Теоретическое исследование решений задач акустики с помощью метода Кирхгофа и качественный анализ их численного решения. Исследование решений задачи акустики для среды, на границе которой находится точечный или линейный источник, который имитирует взрыв.
Характеристика обобщённого метода решения расчётных задач по химии на основе системного анализа. Основные стадии решения задач: исследование условия задачи, планирование, выполнение плана, контроль и коррекция. Понятие способа поэтапного расчёта.
Сингулярные интегральные уравнения: решение уравнений ограниченных на обоих концах методом подобластей. Характеристика программы Matchematica. Реализация метода подобластей в программе: метод Гаусса, решение системы линейных алгебраических уравнений.
Рассмотрение особенностей систем алгебраических и дифференциальных уравнений в среде Mathcad, способы их решения. Анализ общей схемы процесса компьютерного математического моделирования. MathCAD как математический редактор, характеристика функций.
Понятие математической модели, ее основные свойства. Описание методов аппроксимации, применяемых для построения регрессионных математических моделей. Обзор основных функций системы MathCad. Алгоритмический анализ задачи и описание функционирования.
Изучение и характеристика специфических особенностей обыкновенных дифференциальных уравнений. Рассмотрение свойств методов Рунге-Кутта. Ознакомление с исправленным методом Эйлера. Исследование и анализ процесса выбора метода реализации программы.
Знакомство с особенностями реализации программного обеспечения для решения системы линейных алгебраических уравнений методом квадратных корней. Рассмотрение способов применения методов спуска для решения систем нелинейных алгебраических уравнений.
Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.
Метод Гаусса с выбором главного элемента. Организация параллельных программ как системы потоков, параллельное программирование с использованием TPL. Постановка задачи и анализ результатов. Алгоритм обработки исходных данных, разработка программного кода.
Прогнозы протекания процессов в областях науки и техники. Разработка и использование методов прогноза и коррекции. Алгоритм решения систем линейных дифференциальных уравнений первого порядка пятиточечным методом прогноза и коррекции Адамса-Башфорта.
Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.
Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.
Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.
Свойства матрицы коэффициентов систем линейных уравнений. Последовательный алгоритм Гаусса. Определение подзадач, выделение информационных зависимостей. Организация параллельных вычислений, масштабирование и распределение подзадач по процессорам.
Разработка проекта программы для решения системы уравнений методом Гаусса. Определение коэффициентов линейной и параболической зависимости с помощью формул метода наименьших квадратов. Составление алгоритма и блок-схемы для написания данной программы.
Приведение системы к итерационному виду с помощью элементарных преобразований. Решение системы методом простой итерации и методом Зейделя. Сравнительный анализ метода Зейделя и метода простых итераций. Проверка решения задания в программе MS Excel.
Метод Гаусса с выбором главного элемента по столбцу, с выбором главного элемента по всей матрице. Метод Зейделя: приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения систем линейных уравнений.
Рассмотрен метод наименьших квадратов - метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от экспериментальных входных данных. Практическое решение задачи методом наименьших квадратов.
Анализ итерационных методов решения систем линейных уравнений. Вычислительные методы в технологиях программирования. Реализация модификации метода Зейделя в математическом пакете Mathcad. Отладка, экспериментальное тестирование программного алгоритма.
Методы решения нелинейного уравнения. Последовательный показ работы проекта на вычисление корней уравнения методом итераций, сравнение результатов программы с решением в математическом пакете Mathcad 14. Алгоритм и математическое обеспечение программы.
Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.
Выполнение решения системы алгебраических уравнений вручную в редакторе Microsoft Excel, математическом пакете MathCAD. Реализация алгоритма решения на языке VBA. Вычислительная схема метода простой итерации. Результат решения нелинейных систем уравнений.
Решение системы нелинейных алгебраических уравнений вручную, в редакторе Microsoft Excel, в математическом пакете MathCAD, реализация алгоритма решения на языке VBA. Вычислительная схема метода простой итерации с параметрами. Блок-схема алгоритма решения.
- 50696. Решение систем уравнений
Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
- 50697. Решение систем уравнений
Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.
Решение системы уравнений методом Гаусса. Уравнение медианы, высоты, сторон треугольника. Вычисление внутренних углов треугольника. Исследование функции на непрерывность, поиск точки разрыва и характера разрыва. Поиск производной функции, предел функций.
Рассмотрение решения уравнений с двумя переменными, систем уравнений, методов решения систем, таких как метод подстановки, сложения, графический, метод введения новых переменных, определителей второго и третьего порядков и теоремы Кронекера-Капеллы.
Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.
