на этом пункте Кассирер принципиально настаивает. По мнению Кассирера, Брауэр недостаточно четко различает деятельность как чисто интеллектуальный акт и деятельность как психологический акт просчитывания, а потому в его обоснование математики закрадываются элементы психологизма. Вместо строгого «объективного» идеализма он часто опирается на идеализм субъективный, истолковывая деятельность, лежащую в основе математики, как эмпирическую, протекающую во времени. В этом смысле, по мнению Кассирера, следует предпочесть тот вариант интуиционизма, который представлен Вейлем81. У последнего психологизм выявлен гораздо меньше, и он ближе стоит к тому идеалу, который предложен Кассирером: понять математику как основанную не на акте счета, а на идее числа.

Особенно резкой критике подвергает Кассирер попытку Оскара Беккера осмыслить исходные посылки интуиционизма с помощью антропологического истолкования феноменологии Гуссерля. Беккер опирается при этом уже не на самого Гуссерля, а на Хайдеггера, конкретнее, на его работы «Бытие и время» и «Кант и проблема метафизики ». Он связывает всеобщий принцип ряда, на котором базируется его теория числа, с феноменом времени, подчеркивая «решающую роль временности для бытийного характера математических предметов»82. При этом время у Беккера, как и у Хайдеггера, выступает уже не как кантовское время, т. е. не как последовательность моментов (а ведь и кантовское время неокантианцы тоже элиминируют, считая введение его в качестве условия возможности математики психологизацией последней), а как «историческое» время, «временность», т. е. как время, переживаемое математиком. Беккер, таким образом, обосновывает математику уже не с помощью трансцендентализма, а с помощью антропологизма, подчеркивая, вслед за Хайдеггером, что экзистенция человека, понятая конкретно в ее основных структурах (смерти, историчности, свободы и т. д.), определяет собой структуру математики.

Кассирер так же решительно выступает против такого обоснования математики, как он выступил против антропологической интерпретации «Критики чистого разума» Канта у Хайдеггера. «Объективное» время математики, -- пишет он, -- никоим образом нельзя смешивать с «историческим» временем или с временем, «данным в переживании» математика... Рассмотрение современной математики, насколько я вижу, не оправдывает попытки превратить «трасцендентальный» идеализм в антропологический. «Субъектом», к которому отнесены чистые конструктивные принципы математики и тем самым сфера математической предметности, остается «Я мыслю» трансцендентальной апперцепции Канта, т. е. то «чистое Я», «полюс Я», из которого первоначально исходит также и Гуссерль. Напротив, Беккер стремится свести содержание и состав математики к определенному роду и направлению «фактических феноменов жизни»; в конечном счете он основывает математическое «существование» на определенных «способах фактической жизни»83.

Таким образом, неокантианцы не принимают тех «психологистских» и «антропологических» обертонов, которые сопровождают интуиционистское обоснование математики у некоторых представителей интуиционизма.

Если интуиционизм неокантианцы пытаются корректировать, стараясь устранить его субъективные, психологические способы истолкования исходного принципа конструирования математического предмета, то к формализму, представленному прежде всего Гильбертом, они относятся более критически. Математика, говорит Кассирер, пытается спасти свою автономию, объявляя себя наукой о знаках. Самым последовательным на этом пути является, по мнению Кассирера, Гильберт, который выступает как против интуиционизма Брауэра и др., так и против «реализма понятий» Фреге и Рассела. Согласно Гильберту, только знаки в математике дают ту нить, по которой можно идти вперед, не опасаясь получить недостоверные положения. «Процесс удостоверения (математического знания. -- Ш1.), -- говорит Кассирер о Гильберте, -- перенесен с содержательного мышления на символическое»84.

Против такого способа обоснования математического знания неокантианцы выступают потому, что при подобном подходе «вся чистая математика превращается в простую игру»86. Гильберт, по их убеждению, воспроизводит в современной математике постулаты крайнего номинализма, терминизма, как он существовал в Средние века. Если Рассел и Фреге в своей попытке обосновать теорию числа с помощью понятия «класса» становятся на позиции, близкие к средневековому реализму, то Гильберт, рассматривающий математику как науку о знаках86, не имеющих никакого самостоятельного «смысла», становится на позиции номинализма. Оба эти направления отвергаются кантианцами, позиция которых может быть определена, -- коль скоро мы уже прибегли к этой традиционной терминологии, -- как концептуализм.

Здесь, однако, необходимо пояснение. Спор неокантианцев с Гильбертом отчасти неправомерен, и вот почему: у Гильберта речь идет об обосновании, а не понимании математики; Гильберт различает эти два момента; неокантианцы же, напротив, стремятся к тому, чтоб обоснование (формальный момент) и понимание (момент содержательный) совпадали между собой. Они требуют, иначе говоря, не формального, а содержательного обоснования математики. Поэтому их критика в адрес Гильберта направлена не против Гильберта как математика, а против него как ее обоснователя.

Кассирер упрекает Гильберта в том, что тот «на место объективного познания вводит конвенциональные правила игры. Для интуиционистов в математических символах выражается основное направление и свойство человеческого интеллекта, а для формалистов они--всего лишь «знаки на бумаге»87. Здесь Кассирер присоединяется к Вейлю, которого не удовлетворяет формализм Гильберта, поскольку последний лишает математические символы какого бы то ни было значения. Сам Вейль считает, что если математика хочет быть «серьезным культурным делом», то с «игрой формул», о которой говорит Гильберт, должен быть связан некоторый смысл88.

