10 тем нормальной физиологии

История открытия биопотенциалов. Физиология возбудимых тканей, центральной нервной системы, сенсорных систем и высшей нервной деятельности. Характеристика гуморальной регуляции. Рассмотрение крови и кровообращения, дыхания, пищеварения и выделений.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 09.12.2014
Размер файла 8,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, по характеру влияния на углеводный обмен, глюкокортикоиды - антагонисты инсулина.

При длительном приеме этих гормонов или при их повышенной выработке в организме может развиться стероидный диабет.

2. Противовоспалительные действия.

Угнетают все стадии воспалительной реакции (альтерацию, экссудацию, пролиферацию), стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции. Нормализуют повышенную проницаемость сосудов и, тем самым, уменьшают процессы экссудации и отечность тканей, а также выделение медиаторов воспалительной реакции.

Угнетают процессы фагоцитоза в очаге воспаления.

Уменьшают выраженность лихорадочной реакции, сопутствующей воспалительному процессу, за счет снижения выброса интерлейкина-1 из лейкоцитов, что снижает его стимулирующий эффект на центр теплопродукции в гипоталамусе.

3. Противоаллергические действия.

Эффекты, лежащие в основе противовоспалительного действия, определяют и ингибирующее действие глюкокортикоидов на развитие аллергической реакции (стабилизация лизосом, угнетение образования факторов, усиливающих аллергическую реакцию, снижение экссудации и другие). Гиперпродукция глюкокортикоидов приводит к снижению числа эозинофилов в крови, увеличенное число которых - «маркер аллергии».

4.Подавление иммунитета.

Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза.

Длительный прием глюкокортикоидов приводит и к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпентентными органами, вследствие чего уменьшается количество лимфоцитов в крови.

Это является серьезным побочным эффектом длительного приема (возрастает вероятность присоединение вторичной инфекции). С другой стороны, этот эффект может использоваться для подавления роста опухолей, происходящих из лимфоидной ткани, или для торможения реакций отторжения при трансплантации органов и тканей.

Участие в формировании необходимого уровня АД.

Глюкокортикоиды повышают чувствительность сосудистой стенки к действию катехоламинов, что приводит к гипертензии. Повышению АД способствует также выраженная в небольшой степени минералкортикоидное действие глюкокортикоидов (задержка в организме натрия и воды, сопровождается увеличением объема циркулирующей крови).

Гипертензивный эффект - один из компонентов противошокового действия (шок всегда сопровождается резким падением АД).

Противошоковая активность связана с гипергликемией. Вызывающая глюкокортикоидная гипергликемия может расцениваться как важный фактор адекватного энергетического обеспечения мозга, что противодействует шоку.

В организме существует определенный суточный ритм выработки глюкокортикоидов, основная масса - 6-8 ч. утра.

Продукция глюкокортикоидов регулируются кортикотропином, усиливается при действии стрессовых стимулов.

Половые гормоны.

Синтез и секрецию андрогенов надпочечников стимулируют АКТГ и пролактин.

В раннем антенатальном периоде (12 - 20 недель) андрогены надпочечников обеспечивают вместе с семенниками развитие наружных гениталий по мужскому типу, обусловливают опускание яичек в мошонку, стимулируют рост семявыносящих протоков, семенных канальцев, связок.

В препубертатном периоде андрогены надпочечников участвуют в запуске полового созревания.

У взрослого мужчины в надпочечниках образуется только 5% всех андрогенов, небольшое количество которых идёт на образование эстрогенов. У женщин в фолликулярную фазу более половины, а после овуляции менее половины от общего количества андрогенов.

Преобразования надпочечниковых андрогенов в тестостерон, прогестерон и эстрогены происходит в основном в периферических тканях-мишенях: подкожной жировой клетчатке, волосяных фолликулах, молочных железах, в плаценте во время беременности.

При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром 2-х типов: гетеросексуальный и изосексуальный.

Гетеросексуальный - развивается при выработке гормонов противоположного пола и сопровождается появлением вторичных половых признаков, присущих другому полу.

Изосексуальный - при избыточной выработке гормонов одноименного пола, проявляется ускорением процессов полового развития.

Катехоламины.

Катехоламины - адреналин, норадреналин, дофамин. Источником служит тирозин. Синтез катехоламинов происходит в аксонах нервных клеток, запасание - в синаптических пузырьках. Однако, катехоламины, образующиеся в мозговом веществе надпочечников, выделяются в кровь, а не в синаптическую щель, т.е. являются типичными гормонами. В мозговом веществе содержатся хромаффинные клетки, в которых синтезируются адреналин и норадреналин (80% секреции - адреналин).

Синтез катехоламинов в мозговом веществе надпочеников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Благодаря существованию нервно-рефлекторных связей надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражения, гипоксию, мышечную нагрузку, охлаждение и т.д.

В свою очередь, выделение этих гормонов в кровь, приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов.

Существуют и гуморальные пути регуляции: увеличение синтеза и выделения под действием инсулина, глюкокортикоидов, при гипогликемии.

Наиболее важные эффекты катехоламинов: стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника; расширение зрачка; уменьшение потоотделения; усиление производительности катаболизма и образовании энергии.

Адреналин имеет большее сродство к в-адренорецепторам, локализованным в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце.

