Asymptotics of the eigenvalues of a fourth-order functional-differential operator with summable potential
The spectral properties of a fourth-order functional-differential operator with a summable potential are studied. The boundary conditions are separated. The solution of the functional-differential equation. The solution of the Volterra integral equation.
Рубрика | Математика |
Вид | статья |
Язык | английский |
Дата добавления | 14.08.2020 |
Размер файла | 780,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ASYMPTOTICS OF THE EIGENVALUES OF A FOURTH-ORDER FUNCTIONAL-DIFFERENTIAL OPERATOR WITH SUMMABLE POTENTIAL
Mitrokhin S.I.
Lomonosov Moscow State University, Moscow, Russia
Аннотация. В статье изучаются спектральные свойства функционально-дифференциального оператора четвёртого порядка с суммируемым потенциалом. Граничные условия являются разделёнными. Решение функционально-дифференциального уравнения сведено к решению интегрального уравнения Вольтерра. При больших значениях спектрального параметра выведена асимптотика решений функционально-дифференциального уравнения, задающего исследуемый оператор. При помощи найденной асимптотики решений изучены граничные условия оператора. Получено уравнение на собственные значения изучаемого оператора. Найдена асимптотика собственных значений исследуемого функционально-дифференциального оператора.
Ключевые слова: спектральная теория, функционально-дифференциальный оператор, спектральный параметр, суммируемый потенциал, асимптотика решений, асимптотика собственных значений, собственные функции.
functional differential operator fourth order
Abstract. In this paper the spectral properties of a fourth-order functional-differential operator with a summable potential are studied. The boundary conditions are separated. The solution of the functional-differential equation is reduced to the solution of the Volterra integral equation. For large values of the spectral parameter, the asymptotics of the solutions of the functional-differential equation that defines the investigated operator is derived. Using the found asymptotics of solutions, the boundary conditions of the operator are studied. The equation for the eigenvalues of the operator is obtained. The asymptotics of the eigenvalues of the functional-differential operator under investigation is found.
Keywords: spectral theory, functional-differential operator, spectral parameter, summable potential, asymptotics of solutions, asymptotics of eigenvalues, eigenfunctions.
Introduction. Consider a functional-differential operator given by a fourth-order differential equation
(1)
with boundary conditions of the form
(2)
under the assumption of the summability of the potential :
(3)
almost everywhere on the segment .
We assume that in equation (1) the weight function is constant: and the delay value is a smooth and increasing function: there is a derivative .
Historical review. Differential operators with nonsmooth coefficients began to be studied not so long ago. In the classical paper [1], for the second-order differential operator, the convergence of expansions in eigenfunctions at the points of discontinuity of the coefficients was studied.
In the article [2] the differentiation operators of the first and second order with a discontinuous alternating weight function were studied. Regularized traces for the functional-differential operator of the second order were calculated by the author in [3]. The spectral properties of second-order operators with a discontinuous weight function were studied in [4]. In article [5] the second-order operators with summable potential were first studied. The method of article [5] does not carry over to operators of order higher than the second.
In the article [6] the author demonstrated a method for studying the spectral properties of a fourth-order operator with a summable potential. The Sturm-Liouville operators with singular coefficients were studied in [7]. A sixth-order differential operator with summable coefficients with a retarded argument was studied by the author in [8].
In article [9] the regularized trace of a second-order operator whose potential is a Delta function was calculated. Differential operators of odd order with multipoint boundary conditions with summable potential were studied by the author in [10]. Operators of the form (1) - (2) - (3) have not been studied by anyone before.
Asymptotics of solutions of differential equation (1)
Let , moreover, that branch of the root for which is fixed. Let be the various roots of the fourth degree of unity:
(4)
The following theorem is proved by the method of variation of arbitrary constants.
Theorem 1. The solution y(x,s) of the functional differential equation (1) is the solution of the following Volterra integral equation:
(5)
To verify the validity of the statement (5) we obtain using the properties (3) and (4):
(6)
The last sum in equality (6) is zero by virtue of property (4). Similarly we have:
(7)
Let's differentiate the formula (7) by m=3 for the variable x, substitute the resulting expression and (5) in equation (1), we get the correct equality. So, indeed, the formula (5) of theorem 1 is correct.