Но где тогда искать ту «запредельную» по отношению к математическим символам сферу, которая должна составлять смысл, значение этих символов? «Я не нахожу ее (эту сферу. -- П.Г.), -- пишет Вейль, -- если полностью не сливаю математику с физикой и не принимаю, что математические понятия числа, функции и т. д., или гильбертовы символы, принципиально таким же образом участвуют в теоретической конструкции действительного мира, как понятия энергии, гравитации, электрона и т. п.»89.

С критикой Вейля в адрес Гильберта Кассирер вполне согласен, но предложенный самим Вейлем способ интерпретации математических символов он не принимает, резонно возражая, что такая постановка вопроса упускает из виду все те разделы математики, содержание которых нельзя интерпретировать через сведение их к физической реальности. Сюда Кассирер относит прежде всего область трансфинитных чисел. Кассирер считает, что само требование найти для символов в качестве обозначаемого ими предмета некоторую «потустороннюю» символам реальность, будь то реальность физического мира или реальность метафизическая, -- такое требование приводит современную математику и вообще современную науку в тупик. Методологические проблемы научного знания, по Кассиреру, не будут удовлетворительно решены до тех пор, пока символ или знак будут, в соответствии с номиналистической, а равно и реалистической (в средневековом смысле этих терминов) традицией, рассматриваться дуалистически. «Символическое, -- пишет Кассирер, -- никогда не принадлежит «посюстороннему» или «потустороннему», «имманентному» или «трансцендентному», -- его значение состоит именно в том, чтобы преодолеть эти противоположности, возникшие на почве метафизической теории двух миров... Если теперь мы обратимся к сфере математического, то увидим, что и здесь снята альтернатива -- считать ли символы математики чистыми знаками, наглядными фигурами, лишенными смысла, или придать им трансцендентный смысл, который можно постигнуть только с помощью метафизической или религиозной «веры». В обоих случаях мы проглядели бы их истинное значение. Последнее состоит не в том, что они «суть» в себе, и не в том, что они «отображают», а в некоторой специфической направленности самого идеального образования, -- не во внешнем объекте, на который они направлены, а в самом способе объективирования»90.

Таким образом, согласно Кассиреру, математика -- это особый способ интеллектуального конструирования предмета; для нее не надо искать никаких коррелятов в мире физического бытия, так же как и в метафизическом, потустороннем мире. Какой бы то ни было способ «расшифровки» математических символов путем обращения к предмету, внешнему самой математике, не возможен и не нужен. Объективное значение математики состоит, по Кассиреру, не в том, что она имеет корреляты в физическом мире, а в том, что она сама строит этот мир в соответствии с объективными законами самого мышления и тем самым впервые создает условия для того, чтобы можно было постигать закономерности этого мира с помощью естественных наук -- прежде всего математической физики. В этом смысле математика является как бы посредницей между логикой, с одной стороны, и эмпирическими науками (физикой, механикой и т. д.) -- с другой.

Поэтому нет надобности соотносить математические понятия с некоторой «абсолютной» действительностью вещей, -- соотносить можно только математическую форму познания с формами познания логики и физики. «И результат этого сравнения, -- пишет Кассирер, -- состоит в том, что никакая из этих форм не существует сама по себе, а только во взаимной связи они строят сферу объективно-теоретического значения и имеют объективное бытие»81.

Такая позиция неокантианцев как бы претендует на «средний путь» между интуиционизмом и формализмом. Действительно, Кассирер, подводя итог своему рассмотрению этих двух направлений, замечает, что «с точки зрения теории познания формализм и интуиционизм не исключают друг друга. Ибо то, что в чистой интуиции понимается по своему значению, должно быть утверждено и сохранено благодаря процессу формализации...»92. Такое «объединение» этих двух направлений в математике есть по существу предложение некоторого третьего пути, при котором интуитивное познание и символическое не отрывались бы друг от друга, а, напротив, были бы неразрывно связаны. Интуитивное мышление, понятое как идеальное конструирование предмета, освобожденное от психологических аберраций интуиционизма, должно строить фундамент математического знания, а символическое, которое не может быть в принципе оторвано от интуитивного, а должно время от времени обращаться к своему фундаменту для содержательной интерпретации смысла знаков, призвано обеспечивать прочность и оформленность всей постройке. Таковы функции обоих моментов -- интуитивного и символического -- в процессе познания.

Ставя вопрос о преодолении односторонности как интуиционизма, так и формализма, неокантианцы считают целесообразным обратиться к тому обоснованию математики, которое в свое время было дано Лейбницем. Именно Лейбниц, как подчеркивает Кассирер, никогда не отрывал друг от друга интуитивную и символическую функции познания. «Интуитивное познание, согласно Лейбницу, -- пишет он, -- создает основы математики, символическое же заботится о том, чтобы, исходя из этих основ, провести непрерывную цепь доказательств к следствиям. На этом пути мышление не нуждается в постоянном обращении к идеальному положению вещей: на место операций с «идеями» ставятся операции со знаками. Но в конце концов в определенном пункте встает вопрос о «смысле» знака: нужна содержательная интерпретация того, что выражено в знаке. Лейбниц уподобляет математический символизм подзорной трубе или микроскопу: они усиливают зрение человека, но не заменяют его»93.