Норадреналин - имеет большее сродство к сосудистым б-адренорецепторам, его действием обеспечивается вазоконстрикция и увеличение периферического сосудистого сопротивления.

Определенное количество норадреналина может диффундировать в межклеточное пространство, а затем и в кровь из синапсов. Из-за этого содержание норадреналина в крови может быть больше, чем адреналина, хотя мозговое вещество надпочеников секретирует преимущественно адреналин.

При стрессе содержание катехоламинов повышается в 4 - 8 раз. Период полураспада 1 - 3 минуты. Инактивируются в тканях-мишенях, печени, почках.

Щитовидная железа

Основной структурно-функциональной единицей является фолликулы - округлые полости, стенка которых образована одним рядом клеток кубического эпителия. Они заполнены колоидом и содержат гормоны - тироксин и трийодотропин, связанные с белком тиреоглобулином. В межфолликулярном пространстве проходят капилляры, обеспечивающие васкуляризацию фолликулов. В щитовидной железе объёмная скорость кровотока выше, чем в других органах и тканях. В межфолликулярном пространстве находятся также парефолликулярные клетки (с-клетки), в которых вырабатывается гормон тиреокальцитонин.

Тиреоидные гормоны.

Тироксин и трийодтиронин.

Биосинтез тироксина и трийодтиронина осуществляется за счет йодирования тирозина. В щитовидной железе происходит активное поглощение йода. Содержание йода в фолликулах в 30 раз превышает концентрацию его в крови. При гиперфункции щитовидной железы это соотношение становится еще больше. При выбросе радиоактивного йода возникает опасность его попадания в организм и концентрирования в клетках щитовидной железы (период полураспада р. йода 8 суток). Предотвращение такой опасности - предварительное насыщение щитовидной железы «обычным» нерадиоактивным йодом.

После соединения йода с тирозином, входящего в состав тиреоглобулина, образуются монойодтирозин и дийодтирозин. За счет соединения двух молекул дийодтирозина образуется тироксин; конденсация моно- и дийодтирозина приводит к образованию трийодтиронина. После протеолиза тиреоглобулина образуется 2-5 молекул тироксина и трийодтиронина. Их секреция в молярных соотношениях 4 : 1. За счет протеаз идет расщепление тиреоглобулина и высвобождения в кровь гормонов. Активность тироксина в несколько раз меньше, чем трийодтирозина, а латенный период, соответственно - больше. Содержание тироксина в крови в 20 раз больше, чем трийодтиронина. Тироксин при дейодировании может превращаться в трийодтиронин. Трийодтиронин - основной гормон, а тироксин - его предшественник.

Синтез и секреция тиреоидных гормонов находятся под контролем гипотоламо-гипофизарной системы. Тиреотропин активирует аденилатциклазу щитовидной железы, ускоряет активный транспорт йода, стимулирует рост эпителиальных клеток щитовидной железы. Эти клетки формируют фолликул, в полости которого происходит йодирование тирозина.

Тиреоидные гормоны могут циркулировать в крови в течение нескольких дней. Содержание: 300 - 500 мкг тироксина, 6 - 12 мкг трийодтиронина.

В тех районах, где в почве снижено содержание йода и поступающий с пищей йод составляет менее 100 мкг/сутки, часто развивается зоб - разрастание ткани щитовидной железы, т.е. ее компенсаторное увеличение «эндемический зоб». Это заболевание может протекать на фоне нормальной продукции тироксина и трийодтиронина (эутироидный зоб), на фоне гиперпродукции (токсический зоб), или в условиях их недостаточности (гипотироидный зоб). Считается, что применение в пищу йодированной соли (для получения суточной дозы йода 180-200 мкг) является достаточно надежным методом профилактики эндемического зоба.

Действие тироксина и трийодтиронина проявляется резким усилением метаболической активности организма. Ускоряются все виды обмена веществ (белковый, липидный, углеводный). Увеличивается энергообразование и повышается основной обмен. В результате активации всех видов обмена веществ изменяется деятельность практически всех органов. Усиливается теплопродукция, повышается температура тела. Ускоряется работа сердца (тахикардия, повышение АД, увеличение минутного объема крови), стимулируется деятельность пищеварительного тракта (повышение аппетита, усиление перистальтики кишечника, увеличение секреторной активности).

При гиперфункции щитовидной железы обычно снижается масса тела, наблюдается эмоциональная лабильность, возбуждение, бессонница. При гипофункции щитовидной железы наблюдается торможение нервно-психической активности (вялость, сонливость, апатия).

В детском возрасте эти гормоны имеют существенное значение для процессов роста, физического развития, энергетического обеспечения созревания тканей мозга. Недостаток тиреоидных гормонов у детей приводит к задержке умственного и физического развития (кретинизм).

Кальцитонин (тиреокальцитонин) снижает уровень кальция в крови. В костной ткани усиливает активность остеобластов и процессы минерализации. В почках и кишечнике угнетает реабсорбцию кальция и стимулирует обратное всасывание фосфатов. Реализация этих эффектов приводит к гипокальциемии.

Околощитовидные железы

Паратгормон (паратирин, паратиреоидный гормон) обеспечивает увеличение уровня кальция в крови. Органами-мишенями являются кости и почки.

В костной ткани усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме крови.

