Написание Трактата по арифметике ("Liber abaci") европейским математиком эпохи Средневековья Л. Фибоначчи. Содержание книги: признаки делимости, дроби и смешанные числа, свойства пропорции и др. Наиболее интересные арифметические задачи из Трактата.
Определение среднего значения исследуемого параметра для каждой точки факторного пространства. Проверка гипотезы однородности дисперсий по критерию Корхена. Значения коэффициентов уравнения регрессии. Проверка адекватности математической модели.
Изучение достижений математической науки в период Древней Греции. Изучение основных идей Александрийской школы. Анализ биографии Диофанта. Анализ "Арифметики" Диофанта – сборника задач, каждая из которых снабжена решением и необходимыми пояснениями.
Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого сечения позаимствовал у египтян и вавилонян. Золотая пропорция.
Изложение универсального метода построения трёхмерных проекций гиперкубов любых n-мерных измерений (3ПГК-n) любых проекций и ракурсов. Алгебраические формулы для определения количества единичных геометрических элементов n-мерных гиперкубов, их проекций.
Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.
История развития квадратных уравнений. Эволюция подходов к решению Древнего Вавилона, Диофанта, Индии, ал-Хорезми, Европы в 13-17 веках. Краткая характеристика теоремы Виета. Особенности применения различных способов решения квадратных уравнений.
Квадратные уравнения в Древнем Вавилоне, Индии и Европе, история их возникновения и развития. Структура и содержание теоремы Виета, принципы и направления ее практического применения. Способы решения квадратных уравнений, их содержание и принципы.
The paper attempts to state and prove a completeness theorem for the system S5 of supplemented by first-order quantifiers and the sign of equality. The basic modal language. A general strategy for proving completeness theorems for quantified modal logics.
Consideration of the Shannon's mathematical theory of communication as the technology processing of information. Problems associated with the transmission of messages: eliminate redundancy, perform coding and messaging communication channels with noise.
The article describes the main additional constructions used in planimetry. And also examples of tasks for a basic and advanced course of the geometry of 7-9 classes are considered for solving where the method of additional construction is used.
The Graphical Modeling and Bayesian Networks. Some Properties of Incomplete Repair and Maintenance Models. The Theoretical Advances in Modeling, Inference and Computation. Network Reliability Evaluation with Propositional Directed Acyclic Graphs.
- 13. Algorithms to determine solvability of linear integro-differential equations with analytic functions
Further, we found sufficient conditions on linear Volterra integro-differential equations of the third kind to be correct in analytical functions which generalize the well-known fact of correctness of a Volterra integral equation of the second kind.
The study of the problem of how remains unchanged if the expected value according to probability distribution determined by minimizing the deviations among the fixed N values of a factor object. The set of all optimal strategies of the second player.
Studying of the enumerative geometry of orbits of multidimensional toric action on projective algebraic varieties. Develop a new cyclic diferential-graded operad, conjecturally governing the real version of the enumerative geometry of these toric orbits.
The calculation of fuzzy controllers, subject to the definition of control actions on the controller output for given membership functions. Algorithm Mumdanee for an indistinct conclusion. The linguistic rule of management of an indistinct regulator.
Solving Linear Systems with the Inverse. Transposes and Symmetric Matrices. General Linear Systems. The Fundamental Matrix Subspaces. Minimization of Quadratic Functions. Computations in Orthogonal Bases. Orthogonal Polynomials and Least Squares.
Regression smoothing, basic idea of smoothing. Smoothing techniques, the speed at which the smooth curve converges. Choosing the smoothing parameter. Data sets with outliers. Looking for qualitative smoothing and incorporating parametric components.
Modeling the static deformation of a circular plate with discrete variable thickness. The use of a matrix green type and algebraic matrices to create an algorithm for compact computing solutions for deformation of circular plates of variable thickness.
The emergence of noncommutative geometry, its relationship with the corresponding selected algebra function. The establishment of the anti-equivalence between the category of spaces and the corresponding category of algebras of functions on such spaces.
The definitions which characterize a problem of parameters of DL-based assumptions related to discrete logarithms and impact of granularity of them. Difficulties of the generic model that identify the parameters relevant to cryptographic assumptions.
The spectral properties of a fourth-order functional-differential operator with a summable potential are studied. The boundary conditions are separated. The solution of the functional-differential equation. The solution of the Volterra integral equation.
An Introduction to Bayesian Inference in Process Monitoring, Control. Modern Numerical Methods in Bayesian Computation. A Bayesian Approach to Statistical Process Control. Bayes’ Rule of Information and Monitoring in Manufacturing Integrated Circuits.
The methods used in the subsequent proofs. The usefulness of the side-by-side multiplication. Proving geometric inequalities where is the area, an arbitrary triangle ABC and what follows: sides, semi-perimeter, medians, angle-bisectors, altitudes.
Multidimensional data distributions with complex topologies and variable local dimensions. A new type of low-dimensional "principal object": a principal cubic complex. The method of topological grammars with the minimization of an elastic energy.
Obtaining a criterion of boundedness of L-index in direction for functions f(hz;mi). Finding sufficient conditions of boundedness L-index in direction for some class of entire functions with "plane" zeros. Proving existence theorems of entire function.
Study recurrent factions fourth order. Contacting algebra fourth order. Building a sustainable rate calculation algorithms recurrent factions. Definition of communication between periodic recurrent about fractions and real positive roots of equations.
Peculiarities of calculating the photoionization cross sections for ions of the isoelectronic sequence of cesium by the Dirac-Fock method. Analysis of the dependence of the photoionization cross sections on energy. Photoelectron distribution methods.
Comparative analysis for the algorithm for solving two-parameter game models. Comparison of the values of the game price and the probabilities of strategies. The accuracy and reliability of the results are analyzed with the help of a numeric example.
Absolute value of a complex number, and conjugate complex number. Integral powers and roots of complex numbers. Taylor’s and Laurent’s theorems. Evaluation of integral of meromorphic function. Fundamental elementary functions of complex variables.