Усмотреть «смысл» знака -- это не значит, конечно, как уже пояснял Кассирер, обратиться к чему-то внешнему по отношению к самому математическому мышлению -- к эмпирическим или «идеальным» вещам; это значит только не терять из виду и постоянно вновь и вновь восстанавливать непрерывную линию самой конструирующей деятельности мышления, направленность самого идеального образования понятий,.-- и тогда связь «знака» с «обозначаемым» не будет упущена. При таком подходе, как легко догадаться, отнюдь не всякой комбинации знаков соответствует логически определенное математическое образование: если той или иной знаковой комбинации не соответствует определенное мыслительное действие («мыслительный шаг», как выражается Кассирер), то такая комбинация не должна претендовать на то, что ей соответствует некоторый математический предмет.

В этом важнейшем вопросе, касающемся обоснования математики, неокантианцы, как мы видим, отходят от принципов Канта и становятся на позиции Лейбница. В отличие от Канта, у которого математика имеет обязательным условием созерцание, у Лейбница математика и логическое мышление оказываются на одной стороне, а чувственность (созерцание) выступает в роли системы знаков; хотя без знаков математика не может обойтись, но свое содержание она получает не из чувственности, а из чистого мышления. Неокантианцы потому и подвергли критике кантовское учение об априорных условиях чувственности, что они вслед за Лейбницем не считают возможным допустить, что математика черпает из чувственности (пусть даже из априорных ее форм) свое содержание. Чувственность -- знак -- есть лишь средство выражения интеллектуального содержания, а не условие его получения.

Как мы уже отмечали, неокантианскую позицию в целом можно охарактеризовать как концептуализм, или, лучше, неоконцептуализм, хотя и не без некоторых оговорок. Одна из них -- существенное изменение общелогической позиции неокантианцев по сравнению с классическим средневековым концептуализмом, представители которого не создавали логику отношений, а пользовались классической аристотелевской логикой «родовых понятий». Но если иметь в виду, что классический концептуализм в отличие от реализма, считавшего общее существующим «до» единичного, а также номинализма, согласно которому общее существует «после» единичного, утверждал, что общее существует «в» единичном, то неокантианскую теорию познания вполне можно сравнить именно с классическим концептуализмом. В самом деле, общее (т. е. принцип построения ряда), согласно Когену, Наторпу и Кассиреру, не существует иначе, как в самом акте построения ряда; члены ряда и принцип его построения связаны между собой коррелятивно: одно без другого представить невозможно.

В своем обосновании математики неокантианцы развили один из вариантов концептуализма, позиции которого в целом были охарактеризованы А. Френкелем и И. Бар-Хиллелом следующим образом: «Они (неоконцептуалисты. -- П.Г.) претендуют на понимание того, что такое множество, хотя и предпочитают пользоваться метафорой построение (или придумывание -- Inventing), а не любимой метафорой платонистов Выбор (или открытие); эти метафоры заменяют собой более старую антитезу: существование в сознании -- существование в некотором внешнем (реальном или идеальном) мире. Неоконцептуалисты готовы допустить, что любое вполне определенное и ясное условие действительно определяет соответствующее множество -- коль скоро в этом случае они могут «построить» это множество, исходя из некоторого запаса множеств, существование которых либо интуитивно очевидно, либо гарантировано предварительными построениями, но не согласны принимать никаких аксиом или теорем, в силу которых им пришлось бы согласиться с существованием каких бы то ни было множеств, не характеризуемых конструктивным образом»94.

Основным возражением против неоконцептуализма неокантианцев, как и против неоконцептуализма в целом, является то, что принятие этой точки зрения требовало бы объявить незаконным целый ряд важнейших областей математики, которые не удается «сконструировать», «построить» в соответствии с принципами, выдвигаемыми этим направлением. Наиболее распространенное возражение против этой позиции, как пишут Френкель и Бар-Хиллел, состоит в том, «что принятие ее изуродовало бы математику точно так же, как принятие аналогичной позиции и отношения эмпирических предложений изуродовало бы эмпирическую науку»95. Достоверность математических положений и интуитивная ясность их достигается при этом, как видим, дорогой ценой.

5. Неокантианская концепция развития науки

Неокантианцы Марбургской школы в своем обосновании научного знания стремятся опереться также на историю науки: естественно, что при этом они рассматривают историю науки как непрерывный процесс, как прогрессивное развертывание той логической основы, которая определяет собой направление и содержание познания. Непрерывность, составляющая, как мы уже видели, реальное содержание принципа первоисточника, есть важнейшая отличительная черта научного познания.

Рассмотрению истории науки посвящен ряд работ Кассире ра, Когена и Наторпа, не говоря уже о том, что нет ни одной их теоретической работы, где бы в той или иной связи не приводились в качестве аргумента историко-научные факты, не устанавливалась связь между современным состоянием науки и ее историей. Поскольку непрерывность знания есть важнейшая логико-методологическая черта науки, то сама наука немыслима без ее истории, -- история составляет важнейший конститутивный момент самого научного знания. В этом отношении неокантианцы осуществили применительно к науке принцип философии Гегеля, согласно которому «истина есть система», так что нельзя брать результат процесса познания в виде отдельного « заключения », в оторванности от самого процесса познания -- отдельно от истории становления результата.

Другой особенностью неокантианской концепции развития науки является требование рассматривать историю науки в тесной связи с историей философии. Эта особенность подхода к истории науки легко объясняется тем, что неокантианцы дают логическое обоснование научного знания, а, стало быть, центром тяжести у них становится развитие основных научных понятий и методологических принципов. Последнее же, несомненно, находится в непосредственной связи с философией, так что не удивительно, что узловые пункты в развитии математики и естествознания связаны с именами Пифагора, Аристотеля, Декарта, Лейбница и других философов, стоящих каждый раз у истока нового направления в развитии научного знания.