В канальцевом аппарате почек стимулирует реабсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к гиперкальциемии и фосфатурии.

Развитие фосфатурии имеет определенное значение в реализации гиперкальцимического эффекта. Кальций образует с фосфатами нерастворимые соединения, а усиленное выведение фосфатов с мочой способствует повышению уровня свободного кальция в плазме крови.

Паратирин усиливает синтез кальцитриола, который является активным метаболитом витамина Д3. Д3 образуется в неактивном состоянии в коже под действием ультрафиолета, а затем под влиянием паратирина происходит его активация в печени и почках. Кальцитриол усиливает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Прямое действие паратирина на кишечную стенку незначительно.

При удалении околощитовидных желез животное погибает от тетанических судорог. Это связано с тем, что в случае низкого содержания кальция в крови резко усиливается нервно-мышечная возбудимость.

Гиперпродукция паратирина приводит к деминерализации и резорбции костной ткани, развитию остеопороза. Из-за увеличенного уровня кальция в плазме крови усиливается склонность к камнеобразованию в органах мочеполовой системы.

Гиперкальциемия способствует развитию выраженных нарушений электрической стабильности сердца, образованию язв в пищеварительном тракте, возникновение которых обусловлено стимулирующим действием ионов Са2+ на выработку гастрина и соляной кислоты в желудке.

Секреция паратирина и кальцитонина регулируется по типу отрицательной обратной связи в зависимости от уровня кальция в плазме крови. При снижении содержания Са2+ усиливается секреция паратирина и тормозится выработка кальцитонина. В физиологических условиях это наблюдается при беременности, лактации, сниженном содержании кальция в пище.

Увеличение Са2+ в плазме крови, наоборот, способствует снижению секреции паратирина и увеличению выработки кальцитонина. Последнее может иметь большое значение у детей и мышц молодого возраста, когда осуществляется формирование скелета.

Поджелудочная железа

Эндокринная активность осуществляется панкреотическими островками (островками Лангерганса), в которых есть несколько типов клеток:

1) б-клетки, в которых происходит выработка глюкогона

2) в-клетки, вырабатывают инсулин

3) д-клетки, продуцируют соматостатин, угнетающий секрецию инсулина и глюкагона

4) G-клетки, вырабатывают гастрин

5) ПП-клетки, вырабатывают необходимое количество панкреатического

полипептида, который является антагонистом холицистокинина.

в-клетки составляют большую часть островкового аппарата поджелудочной железы (60 %). Они продуцируют инсулин.

Инсулин влияет на все виды обмена веществ; прежде всего - снижает уровень глюкозы в плазме крови.

Под воздействием инсулина увеличивается проницаемость клеточной мембраны для глюкозы и аминокислот. Это приводит к усилению биоэнергетических процессов и синтеза белка.

В результате активности ферментов, тормозится образование глюкозы из аминокислот, которые могут использоваться для биосинтеза белка. Уменьшается катаболизм белка. Процессы образования белка начинают преобладать над распадом, что обеспечивает анаболический эффект. Инсулин является синергистом соматотропина по своему влиянию на белковый обмен.

Влияние инсулина на жировой обмен выражается в усилении липогенеза и отложении жира в жировом депо. Поскольку возрастает утилизация глюкозы и ее использование в качестве энергетического субстрата, определенная часть жировых кислот сберегается от энергетических трат и используется в последующем для липогенеза. В жировых депо инсулин угнетает активность липазы и стимулирует образование триглициридов.

Недостаточная секреция инсулина приводит к развитию сахарного диабета. Резко увеличивает содержание глюкозы в плазме крови, возрастает осмотическое давление внеклеточной жидкости.

Дегидратация тканей, появление жажды. При определенном уровне гипергликемии тормозится ее реабсорбция в почках и возникает глюкозурия.

Так как глюкоза является осмотически активным соединением, в составе мочи возрастает так же количество воды, что приводит к увеличению диуреза (полиурия).

Усиливается липолиз с образование избыточного количества несвязанных жирных кислот; происходит образование кетоновых тел. Катаболизм белка и недостаток энергии (вследствие нарушения утилизации глюкозы) приводит к астении и снижению массы тела.

Избыточное содержание инсулина в крови вызывает гипогликемию. Это может привести к потере сознания (гипогликемическая кома). В головном мозге утилизация глюкозы не зависит от фермента гексокиназы, активность которой регулируется инсулином. Поглощение глюкозы мозговой тканью определяется в основном концентрацией глюкозы в плазме крови. Ее снижение под действием инсулина может привести к нарушению энергетического обеспечения мозга и потере сознания.

Выработка инсулина регулируется механизмом отрицательной обратной связи в зависимости от содержания глюкозы в плазме крови. Повышение содержания глюкозы способствует увеличению выработки инсулина; в условиях гипогликемии образование инсулина, наоборот, тормозится. Секреция инсулина в некоторой степени возрастает при росте содержания аминокислот в крови, возрастает также под действием некоторых гастроинтестинальных гормонов (желудочно ингибирующий пептид, холицистокинин, секретин). Продукция инсулина возрастает также при стимуляции блуждающего нерва.

б-клетки, составляющие 25% островковой ткани, вырабатывают глюкагон, действие которого приводит к гипергликемии. В основе - усиленный распад гликогена в печени и стимуляция процессов глюконеогенеза. Глюкагон способствует мобилизации жира из жировых депо. Таким образом, действие глюкагона противоположно эффектам инсулина.

