- 3991. Общая теория статистики
Построение аналитической группировки по факторному признаку. Определение среднего линейного и квадратического отклонения, коэффициента вариации, моды и медианы. Построение линейного уравнения регрессии, расчет коэффициентов корреляции и эластичности.
- 3992. Общая теория статистики
Роль статистического анализа при исследовании массовых явлений и процессов. Сущность, основные виды и способы расчёта средних величин. Оценка степени механизации и автоматизации работ. Характеристика качественных показателей коммерческой деятельности.
- 3993. Общая теория статистики
Статистическое наблюдение, формы, способы наблюдения и ошибки. Определение числа групп и величины интервала статистической группировки. Понятие, формы выражения и виды статистических показателей. Средние величины, показатели вариации, формы распределения.
- 3994. Общая теория статистики
Характеристики динамических рядов, их расчет. Прогнозирование развития динамического ряда. Статистические индексы и их виды. Расчет индивидуальных индексов цен и себестоимости по различным видам продукции. Применение графического метода в статистике.
Понятие о физической величине. Международная система единиц физических величин СИ. Математические операции с приближенными числами. Общая характеристика и классификация научных экспериментов. Принципы статистической обработки экспериментальных данных.
Исследование операций — применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности. Основные особенности исследования операций. Общая постановка задачи исследования операций.
Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
Научная дисциплина, предметом исследования которой являются математические методы систематизации и использования статистических данных для научных и практических выводов. Термин "статистика", производные. Основы статистики как математической дисциплины.
Ознакомление с системой Octave, правилами создания числовых массивов и приобретение практических навыков по использованию средств системы для работы с ними. Создание вектор-строки и вектор-столбца. Матрица нормально-распределенных случайных чисел.
Возникновение арифметики и геометрии до начала XVII века. Характеристика основных разделов современной математики. Создание дедуктивного или аксиоматического метода построения науки. Главные математические типы структур. Исследование графика и функции.
Сигналы как элементы функциональных пространств. Метрические и линейные пространства. Пространства со скалярным произведением. Разложение сигналов в обобщённый ряд Фуре. Примеры определения нормы и метрики Евклида в декартовой системе координат.
Особенность канонических уравнений линий второго порядка. Характеристика эллипса, параболы и гиперболы. Суть отношений расстояний от любой точки до фокуса. Рассмотрение полюса полярной системы координат. Анализ способа использования энергии Солнца.
Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
- 4004. Объектно-ориентированное представление систем и событийно-управляемая модель технологического потока
Математическое моделирование процессов пищевых производств - ключевой инструмент нахождения оптимальных режимов функционирования оборудования. Показатель сложности древовидных структур - одна из основных топологических характеристик иерархии классов.
Геометрическое понятие и характеристика тел вращения, способы их получения в разных плоскостях, методика расчета площади и объема фигур: конус, цилиндр, шар, многогранники. Принципы определения объема тела с известной площадью поперечного сечения.
Общая характеристика математическое обоснование свойств, структура и компоненты тел вращения: цилиндр, конус и шар. Объемы многогранников, тел с известными площадями поперечных, сечений. Определение и расчет параметров площади поверхности тел вращения.
Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.
Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.
Динамическая система и обыкновенное дифференциальное уравнение. Теорема существования и единственности обыкновенного дифференциального уравнения. Интегрирование уравнения в полных дифференциалах. Свойства комплексных чисел и основная теорема алгебры.
Фазовые пространства. Векторные поля на прямой. Методы решения линейных уравнений. Действие диффеоморфизмов на векторные поля и на поля направлений. Теоремы о выпрямлении. Консервативная система с одной степенью свободы. Свойства, определитель экспоненты.
Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.
Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.
Особенности и специфика дифференциального уравнения. Теорема о нормальной форме уравнения, не разрешенного относительно производной в окрестности регулярной особой точки. Построение криминанты уравнения, точки касания криминанты с контактной плоскостью.
- 4014. Обыкновенные дроби
Понятие обыкновенной дроби, ее разновидности и особенности. Описание операций, выполняемых над обыкновенными дробями, отличия правильных дробей от неправильных, правила чтения. Сущность числителя и знаменателя, этапы сравнения обыкновенных дробей.
- 4015. Обыкновенные дроби
Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенные дроби в древней Руси и Древней Греции. История возникновения дробей. Применение дробей в повседневной жизни. Правильные и неправильные обыкновенные дроби.
- 4016. Обыкновенные дроби
Возникновение обыкновенных дробей, арифметические действия с ними. Особенности изучения обыкновенных дробей, его влияние на развитие математических способностей школьников. Разработка рациональных методов усвоения понятия обыкновенных дробей школьниками.
Реалізація системи автоматизації розв’язання контактних задач з урахуванням фізичної нелінійності. Тестові і прикладні задачі із визначення напружено-деформованого стану конструкцій. Задачі механіки деформівного твердого тіла у пластичній постановці.
Характеристика понятия множества, описание операций над множествами. Конечные и бесконечные множества. Счетные и несчетные множества. Анализ рациональных чисел как таких чисел, которые можно записать в виде дроби с целыми числителем и знаменателем.
Неперервна залежність розглянутих операторів від параметра. Параметризація всіх самоспряжених, максимальних дисипативних та максимальних акумулятивних розширень мінімального симетричного оператора Штурма-Ліувілля та його узагальнених резольвент.
Дослідження особливостей основних питань однозначної розв’язності деяких крайових задач для загальних диференціальних рівнянь і систем із сталими комплексними коефіцієнтами в напівалгебраїчних областях. Характеристика методу двоїстості рівняння-область.