Специфика неокантианского подхода к истории науки сказывается в том, что написанная ими история науки протекает не во времени -- историческом времени, со всеми его случайностями, индивидуальными особенностями и т. д., -- а как бы в эфире чистой мысли. История науки и логика науки в этом смысле совпадают -- таков результат последовательно продуманного и доведенного до конца строго-логического обоснования науки.

Интересно отметить, что в качестве реакции на отождествление марбуржцами истории и логики науки выступило другое направление неокантианства -- Баденская школа, представитель которой В. Виндельбанд попытался представить историю науки в ее связи с искусством, культурой, религией. Еще более резкой реакцией на неокантианское отождествление истории науки (в скобках добавим -- и истории философии) с логикой ее развития были работы Хайдеггера и Ясперса. Ясперс особо подчеркивал значение исторической ситуации, которая, по его мнению, оказывает огромное влияние на развитие всех явлений культуры, в том числе и науки, В противоположность неокантианцам Марбургской школы Ясперс в своей истории философии обращает особое внимание на связь научных идей с определенной структурой историчности, т. е. с духом времени, духом эпохи, формирующим и личность ученого, и направление его мысли. В этом отношении он усиливает те мотивы, которые содержались в трактовке истории науки и культуры неокантианцами Баденской школы, и впадает в другую крайность: логические моменты в развитии науки он стремится растворить в исторических.

Рассмотрим конкретный пример неокантианского подхода к истории науки, а именно историю геометрии, как она представлена Кассирером. Кассирер прослеживает развитие геометрии от античности до наших дней. Для античной геометрии, говорит он, характерно, что «цель ведения доказательства направлена прежде всего не столько на единство основных форм, сколько на их строгое различение»86. Причем, как отмечает Кассирер, само это различение в античной геометрии проводится на основе различия «видимо-воззрительных» форм; например, древним грекам не приходило в голову искать единство конструктивного принципа таких форм, как круг и эллипс, эллипс и парабола, поскольку непосредственному созерцанию эти формы даны как различные. Поэтому у греков различию во внешнем виде фигуры всегда соответствует различие в ее понимании и дедукции. «Проблема, разрешаемая в современной синтетической геометрии с помощью одного общего построения, -- пишет Кассирер, -- распадается у Аполлония более, чем на восемьдесят отличающихся друг от друга только положением случаев»97. Такое специфическое понимание задач и метода геометрии, несомненно, тесно связано с пониманием логики вообще: не случайно логика родовых понятий, которую неокантианцы подвергают критике, выросла именно в античности и носит имя аристотелевской: она исходит из налично данных вещей, различающихся между собой как по внешнему виду, так и по своему существу. Из этой же предпосылки -- различения предметов по их внешней форме и, стало быть, различения самих этих форм друг от друга -- исходит и античная геометрия.

Интересно, что неокантианцы, неоднократно фиксируя родство между античной логикой и философией, с одной стороны, и античной наукой -- с другой, нигде не ставят вопроса, который, казалось бы, напрашивается сам собой: каков общий источник античного миросозерцания как некоторого целого -- источник, из которого произрастают все эти отдельные моменты? На наш взгляд, в этом тоже проявляется характерная для неокантианства специфика в подходе к истории науки: они принципиально не допускают возможности объяснения каких-либо моментов в развитии научного мышления внешними науке факторами, будь они социальные, культурные, религиозные и т. д. Наука в целом рассматривается ими как единая, непрерывная линия развития, определяемая в своем движении только внутренней логикой своих проблем. А между тем, ни для кого не тайна, что переломные моменты в развитии самой науки не всегда, но чаще всего связаны с переломными моментами в истории человечества. В качестве наиболее характерного из таких моментов достаточно вспомнить хотя бы период зарождения науки Нового времени (Галилей, Кеплер), связанный с переходом от средневековья к Возрождению, а также конец XIX -- начало XX в. -- период серьезных социальных и мировоззренческих потрясений и изменений. В такие переходные, переломные эпохи меняется не только проблематика, но и стиль мышления, тесно связанный с изменением мировоззренческих принципов, и такое изменение приводит к появлению новых подходов и методов также и в самой науке. Не случайно Галилей, стоящий у истоков науки нового времени, совершил свои открытия именно тогда, когда на смену средневековому религиозному видению мира пришло новое -- конструктивно-техническое миропонимание98. Рассматривая историю науки исключительно как историю проблем, марбуржцы при этом подчеркивают надысторический характер самих проблем. История науки (и история философии) выступает для них как последовательное развертывание проблем, логических по своей структуре. Вычленение такой «проблемной истории», освобождение ее от той случайной формы, в которую она была облечена, составляет, согласно представителям Марбургской школы, главную, если не единственную, задачу историка науки. Такой способ рассмотрения имеет, конечно, свои преимущества: во-первых, он позволяет представить историю мысли как единую непрерывную линию развития; во-вторых, он служит надежным средством защиты от всякого рода релятивизма и скептицизма, который сопровождал историческую мысль на всем протяжении ее развития. Однако этот подход, если его проводить строго и последовательно, как правило, приводит к тому, что из поля зрения историка выпадают целые периоды в развитии научной (или философской) мысли, а именно те, где не удается обнаружить того круга проблем, которые, по определению историка, составляют основное логическое содержание науки. Не случайно неокантианцы рассматриваемого направления анализируют лишь строго определенные периоды в развитии научного (да и философского) знания: это, как правило, античная наука и научное развитие Нового времени (начиная с эпохи Возрождения). Ни древняя наука (китайская, индийская и т. д.), ни философско-научная мысль Средних веков не укладываются в те рамки, которые устанавливаются при таком подходе.