Кроме глюкагона антагонистами инсулина по своему действию на углеводный обмен является: кортикотропин, соматотропин, глюкокортикоиды, адреналин, тироксин.

Половые железы

Мужские половые гормоны.

В яичках не только происходит сперматогенез, но и образование андрогенов. Сперматогенез осуществляется за счет деления сперматогенных эпителиальных клеток, содержащихся в семенных канальцах.

Выработка андрогенов происходит в интерстицальных клетках - гландулоцитах (клетках Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20 % от общей массы яичек (небольшое количество вырабатывается в сетчатой зоне коркового вещества надпочечников).

Наиболее важным из андрогенов является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект).

Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосенения, меняется тональность голоса.

Тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Влияет на процессы формирования скелета - ускоряет образование белковой матрицы кости, усиливает отложение в ней кальция. В результате увеличивается рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.

Механизм действия тестостерона обусловлен его проникновением внутрь клетки и, после превращения в более активную форму, связыванием с рецепторами ядра и органел, что приводит к изменению процессов синтеза белка и нуклеиновых кислот.

Секреция тестостерона регулируется ЛГ аденогипофиза, продукция которого возрастает в период полового созревания. При увеличении содержания в крови тестостерона выработка ЛГ тормозится по механизму отрицательной обратной связи.

Уменьшение ЛГ и ФСГ происходит также при ускорении процессов сперматогенеза.

У мальчиков до 10-11 лет в яичках обычно отсутствуют активные гландулоциты, в которых вырабатываются андрогены. Однако секреция тестостерона в них происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стимулирующим действием хорионического гонадотропина, продуцируемого плацентой.

Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма (задержка развития первичных и вторичных половых признаков), диспропорциональности костного скелета (длинные конечности - небольшое туловище), увеличению отложения жира на животе и бедрах. Нередко увеличение молочных желез (гинекомастия). Нервно-психические изменения, отсутствие влечения к противоположному полу, утрата психофизиологических черт мужчины.

Женские половые гормоны.

В яичниках происходит выработка эстрогенов и прогестерона. Их секреция характеризуется цикличностью, связанной с изменением продукции гипофизарных гонадотропинов в течение менструального цикла. Помимо яичников, эстрогены могут в небольшом количестве вырабатываться в сетчатой зоне коркового вещества надпочечников. Во время беременности секреция эстрогенов увеличивается за счет гормональной активности плаценты. Наиболее активный представитель этой группы - в-эстрадиол. Прогестерон - гормон желтого тела. Его продукция возрастает в конце менструального цикла.

Под влиянием эстрогенов ускоряется развитие первичных и вторичных женских половых признаков. В период полового созревания увеличиваются размеры яичников, матки, влагалища, наружных половых органов. Усиливаются процессы пролиферации и рост желез в эндометрии. Ускоряется развитие молочных желез.

Эстрогены влияют на развитие костного скелета, посредствам усиления активности остеобластов. За счет влияния на эпифизарный хрящ тормозится рост костей в длину. Увеличивается биосинтеза белка; усиливается образование жира, избыток которого откладывается в подкожной основе, определяя особенности женской фигуры. Оволосенение по женскому типу; кожа более тонкая и гладкая, хорошо васкуляризованна.

Основное назначение прогестерона - подготовка эндометрия к имплантации оплодотворения яицеклетки. Он усиливает пролиферацию и секретирующую активность клеток эндометрия, в цитоплазме накопление липид и гликогена, усиливает васкуляризацию. Усиление пролиферации происходит также в молочных железах.

Недостаточная секреция женских половых гормонов - развитие характерного симптомокомплекса: прекращение менструации, атрофия молочных желез, влагалища, матки, отсутствие оволосенения по женскому типу. Окостенение зоны эпифизарного хряща, стимуляция роста кости в длину. Внешний вид - мужские черты, низкий тембр голоса.

Выработка эстрогенов и прогестерона регулируется гипофизарными гонадотропинами, продукция которых возрастает у девочек, начиная с 9-10 лет. Секреция гонадотропинов тормозится при высоком содержании в крови женских половых гормонов.

Эпифиз.

Эпифиз является нейроэндокринным трансдуктором, преобразующим закодированную нервными импульсами информацию супрахиазматического ядра гипоталамуса о фотопериодах внешней среды в ритм секреции мелатонина, уровень которого в крови и тканях обратно пропорционален освещённости. Активация синтеза и секреции мелатонина происходит в темноте (70% с 23.00 до 7.00). У женщин максимальный уровень мелатонина во время менструации, минимальный - во время овуляции.

Главные гормоны эпифиза - мелатонин, серотонин и полипептидные гормоны.

Гормоны эпифиза тормозят секрецию гонадолиберина и гонадотропинов, секрецию ТТГ и СТГ, являются антагонистом МСГ.

Мелатонин оказывает транквилизирующее влияние через мелатониновые рецепторы и ГАМК-рецепторы тормозных нейронов.

Мелатонин и серотонин являются эндогенными антиоксидантами.

