Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.
Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
Определение касательного вектора к многообразию в произвольной точке. Условия существования непрерывной кривой в трехмерном евклидовом пространстве. Тензоры как важнейший из классов величин, числовая запись которых меняется при изменении координат.
Золотое сечение как метод пропорционального деления отрезка на неравные части. Последовательность Фибоначчи — числовой ряд, в котором следующий член представляет собой сумму двух предыдущих. Роль фибоначчиевских коэффициентов в техническом анализе.
Персональность, супераддитивность и дополнительность как основные свойства характеристической функции бескоалиционной игры. Методика определения стратегической эквивалентности кооперативных игр. Естественные условия распределения выигрышей игроков.
Магический квадрат как таблица, сумма чисел в которой в каждом горизонтальном и вертикальном рядах и по каждой из диагоналей одна и та же. Основные научные достижения и учения Пифагора. Решение задачи нахождения ортогональных латинских квадратов.
Методика определения численного значения площади геометрической фигуры. Основные характеристики равновеликих объектов. Площадь треугольника как половина произведения его основания на высоту. Современная формулировка и доказательство теоремы Пифагора.
Особенность понятий гомеоморфизма и конгруэнтности фигур. Характеристика взаимно однозначного и обратного отображений. Анализ изучения топологических свойств образов. Суть коэффициента зацепления как целого числа ориентированных контуров в пространстве.
Особенность вычисления двойного интеграла в декартовой и полярной системе координат. Ограничение области интегрирования сверху и снизу гладкими поверхностями и проектирование на плоскость. Определение объема тела, ограниченного параболическим цилиндром.
Кристаллическая решетка как вспомогательный геометрический образ, вводимый для анализа строения кристалла. Виды решеток Браве. Базоцентрированные системы трансляций. Характеристика орторомбической, ромбической, моноклинной и триклинной сингонии.
Суть строчной, столбцовой, диагональной, единичной и транспонированной матрицы. Особенность определителей и их свойств. Собственные значения и векторы многомерной таблицы. Анализ квадратичной формы переменных. Исследование систем линейных уравнений.
Особенность определения отрицания высказывания. Основная характеристика дизъюнкции и конъюнкции суждений. Главный анализ построения логической операции импликации. Сущность эквивалентности двух фраз. Изучение обозначения штриха Шеффера и стрелки Пирса.
Диаграмма Эйлера-Венна как геометрическая схема, с помощью которой можно изобразить отношения между подмножествами для наглядного представления. Дизъюнкция - операция логики, отражающая употребление союза "или" в содержательных логических выводах.
Основной анализ построения алгоритма метода Гомори. Использование симплексной концепции при решении заданий. Особенность способа построения правильного отсечения без учета условия целочисленности. Характеристика решения задач линейного программирования.
Методи побудови математичних моделей технологічних об’єктів. Призначення компонентів системи. Перетворення вхідних сигналів у вихідні. Теоретичний аналіз фізико-хімічних процесів, що відбуваються в технологічному об'єкті. Процес виведення рівнянь.
Понятие и типы многочленов, принципы и закономерности их формирования. Свойства делимости многочленов. Метод неопределённых коэффициентов. Теорема Безу и ее следствия. Разложения многочлена на множители. Степень многочленов. Наименьшее общее кратное.
Основная характеристика осевой симметрии и тождественного преобразования. Отображение плоскости на себя, которое сохраняет расстояние между точками, как существенное свойство симметрической оси. Особенность нахождения дистанции между двумя пунктами.
Трассировка соединений как одна из наиболее трудноразрешимых задач в общей проблеме автоматизации проектирования электронных устройств. Характеристика алгоритма для поиска пути между двумя ячейками – источником и приемником дискретного рабочего поля.
Закріплення знань учнів про зміст узагальненої теореми Фалеса. Дослідження означення та властивостей подібних трикутників. Головна особливість знаходження довжини відрізка. Характеристика доведення подібності прямокутного і рівнобедреного трикутника.
Узагальнення та систематизування знань учнів про зміст та схеми застосування теорем, що випливають із подібності трикутників. Особливість розгляду властивостей бісектриси трикутника та метричних співвідношень у колі. Знаходження довжин хорд та відрізків.
Исследование размерности множества, впервые рассмотренного Кантором. Характер суммы длин всех удаленных интервалов. Особенность изучения абстрактных "пространств". Анализ теоремы о покрытии. Суть двумерных, трехмерных и n-мерных фигур числа измерений.
Особливість знаходження кутів рівнобедреного трикутника, бічна сторона якого стягує чверть дуги описаного кола. Аналіз доведення рівності середньої лінії рівнобедреної трапеції бічній стороні. Характеристика поняття пропорції та її основної властивості.
Анализ выработки наиболее удобного способа записи чисел для простого и быстрого решения логических задач. Исследование основных свойств системы счисления. Особенность использования упорядоченного набора символов. Суть применения двоичной концепции.
Математика, как набор следствий, выводимых из некоторой системы аксиом. Важнейшая характеристика аксиоматического метода Гильберта. Особенность разработки теоремы о неполноте Курта Геделя. Основной анализ непротиворечивости формальной арифметики.
Особенность изображения графов на рисунках. Описание организации структур данных. Характеристика простого и сложного орграфа. Отображение алгоритма поиска центра совокупности непустого множества вершин. Анализ исследования исходного кода программы.
Проведение исследования умозаключений логики суждений. Характеристика условно-категорических, чисто-условных и разделительно-категорических умозаключений. Определение простой конструктивной и деструктивной дилемм. Изучение доказательства от противного.
Особенность функциональной зависимости одной величины от другой. Характеристика аналитического, табличного и графического способов задания функций. Главный анализ многозначных, обратных и сложных переменных величин. Основная сущность построения графиков.
Основные требования, предъявляемые к вычислительным алгоритмам. Системы линейных алгебраических уравнений. Устойчивость и точность прямых методов. Модификации концепции сопряженных градиентов. Анализ формулы Симпсона для вычисления двойных интегралов.
Особенность понятия и видов числовых рядов. Основная характеристика необходимых и достаточных признаков сходимости. Теоретические аспекты радикального и интегрального примет Коши. Проведение исследования знакочередующихся и знакопеременных цепей.
Число и сумма делителей данной цифры. Простые числа Мерсенна и их наибольшее известное значение. Определение совершенных и дружественных числовых выражений. Особенность формирования доказательства Евклида. Характеристика графиков и свойств функций.