Не менее существенно и то, что при таком подходе история выступает, в сущности, как арена развертывания логики: историческая ситуация, налагающая свою печать на характер и стиль мышления и таким образом проникающая в структуру научного мышления, не может быть принята во внимание при таком подходе. Именно поэтому Кассирер, попытавшийся в более поздних своих работах преодолеть интеллектуально-логицистскую односторонность мышления Когена, должен был пересмотреть некоторые важные предпосылки «проблемного» подхода.

Вернемся теперь, однако, к прерванному нами рассмотрению кассиреровской концепции истории геометрии. В отличие от античной, геометрия Нового времени, как показывает Кассирер, начинается с осознания недостаточности старого метода. Большое значение для создания нового подхода к решению проблем геометрии имели работы П. Ферма; осмысление же методологической базы геометрии Нового времени было осуществлено Декартом. А поскольку в науке, согласно неокантианцам, центральное место занимает создание именно новой логики, нового метода, значение декартовых работ в плане развития геометрии трудно переоценить. В «Рассуждении о методе» Декарт, согласно Кассиреру, разработал основу для того, чтобы преодолеть ограниченность античной геометрии, которая сосредоточивала свое внимание на рассмотрении отдельных, отличающихся друг от друга пространственных форм. И действительно, важнейший методологический принцип Декарта состоял в том, чтобы создать науку, все положения которой можно было бы вывести из одного исходного принципа; необходимость, с которой должно быть произведено такое выведение, и должна служить гарантом строгости и достоверности научного знания. В результате все научное знание мыслилось Декартом как единая система или, как говорит Кассирер, «как один единый, замкнутый в себе ряд, внутри которого нет ни одного необоснованного перехода»'9. Ни одно звено научного знания не должно выступать как самостоятельный элемент: все должно вытекать из исходного постулата по определенным методическим правилам.

Применительно к геометрии, говорит Кассирер, такая методологическая установка означала, что в строгом смысле геометрическое познание имеется лишь там, где отдельные объекты исследуются «не как разрозненные предметы, а где дан прием, по которому можно конструировать всю совокупность этих объектов»100. Но для того, чтобы геометрические объекты предстали не как различные пространственные фигуры, а как образования, получаемые посредством применения некоторого единого приема, нужно перевести их на такой язык, чтобы они утратили свое принципиальное различие фигур. «Здесь-то, -- пишет Кассирер, -- и выступает с внутренней философской необходимостью мысль о дополнении понятия о пространстве понятием о числе»101. Таким путем создается аналитическая геометрия Декарта в отличие от синтетической геометрии древних греков. Декарт вводит тем самым в геометрию понятие движения. Фигуры различных плоских кривых возникают благодаря движению точки по отношению к вертикальной и горизонтальной осям. Благодаря движению этой точки геометрическая линия, выступавшая раньше как наглядно данный пространственный объект, может рассматриваться теперь как ряд числовых значений, связанных между собой определенным аналитическим правилом. Данные внешнему созерцанию пространственные свойства предстают как ряды числовых значений. С точки зрения Кассирера, аналитическая геометрия, по сравнению с античной (синтетической), гораздо более рационализирована, поскольку в ней не придается такого большого значения данной готовой форме (т. е. данности), а последняя выводится из некоторого арифметического закона ряда (мысленное порождение).

Но чтобы аналитическая геометрия могла распространить свой принцип не на одну только область геометрии, но и на все остальные ее области, ей необходимо было, по убеждению Кассирера, углубить и уточнить свой метод. Это происходит тогда, когда возникает геометрия бесконечно малых. «Понятие о числе, -- пишет в этой связи Кассирер, -- наполняется и пропитывается общим понятием о функции; и лишь благодаря совместному действию обоих понятий оказывается возможным изобразить с логической полнотой всю геометрию»102.

Метод бесконечно малых, согласно неокантианцам, имеет прежде всего логическое значение. «Лишь из соединения бесконечного многообразия логических соответствий кривая выступает как логическая совокупность... Если в аналитической геометрии отдельная точка на плоскости определяется числовыми значениями своих координат X и Y, то теперь, благодаря дифференциальному уравнению , с каждой подобной данной точкой связывается еще определенное направление поступательного движения, и задача заключается теперь уже в том, чтобы построить из совокупности этих направлений некоторую определенную кривую целиком, со всеми особенностями ее геометрического бытия. Интегрирование уравнения обозначает лишь синтез этих бесчисленных характеристик направления в одно единое связное образование»103.

В геометрии бесконечно малых скорость тела в определенный момент времени в определенной точке его траектории можно изобразить путем сопоставления ряда пространственных значений с рядом значений временных. Кассирер подчеркивает, что тем самым скорость перестает рассматриваться как абсолютное свойство самого движущегося тела, а понимается как простое выражение отношения зависимости между пространственными и временными значениями. С точки зрения Кассирера, шаг вперед по сравнению с аналитической геометрией здесь состоит в том, что мышление освобождается еще от одной содержательной характеристики, ранее приписывавшейся самим предметам, и заменяет ее отношениями зависимости, функциональными характеристиками. Математическое исследование здесь выходит за пределы простого рассмотрения величин и обращается к рассмотрению функций. Тем самым геометрия делает еще один шаг на пути к рационализации, т. е. к вытеснению «субстанциальных» элементов функциональными связями.

