Характеристика кристаллической решетки

Кристаллическая решетка как вспомогательный геометрический образ, вводимый для анализа строения кристалла. Виды решеток Браве. Базоцентрированные системы трансляций. Характеристика орторомбической, ромбической, моноклинной и триклинной сингонии.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 27.12.2015
Размер файла 21,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Кристаллическая решётка

Кристаллическая решётка -- вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии.

В зависимости от пространственной симметрии, все кристаллические решётки подразделяются на семь кристаллических систем. По форме элементарной ячейки они могут быть разбиты на шесть сингоний. Все возможные сочетания имеющихся в кристаллической решётке поворотных осей симметрии и зеркальных плоскостей симметрии приводят к делению кристаллов на 32 класса симметрии, а с учётом винтовых осей симметрии и скользящих плоскостей симметрии на 230 пространственных групп.

Помимо основных трансляций, на которых строится элементарная ячейка, в кристаллической решётке могут присутствовать дополнительные трансляции, называемые решётками Браве. В трёхмерных решётках бывают гранецентрированная (F), объёмноцентрированная (I), базоцентрированная (A, B или C), примитивная (P) и ромбоэдрическая (R) решётки Браве. Примитивная система трансляций состоит из множества векторов (a, b, c), во все остальные входят одна или несколько дополнительных трансляций. Так, в объёмноцентрированную систему трансляций Браве входит четыре вектора (a, b, c, Ѕ(a+b+c)), в гранецентрированную -- шесть (a, b, c, Ѕ(a+b), Ѕ(b+c), Ѕ(a+c)). Базоцентрированные системы трансляций содержат по четыре вектора: A включает вектора (a, b, c, Ѕ(b+c)), B -- вектора (a, b, c, Ѕ(a+c)), а C -- (a, b, c, Ѕ(a+b)), центрируя одну из граней элементарного объёма. В системе трансляций Браве R дополнительные трансляции возникают только при выборе гексагональной элементарной ячейки и в этом случае в систему трансляций R входят вектора (a, b, c, 1/3(a+b+c), --1/3(a+b+c)).

Сингонии:

· Низшая категория (все трансляции не равны друг другу)

Триклинная: элементарная ячейка в которой строится на трёх базовых векторах (трансляциях) разной длины, все углы, между которыми, не являются прямыми. В триклинной сингонии существуют две точечные группы, одна из которых ( 1 ) не обладает ни одним элементом симметрии, а другая ( ) -- имеет только центр симметрии.

Моноклинная: в кристаллографии одна из семи сингоний. Элементарная ячейка моноклинной сингонии строится на трёх векторах a, b, и c, имеющих разную длину, с двумя прямыми и одним непрямым углами между ними.

В моноклинной сингонии существует два вида решеток Бравэ: простая (примитивная) и базоцентрированная.

Ромбическая: Её элементарная ячейка определяется тремя базовыми векторами (трансляциями), которые перпендикулярны друг к другу, но не равны между собой. Часто используется другое название -- орторомбическая сингония. кристаллический решетка геометрический кристалл

В орторомбической сингонии существует четыре вида решёток Бравэ: простая, базоцентрированная, объёмно-центрированная и гранецентрированная.

· Средняя категория (две трансляции из трёх равны между собой)

Тетрагональная: Два из трех базовых векторов имеют одинаковую длину, а третий отличается от них. Все три вектора перпендикулярны друг к другу.

В тетрагональной сингонии существует две решётки Браве: примитивная и объёмно-центрированная.

Гексагональная: Её элементарная ячейка строится на трёх базовых векторах (трансляциях), два из которых равны и образуют угол 120°, а третий им перпендикулярен. В гексагональной сингонии три элементарных ячейки образуют правильную призму на шестигранном основании.

Графит -- пример гексагонального кристалла.

· Высшая категория (все трансляции равны между собой)

Кубическая: Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу.

В кубической сингонии существует три вида решёток Бравэ: примитивная, объёмно-центрированная и гранецентрированная.

Объём элементарной ячейки в общем случае вычисляется по формуле:

Размещено на Allbest.ru


Подобные документы

  • Построение объектов, изоморфных данным алгебраическим структурам. Решетки конгруэнций Ламбека по простым идеалам. Теоремы об изоморфизме и свойства пучковых представлений. Функциональные пучки Ламбека и Корниша для ограниченных дистрибутивных решеток.

    дипломная работа [1,5 M], добавлен 12.06.2010

  • Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

    курсовая работа [64,0 K], добавлен 04.06.2015

  • Формулировка и графическая интерпретация закона Вейса. Вывод возможных граней кристалла. Простые формы кристалла, кратность точечной группы. Закрытые и открытые простые формы, их особенности и характеристика. Образец типовой записи группы симметрии.

    презентация [363,4 K], добавлен 23.09.2013

  • Основы тензорного анализа. Геометрический смысл и формула расчета коэффициентов Ламе. Взаимный базис; полярная, цилиндрическая и сферическая системы координат. Рассмотрение способов преобразования векторов при переходе к криволинейным координатам.

    курсовая работа [4,0 M], добавлен 06.11.2013

  • Определение равнодействующей сходящихся сил геометрическим способом. Геометрическое условие равновесия сходящихся сил. Разложение силы по координатным осям, аналитический способ определения по проекциям. Равновесие тела под действием плоской системы сил.

    реферат [421,3 K], добавлен 20.01.2010

  • Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.

    презентация [696,5 K], добавлен 18.12.2014

  • Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, как предел интегральной суммы. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница. Геометрический и механический смысл определенного интеграла.

    реферат [576,4 K], добавлен 30.10.2010

  • Определение погрешности вычислений при численном дифференцировании. Алгебраический порядок точности численного метода как наибольшей степени полинома. Основной и вспомогательный бланк для решения задачи Коши. Применение интерполяционной формулы Лагранжа.

    реферат [1,4 M], добавлен 10.06.2012

  • Систематизация основных результатов о частично насыщенных формациях, их локальных спутниках и решетках. Исследование внутренних локальных спутников формации, насыщенные формации с ограниченым H-дефектом, у которых решетка содержит дополнения.

    дипломная работа [530,5 K], добавлен 13.12.2009

  • Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.

    курсовая работа [1,3 M], добавлен 13.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.