Серотонин образуется из аминокислоты триптофан в энтерохромаффинных клетках ЖКТ, в клетках бронхов, в мозге, в тучных клетках, в аппендиксе и в эпифизе, в печени, почках, надпочечниках, тимусе, эндотелии сосудов, сетчатке. Физиологические эффекты серотонина: сосудосуживающее действие в месте распада тромбоцитов; стимуляция сокращения ГМ бронхов, ЖКТ; активация миометрия беременных и рожающих женщин; медиатор серотонинергической системы в ЦНС. Является предшественником мелатонина.

Тимус.

Тимус - центральный орган иммунной системы, максимально функционирует до 12 лет, после чего постепенно атрофируется. Его эпителиальные клетки образуют полипептидные гормоны, главными из которых являются тимопоэтин и тимозины.

Гормоны тимуса стимулируют дифференцировку, созревание и пролиферацию Т-лимфоцитов; ускоряют рост организма, увеличение мышечной массы (после 12 лет эта функция переходит к половым гормонам).

Глюкокортикоиды и половые гормоны оказывают тормозящее влияние на тимус и вызывают его возрастную инволюцию. Тиреоидные гормоны стимулируют функцию тимуса.

Кровь

ФУНКЦИИ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Внутренняя среда организма представлена тканевой (интерстициальной) жидкостью, лимфой и кровью. В организме существует единая система гуморального транспорта, включающая общее кровообращение и движение в последовательной цепи:

Кровь - Тканевая жидкость - Ткань (Клетка) - Тканевая жидкость - Лимфа - Кровь.

Истинной внутренней средой организма является тканевая жидкость. Лишь она контактирует с клетками организма. Кровь, соприкасаясь с эндокардом и эндотелием сосудов, обеспечивает их жизнедеятельность и косвенно, через тканевую жидкость вмешивается в работу уже всех органов и тканей без исключения.

Кровь как ткань обладает особенностями:

все ее составные части образуются за пределами сосудистого русла;

межклеточное вещество жидкое;

основная часть крови в постоянном движении.

Г.Ф.Ланг считал, что в систему крови входят: органы кроветворения и кроверазрушения, кровь, аппарат регуляции.

Кровь представляет собой непрозрачную жидкость, состоящую из плазмы и форменных элементов.

Плазма - жидкость бледно-желтого цвета (плазма, лишенная фибрина - называется сывороткой).

Форменные элементы - представляют собой клетки: красные кровяные тельца (эритроциты); белые кровяные тельца (лейкоциты) и кровяные пластинки (тромбоциты).

Основные функции крови: транспортная; защитная; регуляторная.

Транспортная функция.

Кровь - это среда, осуществляющая транспорт различных веществ в организме. Кровь осуществляет транспорт газов СО2 и О2 - обеспечивает дыхание. Кровь осуществляет трофическую функцию, обеспечивая органы, ткани и клетки питательными веществами. Кровь выполняет функцию по удалению продуктов метаболизма, транспортируя их к органам выделения. Кровь осуществляет транспорт гормонов, витаминов и ферментов. Кровь обеспечивает распределение тепла, благодаря высокой теплоемкости.

Регуляторная функция связана с поступлением в циркулирующую кровь гормонов, БАВ, продуктов обмена. Обеспечивает относительное постоянство внутренней среды (гомеостаз). Для обеспечения гомеостаза состав и физические свойства циркулирующей крови должны иметь относительное постоянство. Этим обеспечивается постоянство внутренней среды: постоянство концентраций растворенных веществ; температуры; рН.

Защитная функция.

Остановка кровотечения путем свертывания (гемостаза).

Наоборот, сохранение крови в жидком состоянии (лизис тромбов).

Обезвреживание чужеродных агентов. Кровь обеспечивает защитную функцию организма с помощью фагоцитоза, цитотоксического эффекта и образования антител.

Объем крови. На долю крови у взрослого человека приходится примерно 6 - 8 % общей массы тела (около 4 - 6 л крови - нормоволемия). Повышение общего объема крови - гиперволемией, а снижение называется - гиповолемией.

Гематокритный показатель (гематокрит) - часть объема крови, приходящаяся на долю эритроцитов. У мужчин гематокрит - 0,44 - 0,46 (44-46 %). У женщин гематокрит - 0,41 - 0,43. Гематокрит определяется с помощью центрифугирования (центрифуга Шкляра) путем разделения в стандартной пробирке (или капилляре) на плазму и форменные элементы, большинство из которых - эритроциты.

Значение гематокрита крови, взятой из разных органов, различаются, благодаря особым реологическим свойствам эритроцитов.

Вязкость крови.

Вязкость Н2О = 1,0. Вязкость плазмы = 1,9 - 2,6. Вязкость крови = 4,5 (3,5 - 5,4).

Увеличение гематокрита сопровождается увеличением вязкости крови и повышением нагрузки на сердце.

Структура и функции плазмы крови.

В 1 л плазмы человека содержится 900-910 г Н2О, 65-80 г белка и 20 г низкомолекулярных соединений.

Удельный вес плазмы = 1,025 - 1,029

рН = 7,37 - 7,43 (средн. 7,4)

Состав плазмы и интерстициальной жидкости различается лишь по концентрации белков (крупные белки не могут свободно проходить через стенки капилляров).

Электролиты плазмы.

Катионы: Na, K, Ca, Mg

Анионы: Cl, HCO3, HRO4, хлор, бикарбонат, фосфат, сульфат, органические кислоты, белки.