Однако появление проективной геометрии должно, казалось бы, подорвать это кассиреровское построение: ведь проективная геометрия вновь возвращается к пространственным формам, отказываясь от замены геометрических операций алгебраическими. Проективная геометрия, на первый взгляд, возвращается к «синтетической» геометрии древних, поскольку она реабилитирует момент наглядности, «воззрительности». Однако, замечает Кассирер, «там, где геометрия положения основывается исключительно на воззрении, под этим понимается не узкое рассмотрение отдельной чувственно данной фигуры, но свободное творчество фигур по некоторому определенному единому принципу. Различные чувственно возможные случаи какой-нибудь фигуры не разбираются и изучаются как в греческой геометрии, порознь, но весь интерес сосредоточивается как раз на том способе, каким они возникают один из другого. Если же рассматривается отдельная фигура, то она никогда не берется сама по себе, но как символ всей связи, к которой она принадлежит, и как выражение всей совокупности форм, в которые она может быть переведена при соблюдении определенных правил преобразования »104.

Действительно, в проективной геометрии отдельные члены отступают на задний план по сравнению с соединяющей их системой отношений; исследование направлено здесь главным образом на установление зависимости друг от друга различных геометрических фигур. В этом смысле Понселе подчеркивал, что проективная геометрия не просто расширяет область геометрии, а претендует на то, чтобы внести новый принцип исследования в геометрию вообще. Этот новый принцип состоит в том, чтобы рассматривать не свойства данной фигуры, но систему отношений, в которых она находится с другими геометрическими образованиями.

Благодаря такому подходу, говорит Кассирер, становится возможным допущение в геометрии мнимых величин. В самом деле, поскольку акцент в проективной геометрии перенесен с отдельной фигуры на связь, отношение различных фигур, постольку открывается возможность исследовать и такие геометрические образования, которым нельзя приписать «существование» в смысле доступности внешнему созерцанию, так как эти образования выражают связь между объектами, а не сами геометрические объекты.

«Вообще, -- пишет Кассирер, -- можно различать вместе с Понселе три различные основные формы метода «соотношения». Мы можем перевести определенную, выбранную нами за исходный пункт, фигуру в другую путем сохранения ее отдельных частей и их взаимного распорядка, так что различие здесь заключается единственно в абсолютной величине определяющих элементов. В этом случае мы будем говорить о прямом соотношении; в том же случае, когда порядок отдельных частей в выведенной фигуре изменен или перевернут, мы будем говорить о «косвенном» соотношении. Но методически наиболее интересный и важный случай -- это тот, когда при преобразовании фигуры отдельные элементы, бывшие в первоначальной фигуре отдельными составными частями, совершенно исчезают в продолжение процесса. Рассмотрим круг и пересекающую его прямую; путем непрерывных изменений мы можем так преобразовать эту геометрическую систему, что под конец прямая упадет вне круга и таким образом точки пересечения и соответствующие направления радиусов будут выражаться мнимыми значениями. Соотнося между собой выведенную фигуру с первоначальной, мы соединяем теперь не фактически наличные элементы, а лишь мысленные: мы имеем здесь случай чисто идеального соотношения»106.

Мы привели целиком этот отрывок из Кассирера, поскольку он хорошо демонстрирует, во-первых, метод исследования истории науки как чисто-логический и, во-вторых, позволяет видеть, на каких именно особенностях современного научного мышления основывают неокантианцы свою концепцию научного знания вообще и истории этого знания в частности. С точки зрения проективной геометрии, как подчеркивает здесь Кассирер, нет различия между реальными и мнимыми элементами: мнимые элементы выражают вполне реальные геометрические отношения. Этот подход составляет противоположность античной геометрии, которая совершенно иначе решала проблему существования, поскольку перед ней не стояла задача установления связи элементов, рассмотрения их как единой системы, а лишь анализ отдельных, независимо друг от друга данных фигур.

Наука новейшего времени, в особенности последнего столетия, постоянно имеет дело с такими «мнимыми» реальностями; такая ситуация характерна не только для геометрии и математики в целом, но и для естественных наук -- физики, астрономии и др. Эта ситуация в науке, требовавшая своего осмысления, и вызвала к жизни неокантианскую логическую концепцию научного знания, согласно которой наука исследует идеальные соотношения, а не сами существующие физические вещи. Соответственно история науки рассматривается неокантианцами как прогрессивное развитие, идущее от наивного представления о задачах и методах науки, выработавшегося еще в античности, к более зрелому пониманию задач и принципов научного исследования в Новое и новейшее время. Последним шагом в развитии геометрии Кассирер считает создание теории групп, поскольку здесь «связывается в одно мысленное единство не столько совокупность отдельных элементов или образов, сколько некоторая система операций»106.

Каков же, согласно Кассиреру, итог, вывод, который можно сделать на основании анализа развития геометрии? Вывод этот состоит в том, что «центр тяжести математической системы в течение исторического развития постоянно перемещается в определенном направлении. Круг объектов, к которым применим и приложим способ рассмотрения математики, все расширяется, пока, под конец, становится вполне очевидным, что своеобразие этого метода отнюдь не связано и не ограничено каким-нибудь особенным классом предметов»107. Математика, по Кассиреру, становится наукой о правилах связывания (независимо от того, какие предметы связываются между собой), исследованием синтеза отношений104. А поскольку установление системы отношений, связывание многообразия в единство и составляет существо научного познания вообще, то понятно, что математика является фундаментом науки, Наукой в самом глубоком смысле этого слова. Вот почему анализ неокантианской концепции науки есть прежде всего анализ неокантианской концепции математики. Именно поэтому рассмотрению последней мы и посвятили эту главу.