Next, we apply the method of successive Picard approximations: find a function from the formula (5), substitute the resulting expression in (5), and get:
(8)
By opening the brackets in formula (8) and rearranging the terms, we obtain the following statement.
Theorem 2. The general solution of the functionally differentiable equation (1) has the following form:
(9)
where are arbitrary constants, and for the fundamental system of solutions of equation (1) for the following asymptotic estimates are valid:
Estimates of the form (10)-(11) are obtained similarly to the estimates of the monograph [11, chapter 2].
Study of boundary conditions (2). The presence of formulas (9)-(14) allows us to study the boundary conditions (2). From formula (9) we have:
(15) (16)
System (15) - (16) is a homogeneous system of four linear equations with four unknowns . It follows from Kramer's method that such a system has a nonzero solution only when its determinant is zero. Therefore, the following statement is true.
Theorem 3. The equation for eigenvalue of the functional differential operator (1) - (2) - (3) has the following form:
(17)
and from the formulas (14) it follows that
(18)
Expanding the determinant for from (17) - (18), first in the fourth row, and then the resulting determinants in the third row, we find:
(19)
where the following notation is introduced:
(20)
Using the formulas (4), all coefficients for from (20) can be calculated explicitly:
(21)
Therefore, the equation (19) - (21) can be rewritten as follows:
(22)
Using the formulas (11) - (13), we have:
(23)
where the notation is introduced:
(24)
Similarly, it is possible to write out functions from (22).
The asymptotics of the eigenvalues of the operator (1) - (2) - (3)
The equation (22) - (24) will be studied by the methods of work [3], [4]. The indicator diagram of this equation (see [12, chapter 12]) is a square ABCD, the coordinates of the vertices of this square are as follows: . From the general theory of finding the roots of equation (22) - (24) (see [12, chapter 12]), it follows that the roots are in four sectors of an infinitesimal angles, the bisectors of which are middle-perpendiculars to the sides of the square ABCD. Studying the roots of equation (22) - (24) using the methods of works [8], [10], we conclude that the following statement is true.
Theorem 3. Asymptotics of eigenvalues of the functional differential operator
(1) - (2) - (3) in the sector 2) (which corresponds to the segment of the indicator diagram )) has the following form:
(25)
Substituting the formulas (25) into equation (22) - (24), we apply the formulas
(12) - (13) and Taylor's formulas, we equate the coefficients at the same powers , we calculate the coefficient from (25) in explicit form:
(26)
Formulas similar to formulas (25) - (26) are also valid in other sectors of the indicator diagram ABCD:
(27)
Moreover, the eigenvalues of the functional differential operator (1) - (2) - (3) are found by the following formula:
(28)
Conclusion. Using formulas (25) - (28), we can find the asymptotic behavior of the eigenfunctions of the operator (1) - (2) - (3) and solve the question of their completeness and basis property. The proposed method for studying functional differential operators can be transferred to sixth and eighth order operators with summable potential.
Список литературы
1. Ильин В. А. О сходимости разложений по собственным функциям в точках разрыва коэффициентов дифференциального оператора / В. А. Ильин // Математические заметки. -- 1977. -- Т. 22. -- № 5. -- С. 698-723.
2. Гуревич А. П. Операторы дифференцирования первого и второго порядков со знакопеременной весовой функцией / А. П. Гуревич, А. П. Хромов // Математические заметки. -- 1994. -- Т. 56. -- № 1. -- С. 653-661.
3. Митрохин С. И. О формулах следов для одной краевой задачи с функционально-дифференциальным уравнением с разрывным коэффициентом / С. И. Митрохин // Дифференциальные уравнения. -- -- Т. 22. -- № 6. -- С. 927-931.
4. Митрохин С. И. О некоторых спектральных свойствах дифференциальных операторов второго порядка с разрывной весовой функцией / С. И. Митрохин // Доклады РАН. -- -- Т. 356. -- № 1. -- С. 13-15.