Неэлектролиты: глюкоза, мочевина.

Осмотическое давление - сила, которая заставляет переходить растворитель через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный раствор.

Концентрация растворенных в плазме веществ может быть выражена как осмотическое давление - в норме 7,3 атм (5600 мм рт. ст.). Осмотическое давление крови - 7,6 атм.

Любое отклонение осмотического давления плазмы крови и интерстициальной жидкости от нормальных величин приводит к перераспределению воды между клетками и окружающей их средой. Гипотоническая межклеточная жидкость приводит к выделению Н2О в клетку (она набухает). Гипертоническая среда приводит к потере Н2О самой клетки - она сжимается.

Около 60 % осмотического давления плазмы крови создается NaCl и низкомолекулярными соединениями. В норме концентрации NaCl в межклеточном пространстве и клетках должны быть изотоничными (0,9 %).

Онкотическое давление является частью осмотического давления и зависит от содержания крупномолекулярных соединений (белков) в растворе. На онкотическое давление приходится примерно 25 - 30 мм рт. ст.

Существует градиент онкотического давления между плазмой и межклеточной жидкостью. Онкотическое давление межклеточной жидкости ~ 5 мм рт.ст. (0,7 кПа) (Разница ~ 20 мм рт.ст.). Этот градиент онкотического давления влияет на образование тканевой жидкости, лимфы, мочи, на всасывание воды в кишечнике. Чем больше онкотическое давление, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Искусственные кровезаменители в идеале должны обладать таким же онкотическим давлением, как и плазма крови.

Белки плазмы - 7-8 % от массы плазмы.

Альбумины - мол. м. 70000 (4-5 %). Глобулины - мол.м. до 450000 (до 3%). Фибриноген - мол.м. 340000 (0,2 - 0,4 %).

С помощью электрофореза можно разделить белки. Электрофорезом называется движение электрически заряженных частиц, находящихся во взвешенном состоянии или растворенных в жидкой среде, по градиенту напряжения.

Электрофорез белков плазмы является важным методом клинической диагностики. Многие заболевания сопровождаются характерными изменениями в составе этих белков.

Альбумины

Значение белков плазмы.

Питание (на 3 литра плазмы приходится 200 г белка) это достаточный запас питательных веществ.

Транспорт - благодаря наличию гидрофильных и гидрофобных участков, белки способны связываться с молекулами и жироподобными веществами и осуществлять их перенос по руслу крови. Белки плазмы связывают 2/3 кальция плазмы.

Онкотическое давление плазмы в большей степени (80 %) зависит от альбуминов (меньшая молекулярная масса, но большее количество в плазме, чем глобулинов). Снижение концентрации альбумина приводит к задержке Н2О в межклеточном пространстве (интерстициальный отек).

Буферная функция - поддерживает постоянство рН крови путем связывания Н+ или ОН-, благодаря амфотерным свойствам.

Предупреждение кровопотери обусловлено наличием в плазме крови фибриногена. Высокая вязкость растворов фибриногена обусловлена свойством его молекул образовывать сгустки в виде «ниток бус». Цепь реакций гемостаза, в которых участвуют белки плазмы заканчивается превращением растворенного в плазме фибриногена в сеть из молекул фибрина, образующую сгусток (тромб). Молекула фибрина имеет удлиненную форму (соотношение длины/ширины - 17:1).

Свойства и функции отдельных белковых фракций.

Альбумин плазмы на 80 % определяет коллоидно-осмотическое (онкотическое) давление плазмы. На его долю приходится 60 % общего белка плазмы (35-45 г/л).

Альбумин низкомолекулярное соединение и поэтому хорошо подходит для выполнения функции переносчиков многих транспортируемых кровью веществ. Альбумин связывает: биллирубин, уробилин, жирные кислоты, соли желчных кислот, пенициллин, сульфамедин, ртуть.

При воспалительных процессах и поражении печени и почек количество альбумина снижается.

Глобулины.

1 - глобулины, иначе их называют - гликопротеинами. 2/3 всего количества глюкозы плазмы присутствует в связанной форме в составе гликопротеинов. К субфракции гликопротеинов относится группа углеводосодержащих белков - протеогликанов (мукопротеинов).

2 - глобулины - это протеогликан или иначе медьсодержащий белок церулоплазмин, который связывает 90 % всей меди, содержащейся в плазме.

-глобулин - это белковые переносчики липидов и полисахаридов. Они удерживают в растворе нерастворимые в воде жиры и липиды и обеспечивают тем самым их перенос кровью.

- глобулины. Это неоднородная группа белков выполняющих защитные и обезвреживающие функции, иначе называемые иммуноглобулинами. Размеры и состав - глобулинов существенно варьирует. При всех заболеваниях, особенно воспалительных, содержание - глобулинов в плазме повышается. К - глобулинам относятся агглютинины крови: Анти-А и Анти-В.

ЭРИТРОЦИТЫ

Самые многочисленные форменные элементы крови - красные кровяные тельца (эритроциты). У мужчин - 4 - 5 млн в 1мкл; у женщин, как правило, не превышает 4,5 млн в 1 мкл. При беременности число эритроцитов может снижаться до 3,5 и даже 3 млн в 1 мкл.