Мы рассмотрели концепцию научного знания и его развития в одном из наиболее влиятельных философских направлений конца XIX -- начала XX вв. -- неокантианстве Марбургской школы. Поскольку представители этой школы сосредоточили свое внимание главным образом на математическом естествознании и поскольку они рассматривали математику как науку в наиболее глубоком смысле этого слова и как основу всех точных наук, мы считали необходимым прежде всего остановиться на неокантианской интерпретации математического знания.

В результате выяснилось несколько вопросов.

1. Неокантианство Марбургской школы существенно пересматривает предпосылки кантовской философии. Принимая исходный пункт теории познания Канта, а именно, что научное поанание есть деятельность и что предмет науки не дан ей, а конструируется ею с помощью априорных форм чувственности и рассудка из некоторого данного многообразия ощущений, неокантианцы по-новому истолковывают саму эту деятельность конструирования, синтезирования. Она у них выступает как логическая деятельность, в отличие от Канта, для которого неотъемлемым моментом синтеза было априорное созерцание. Именно априорное созерцание Кант считал основой математики, а поскольку математика является фундаментом для всего точного естествознания, тем самым созерцание оказывалось у Канта лежащим в фундаменте всех естественных наук. Неокантианцы переосмысляют кантовское обоснование науки именно в этом пункте -- в вопросе о природе математики. Неокантианский пересмотр кантовской философии, несомненно, тесно связан с развитием науки в целом, а математики в особенности. Это развитие шло на протяжении более чем полустолетия со времени выхода в свет основных сочинений Канта. Новые достижения в области математики -- и прежде всего создание неевклидовой геометрии -- требовали своего философского осмысления; таковое и предложили Коген, Наторп и Кассирер.

2. Интерпретируя кантовский трансцендентальный синтез как акт чисто логический, неокантианцы стремятся создать новую логику -- логику синтетическую, в противоположность логике аристотелевской, которую они называют логикой тождества, или аналитической логикой. Синтетическая логика преодолевает чисто формальную логику, как ее создал Аристотель, ибо первичный логический акт -- акт синтеза противоположного -- есть в известном, правда, весьма ограниченном, смысле акт содержательный. Этот изначальный синтетический акт чистого мышления неокантианцы называют первоисточником; из него в конечном счете рождается все научное знание. Такой подход к пониманию науки можно квалифицировать как панлогизм, как рационализм, доведенный до своего последнего предела. И действительно, сами неокантианцы считают свою философию научным идеализмом, поскольку, в сущности, наука выступает у них как порождение мышления.

Однако само это идеальное порождение они рассматривают иначе, чем это делали Фихте, Шеллинг или Гегель; «первоисточник» Когена не в состоянии порождать все эмпирическое содержание научного знания, он порождает лишь логическую связь отдельных содержаний, систему отношений -- не больше. Такого рода со держание само представляется весьма формальным; не случайно анализ научных понятий в работах марбуржцев мало привлекал внимание ученых. Коген критикует Гегеля и Шеллинга именно за то, что у них логическое начало (чистое мышление) порождает бытие -- весь мир, и противопоставляет им свою систему, в которой первоисточник порождает не бытие, а только знание. Но в таком случае возникает вопрос: как же можно говорить, что наука у неокантианцев является порождением мышления? Однако тут нет противоречия. Действительно, наука выступает как продукт первоисточника (хотя первоисточник не созидает «бытия»), выступает потому, что сущность науки, согласно неокантианцам, как раз и есть только логическая связь, только система отношений. Традиционное мышление неправильно понимало сущность науки, когда полагало, что она есть нечто большее, чем просто установление связи; оно тем самым субстанциализировало научное мышление, а потом становилось в тупик, когда наука -- что особенно характерно для последнего периода ее развития -- этих ожиданий не оправдывала. Тут-то и начинались, согласно неокантианцам, натурфилософские конструкции, которыми философы и ученые стремились возместить недостаток содержательной интерпретации мира наукой. В действительности же само такое стремление к содержательной интерпретации навязывает науке чуждую ей задачу. Позиция неокантианцев в этом вопросе совершенно ясна: их концепция науки направлена против всякого стремления натурфилософского истолкования научных достижений; ему они противопоставляют логическое осмысление аппарата научных понятий и методов. Ограниченность такой точки зрения обнаружилась уже в первые десятилетия XX века. К этому времени концепция науки неокантианцев подверглась критике со стороны целого ряда мыслителей.

Вместе с переосмыслением науки неокантианцы переосмысляют и задачи философии: философия, согласно их учению, должна быть исследованием структуры знания, а не структуры бытия. Философия, таким образом, становится прежде всего логикой и гносеологией.

Этот тезис послужил основанием для критики неокантианцев со стороны представителей целого ряда философских направлений, в первую очередь феноменологии (Э. Гуссерль, М. Шелер, Н. Гартман), представителей философии жизни, интуитивизма (А. Бергсон, Н. Лосский), экзистенциализма. Все эти направления не разделяли основного положения неокантианцев, что философия должна иметь дело со знанием, а не с бытием. Эта критика была направлена и против неокантианского обоснования науки.

3. Неокантианская логика отношений в качестве своей ближайшей модели имеет математическое понятие ряда, в первую очередь -- ряда натуральных чисел как простейшего примера ряда вообще. Не случайно понятие числа рассматривается неокантианцами в качестве фундамента науки. Теория числа составляет важный раздел неокантианского обоснования науки вообще, поскольку, как полагают неокантианцы, именно здесь оставляется без рассмотрения «субстанция» элементов, а фиксируется лишь их функциональная зависимость, лишь их «закон связи». Стремясь избежать как эмпирического (номиналистического) обоснования числа, с одной стороны, так и обоснования его с помощью допущения существования некоторого «идеального» объекта (т. е. «реалистического» обоснования в средневековом значении этого термина), неокантианцы строят порядковую теорию числа, согласно которой число есть результат мыслительной конструкции и не может рассматриваться как отражение каких-то существующих объектов (неважно, существуют ли они в качестве эмпирических или идеальных).