5. Винокуров В. А. Асимптотика любого порядка собственных значений и собственных функций краевой задачи Штурма--Лиувилля на отрезке с суммируемым потенциалом / В. А. Винокуров, В. А. Садовничий // Известия РАН. Сер.: матем. -- 2000. -- Т. 64. -- № 4. -- С. 47-108.
6. Митрохин С. И. Асимптотика собственных значений дифференциального оператора четвёртого порядка с суммируемыми коэффициентами / С. И. Митрохин // Вестник Московского университета. Сер.: матем., мех. -- 2009. -- № 3. -- С. 14-17.
7. Савчук А. М. Операторы Штурма-Лиувилля с сингулярными потенциалами / А. М. Савчук, А. А. Шкаликов // Математические заметки. -- 1999. -- Т. 66. -- № 6. -- С. 897-912.
8. Митрохин С. И. О спектральных свойствах одного дифференциального оператора с суммируемыми коэффициентами с запаздывающим аргументом / С. И. Митрохин // Уфимский математический журнал. -- 2011. -- Т. 3. -- №4. -- С. 95-115.
9. Савчук А. М. Регуляризованный след первого порядка оператора Штурма-Лиувилля с -потенциалом / А. М. Савчук // УМН. -- -- Т. 55. -- №6 (336). -- С. 155-156.
10. Митрохин С. И. Об изучении спектра многоточечной краевой задачи для дифференциального оператора нечётного порядка с суммируемым потенциалом / С. И. Митрохин // Математические заметки СВФУ. -- 2017. -- Т. 24. -- № 1. -- С. 26-42.
11. Наймарк М. А. Линейные дифференциальные операторы. / М. А. Наймарк // М.: Наука. -- -- 528 с.
12. Беллман Р. Дифференциально-разностные уравнения. / Р. Беллман, К. Л. Кук // М.: Мир. 1967. -- 548 с.
Размещено на Allbest.ru
Подобные документы
Construction of the general algorithm for integration of the linear usual distinctive equation. Creation of the common decision of the differential equation. An example of the decision of linear systems. Definition of components of certain functions.
учебное пособие [2,4 M], добавлен 03.10.2011Investigation of the problem with non-local conditions on the characteristic and on the line of degeneracy . The solution of the modied Cauchy problem with initial data. The solution of singular integral equations. Calculation of the inner integral.
статья [469,4 K], добавлен 15.06.2015Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.
контрольная работа [62,7 K], добавлен 14.08.2010Огляд існуючих програмних комплексів. Особливості Finite Difference Time Domain Solution. Метод кінцевих різниць у часовій області. Граничні умови PEC симетрії і АВС. Проблема обчислення граничних полів. Прості умови поглинання. Вибір мови програмування.
курсовая работа [242,5 K], добавлен 19.05.2014Characteristics of the main two-dimensional, three-dimensional and n-dimensional geometric shapes, their use in mathematics, physics and other. Properties of two-dimensional geometric shapes arranged on the plane: polygon, triangle, quadrilateral, circle.
топик [251,8 K], добавлен 21.12.2013Self-assembly of polymeric supramolecules is a powerful tool for producing functional materials that combine several properties and may respond to external conditions. Possibilities for preparing functional polymeric materials using the "bottom-up" route.
курсовая работа [226,4 K], добавлен 23.12.2010Finding the basic word order. Sentence word orders. Word order in different sentences: statements; questions; commands. Compound and complex sentences. Functions of sentence word order. Phrase word orders and branching. Normal atmospheric conditions.
реферат [24,2 K], добавлен 11.01.2011Practical application of linear interpolation, least squares method, the Lagrange interpolation polynomial and cubic spline interpolation. Determination of the integral in the set boundaries in accordance with the rules of the rectangle and trapezoid.
курсовая работа [207,7 K], добавлен 21.09.2010Political power as one of the most important of its kind. The main types of political power. The functional analysis in the context of the theory of social action community. Means of political activity related to the significant material cost-us.
реферат [11,8 K], добавлен 10.05.2011In anatomical and physiological aspect we can represent bronchopulmonary system as a combination of separate organs and functional subsystems, accordingly, in united functional system of organs of respiration of the person. Value and the function.
реферат [16,3 K], добавлен 24.04.2008