• Понятие о испытании и случайном событии, их совместимости, достоверности и взаимозависимости. Характеристика их суммы и произведений, справедливость сочетательного и дистрибутивного законов. Особенности определения вероятности и относительной частоты.

    реферат (19,8 K)
  • Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.

    реферат (26,6 K)
  • Построение ряда распределения случайной величины, расчет ее математического ожидания и дисперсии. Определение частных, условных распределений и числовых характеристик системы случайных величин, вероятности попадания двумерной случайной величины в область.

    контрольная работа (126,0 K)
  • Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.

    курс лекций (415,3 K)
  • Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.

    методичка (375,2 K)
  • Вероятность независимых событий. Вероятность того, что два конкретных человека будут отдыхать в одном доме отдыха. Вероятность денежного выигрыша в лотерее. Вероятность попадания на сборку бракованной детали. Вероятность полного выздоровления пациента.

    контрольная работа (45,5 K)
  • Численное выражение возможности наступления какого-либо события. Классическое определение вероятности. Понятие объема совокупности (выборочной или генеральной). Комплексная оценка параметров генеральной совокупности. Среднее квадратическое отклонение.

    лекция (602,2 K)
  • Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.

    контрольная работа (58,5 K)
  • Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.

    задача (151,3 K)
  • Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).

    курс лекций (696,7 K)
  • Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.

    контрольная работа (572,9 K)
  • Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.

    контрольная работа (31,8 K)
  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа (51,0 K)
  • Изучение экспоненциального распределения. Ознакомление с основным законом надежности, который позволяет установить временное изменение вероятности безотказной работы. Определение математического ожидания случайной наработки. Анализ классификации образов.

    шпаргалка (275,6 K)
  • Диаграмма Эйлера-Венна. Определение ряда распределения случайной величины и исчисление математического ожидания. Построение гистограммы относительных частот. Вычисление несмещенных оценок для дисперсии, случайной величины и математического ожидания.

    контрольная работа (111,0 K)
  • Элементарная теория вероятностей. Условная вероятность и независимость событий. Случайные величины и функции распределения. Предельные теоремы в схеме испытаний Бернулли. Проблема статистического вывода, методы оценки параметров. Доверительные интервалы.

    курс лекций (1,1 M)
  • Определение границ вероятности среднегодовой прибыли предприятий, объема бесповторной выборки. Проверка гипотезы о распределении случайной величины (прибыли) по нормальному закону. Уравнения прямых регрессии, корреляционная связь между переменными.

    контрольная работа (78,8 K)
  • Расчет среднего арифметического. Нахождение дисперсии и средней квадратической ошибки выборки. Определение вероятности. Исчисление доверительного интервала. Построение гистограммы эмпирического распределения и соответствующей кривой. Функция Лапласа.

    контрольная работа (198,1 K)
  • Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.

    контрольная работа (957,5 K)
  • Изучение случайных явлений, статистическая обработка результатов численных заданий. Решение задач, связанных с теорией вероятности. Способы вычисления наступления предполагаемого события. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа (32,9 K)
  • Группировки 0-го, 1-го, 2-го порядков в распределении качественных признаков. Ряды распределения в зависимости от признака положенного в основу группировки. Условия использования формулы Пуассона. Критерии проверки гипотез о корреляционном отношении.

    контрольная работа (550,0 K)
  • Рассмотрение статического ряда частоты вероятности. Расчет оценки математического ожидания возможности брака. Вероятность попадания величины в заданный интервал согласно эмпирической функции. Вычисления выборочной средней и исправленной дисперсии.

    контрольная работа (584,7 K)
  • Теория вероятности, её характеристика. Математическая статистика, сущность эмпирической функции распределения, построение графика. Нахождение доверительного интервала, выборочной дисперсии и её несмещённой оценки. Закон распределения случайной величины.

    курсовая работа (331,5 K)
  • Вычисление коэффициента вариации, среднего квадратического отклонения, ряда распределения относительных частот, ширины доверительного интервала для генеральной средней с определенной надежностью. Проверка гипотезы о нормальном законе распределения.

    контрольная работа (177,4 K)
  • Характеристики двумерной случайной величины. Анализ способов нахождения условных распределений в дискретном случае. Изучение понятия и сущности условного математического ожидания. Изучение основных свойств корреляционного отношения, условной плотности.

    презентация (267,5 K)
  • Понятия случайного события, операции над событиями, вероятность события, правила вычисления событий. Определение, классификация, способы задания случайных величин. Числовые характеристики случайных величин. Функции распределения вероятностей, ее свойства.

    учебное пособие (2,1 M)
  • Пространство элементарных событий и их виды (случайное, независимое, невозможное и противоположное событие). Вероятность события, аксиоматическое и классическое определение вероятности. Использование формулы Байеса для определения вероятности события.

    контрольная работа (46,2 K)
  • Шпаргалки по предмету "Теория вероятности". Включают в себя решение двадцати четырех задач: жетоны, урны, винтовки, колода карт, шарики, книги, цифры, бригады, детали, карточки, партии продукции.

    шпаргалка (14,5 K)
  • Вероятность: количества девушек среди отобранных студентов, нестандартной детали среди отобранных, поломки станка, попадания по мишени одного из стрелков, выбора работающих деталей, выбора черного шара, извлечения детали из определенной партии и аппарата.

    контрольная работа (177,3 K)
  • Исследование теории вероятности математиками Тарталья и Кардано, расчет вариантов выпадения очков. Ферма и Паскаль - основатели математической теории вероятности. Введение понятия математического ожидания Гюйгенсом. Области применения теории вероятности.

    реферат (17,2 K)