В норме число эритроцитов подвержено незначительным колебаниям.

При различных заболеваниях количество эритроцитов может уменьшаться («эритропения»). Это часто сопутствует малокровию или анемии.

Увеличение числа эритроцитов обозначается как «эритроцитоз».

Эритроциты человека - это безъядерные, плоские клетки, имеющие форму двояковогнутых дисков. Их толщина в области краев - 2мкм.

Поверхность диска в 1,7 раза больше, чем поверхность тела такого же объема, но сферической формы. Следовательно, такая форма обеспечивает транспорт большого количества различных веществ. Такая форма позволяет эритроцитам закрепляться в фибриновой сети при образовании тромба. Но главное преимущество в том, что эта форма обеспечивает прохождение эритроцита через капилляры. При этом эритроцит перекручивается в средней узкой части, содержимое из более широкого конца перетекает к центру, благодаря чему эритроцит входит в узкий капилляр.

Цитоскелет в форме проходящих через клетку трубочек и микрофиламентов в эритроците отсутствует, что придает ему эластичность и деформируемость (необходимые свойства для прохождения через капилляры).

Кривая Прайс-Джонса - это распределение эритроцитов по диаметру. Распределение диаметров эритроцитов в норме соответствуют кривой нормального распределения.

Нормоцит - средняя величина диаметра эритроцита у взрослого человека - 7,5 мкм. (7,5 - 8,3 мкм).

Макроциты - диаметр эритроцита от 8 до 12мкм. Макроцитоз наблюдается при сдвигах кривой вправо.

Микроциты - диаметр эритроцитов менее 6 мкм - сдвиг кривой влево. Обнаруживаются карликовые эритроциты с укороченным сроком жизни.

Пологая форма кривой Прайс-Джонса указывает на увеличение числа как микроцитов, так и макроцитов. Это явление называется анизоцитозом.

Эритроциты обладают обратимой деформацией, то есть обладают пластичностью.

По мере старения, пластичность эритроцитов уменьшается.

Наиболее известные патологически измененные формы эритроцитов - это сфероциты (эритроциты круглой формы) и серповидные эритроциты (СКА).

Пойкилоцитоз - состояние, при котором встречаются эритроциты разной необычной формы.

Функции эритроцитов: транспортная, защитная, регуляторная.

Транспортная функция: транспортируют О2 и СО2, аминокислоты, полипептиды, белки, углеводы, ферменты, гормоны, жиры, холестерин, БАВ, микроэлементы и т.д..

Защитная функция: играют определенную роль в специфическом и неспецифическом иммунитете, принимают участие в сосудисто-тромбоцитарном гемостазе, свертывании крови и фибринолизе.

Регуляторная функция: благодаря гемоглобину регулируют рН крови, ионный состав плазмы и водный обмен.

Проникая в артериальный конец капилляра, эритроцит отдает воду и растворенный в ней О2 и уменьшается в объеме, а переходя в венозный конец капилляра, забирает воду, СО2 и продукты обмена, поступающие из тканей и увеличивается в объеме.

Помогают поддерживать относительное постоянство плазмы крови. Например, если в плазме увеличивается концентрация белков, эритроциты их активно адсорбируют. Если содержание белков в плазме уменьшается, эритроциты отдают их в плазму.

Эритроциты являются регуляторами эритропоэза, т.к. в них содержатся эритропоэтические факторы, которые при разрушении эритроцитов поступают в костный мозг и способствуют образованию эритроцитов.

Эритропоэз - это процесс образования эритроцитов.

Эритроциты образуются в кроветворных тканях:

в желточном мешке у эмбриона

в печени и селезенке у плода

в красном костном мозгу плоских костей у взрослого человека.

Общими предшественниками всех клеток крови являются плюрипотентные (полипотентные) стволовые клетки, которые содержатся во всех кроветворных органах.

На следующем этапе эритропоэза формируются коммитированные предшественники, из которых уже может развиваться только один тип клеток крови: эритроциты, моноциты, гранулоциты, тромбоциты или лимфоциты.

Столовая клетка > Базофильный проэритрбласт > Эритробласт (макробласт) > Нормобласт > Ретикулоциты II, III, IV > Эритроциты.

Безъядерные юные эритроциты выходят из костного мозга в виде так называемых ретикулоцитов. В отличие от эритроцитов ретикулоциты сохраняют элементы клеточных структур. Количество ретикулоцитов, является важной информацией о состоянии эритропоэза. В норме количество ретикулоцитов 0,5 - 2 % от общего числа эритроцитов крови. При ускорении эритропоэза количество ретикулоцитов возрастает, а при замедлении эритропоэза - уменьшается. При усиленном разрушении эритроцитов число ретикулоцитов может превышать 50 %. Превращение ретикулоцита в молодой эритроцит (нормоцит) осуществляется за 35-45 часов.

Созревшие эритроциты циркулируют в крови в течение 80-120 дней, после чего фагоцитируются преимущественно клетками ретикулоэндотелиальной системы костного мозга, макрофагами («эритрофагоцитоз»). Образующиеся при этом продукты разрушения и в первую очередь железо используются для построения новых эритроцитов. Касл ввел понятие «эритрон» для обозначения всей массы эритроцитов в циркулирующей крови, в кровяных депо и костном мозге.