В этом пункте неокантианская концепция числа может быть квалифицирована как неоконцептуализм. Математика выступает при этом как особый способ интеллектуального конструирования предметов; для нее не нужно искать никаких коррелятов ни в мире физического бытия, ни в метафизическом мире идеального бытия. Объективное ее значение состоит не в том, что она имеет корреляты в физическом мире, а в том, что она сама строит этот мир в соответствии с объективными законами мышления и тем самым впервые создает условия для того, чтобы можно было раскрывать закономерности этого мира с помощью естественных наук, прежде всего математической физики.

4. В соответствии со своей концепцией числа и своим пониманием структуры и значения математики неокантианцы стремятся разрешить также и те трудности, которые возникли в связи с кризисом теории множеств. Пытаясь найти некоторый средний путь между интуиционизмом Брауэра, Кронекера и др., с одной стороны, и формализмом Гильберта и его последователей -- с другой, неокантианцы рекомендуют математикам подойти к определению множества через закон его построения, т.е. путем установления примата отношения над вещью, «функции» над «субстанцией». По существу они здесь во многом сближаются с интуиционизмом, однако считают при этом, что интуиционизм (в лице не только Кронекера, но и Брауэра и даже Вейля, наименее «грубого» из интуиционистов) не свободен от психологической тенденции в своем понимании математической интуиции. Интуиционизм склонен основывать математику на психологическом акте счета, в то время как она должна быть основана на чисто логической идее числа.

Платонистского же обоснования теории множеств, как его давали (в начале века) Рассел, Уайтхед и Фреге, марбуржцы решительно не принимают, оставаясь на позициях неоконцептуализма.

5. Из неокантианского понимания научного познания, которое выступает как установление системы связей, отношений вытекает вполне определенное понимание закономерности развития науки. История науки предстает для марбуржцев как непрерывный процесс, как прогрессивное развертывание содержания «первоисточника»; а ведь реальным содержанием первоисточника является именно непрерывность. История науки есть конститутивный момент самого научного знания. В этом смысле неокантианцы применяют к науке тезис, который хорошо известен из философии Гегеля, а именно, что «истина есть система», отдельный же результат, взятый вне процесса его получения, не может иметь значения истины.


Подобные документы

  • Методологический аспект проблемы рациональности: демаркация науки и не науки; историческая смена идеалов научной рациональности; единство и различие критериев рациональности в разных науках; перспектива эволюции современной научной рациональности.

    реферат [18,7 K], добавлен 31.03.2009

  • Что такое истина и существует ли она. Какое определение и какой смысл в него вкладывает философия. Виды истин: абсолютная, относительная, объективная. Концепции Платона, Августина, Декарта, и др. Проблема истины в философии и роль научной рациональности.

    реферат [37,4 K], добавлен 01.12.2010

  • Онтология как философское осмысление проблемы бытия. Генезис основных программ понимания бытия в истории философии. Основные программы поиска метафизических оснований в качестве доминирующего фактора. Представления современной науки о строении материи.

    курсовая работа [50,0 K], добавлен 17.05.2014

  • Философия эпохи Возрождения, ее общая характеристика, основные черты. Гуманистическая мысль и представители эпохи Возрождения. Эпоха Возрождения и Реформация. Проблема рациональности как одна из центральных в современной философии. Типы рациональности.

    контрольная работа [34,4 K], добавлен 21.03.2011

  • Творчество Аристотеля в области философии и науки. "Рождение" метафизического учения Аристотеля. Философское и метафизическое учение Аристотеля. Основные постулаты физики Аристотеля. Цитаты из "Физики" Аристотеля. Основной принцип греческой философии.

    реферат [34,0 K], добавлен 25.07.2010

  • Воспитание и духовное формирование. Милетская школа, Гераклит, атомисты, софисты, Сократ. Аристотель о причинах, материи и форме. Возникновение экспериментального естествознания. Философское учение Рене Декарта. Критика Канта и его эстетическое учение.

    шпаргалка [68,1 K], добавлен 12.04.2009

  • Рациональность - это прежде всего правдивость. Два критерия логичности. Истина и мораль - не относительны. Ум, рациональность и рационализация. Правильная Речь (Правильное формулирование мысли). Еще о теории ума.

    практическая работа [27,3 K], добавлен 29.11.2003

  • Исторические формы мировоззрения. История зарождения философского типа, механизмы обоснования. Картина мира и парадигма мышления. Становление философской рациональности. Мудрость как поиск истины. Свободомыслие, моральный и социокультурный аспект.

    контрольная работа [26,8 K], добавлен 10.01.2014

  • Возрождение и наследие античной философии и культуры. Учение о человеке как ключевая тема софистов. Мифологическое, религиозное как формы сознания. Философское осмысление мира. Этапы взаимоотношения науки и философии. Основные задачи философии политики.

    реферат [23,1 K], добавлен 25.02.2010

  • Оценка актуальности и своеобразия феномена понимания. Философская проблематика математического понимания "Спирали Эриксона". Факты и формы интерпретации технических изобретений философов. Соотношение технического знания и научной рациональности.

    контрольная работа [28,6 K], добавлен 25.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.