Любая ткань организма также способна разрушать красные кровяные тельца (исчезновение «синяков»).

Каждые 24 часа обновляется примерно 0,8 % от общего числа эритроцитов (25 · 1012 шт). За 1 мин образуется 60 · 106 эритроцитов.

Скорость эритропоэза возрастает в несколько раз

при кровопотерях

при снижении парциального давления О2

при действии веществ ускоряющих эритропоэз - эритропоэтинов.

Место синтеза эритропоэтинов - почки, печень, снлезенка, костный мозг. Эритропоэтины стимулирует дифференцировку и ускоряет размножение предшественников эритроцитов в костном мозгу.

Действие эритропоэтина усиливаются: андрогенами, тироксином, гормонами роста.

Андрогены усиливают эритропоэз, а эстрогены тормозят эритропоэз.

Осмотические свойства эритроцитов.

При помещении эритроцитов в гипотонический раствор развивается ГЕМОЛИЗ - это разрыв оболочки эритроцитов и выход гемоглобина в плазму, благодаря чему кровь приобретает лаковый цвет. Минимальная граница гемолиза для здоровых людей соответствует раствору содержащему 0,42 - 0,48 % NaCl. Максимальная граница стойкости составляет 0,28 - 0,34 % NaCl.

Причинами гемолиза также могут быть химические агенты (хлороформ, эфир и т.д.), яды некоторых змей (биологический гемолиз), воздействия низких и высоких температур (термический гемолиз), несовместимость переливаемой крови (иммунный гемолиз), механические воздействия.

Скорость оседания эритроцитов (СОЭ).

Кровь предоставляет суспензию или взвесь эритроцитов. Взвесь эритроцитов в плазме поддерживается гидрофильной природой их поверхности, а также отрицательным зарядом, благодаря чему они отталкиваются друг от друга. С уменьшением отрицательные эритроциты сталкиваются друг с другом, образую так называемые «монетные столбики».

Фарреус - поместив кровь в пробирку, предварительно добавив цитрат Na, (который препятствует свертыванию крови) обнаружил, что кровь разделяется на два слоя. Нижний слой представляет собой форменные элементы.

Основные причины, влияющие на скорость оседания эритроцитов:

величина отрицательного заряда на поверхности эритроцитов

величина положительного заряда белков плазмы и их свойства

содержание фибриногена

инфекционные, воспалительные и онкологические заболевания.

Величина СОЭ в большей степени зависит от свойств плазмы, чем от свойств эритроцитов. Пример, если нормальные эритроциты мужчин поместить в плазму крови беременной женщины, то эритроциты мужчин будут оседать с такой же скоростью как и у женщин при беременности.

СОЭ - у новорожденных - 1-2 мм/ч; у мужчин - 6-12 мм/ч; у женщин - 8-15 мм/ч; у пожилых людей - 15-20 мм/ч.

СОЭ увеличивается при увеличении концентрации фибриногена, например во время беременности; при воспалительных, инфекционных и онкологических заболеваниях; а также при уменьшении числа эритроцитов. Уменьшение СОЭ у детей старше 1 года считается неблагоприятным признаком.

Гемоглобин и его соединения.

Основные функции эритроцитов обусловлены наличием в их составе гемоглобина. Его молекулярная масса 68800. Гемоглобин состоит из белковой части (глобин) и железосодержащих частей (гем) 1 : 4 (на одну молекулу глобина приходится 4 молекулы гема).

В норме содержание гемоглобина 120-165 г/л (120-150 г/л для женщин, 130-160 г/л для мужчин). У беременных содержание гемоглобина низкое до 110 г/л - это для них норма.

Гем состоит из молекулы порфирина, в центре которой расположен ион Fe2+, способный присоединять О2.

Структура белковой части гемоглобина неодинакова, т.е. белковую часть гемоглобина можно разделить на ряд фракций: А фракция - 95-98 % для взрослого человека; А2 фракция - 2-3 %; F фракция - 1-2 %.

Фракция F - это фетальный гемоглобин, который содержится у плода. Фетальный гемоглобин имеет большее сродство к О2 чем гемоглобин А. К моменту рождения ребенка на его долю приходится 70-90 %. Это позволяет тканям плода не испытывать гипоксии при относительно низком напряжении О2.

Гемоглобин обладает способностью образовывать соединения с О2, СО2 и СО:

гемоглобин с О2 (придает светло красный цвет крови) - называется оксигемоглобином (HHbO2);

гемоглобин отдавший О2 называется восстановленным или редуцированным (HHb);

гемоглобин с СО2 называется карбогемоглобином (HHbCO2 ) (темная кровь) 10-20 % всего транспортируемых кровью СО2;

гемоглобин с СО образует прочную связь карбоксигемоглобин (HhbCO), сродство гемоглобина к СО выше, чем к О2.

Скорость распада карбоксигемоглобина возрастает при вдыхании чистого О2.

Сильные окислители (ферроцианид, бертолетова соль, перекись водорода) изменяют заряд Fe2+ до Fe3+ - возникает окисленный гемоглобин МЕТГЕМОГЛОБИН, прочное соединение с О2; нарушается транспорт О2, что приводит к тяжелейшим последствиям для человека и летальному исходу.

В случае разрушения эритроцитов из освобождающегося гемоглобина образуется билирубин, являющийся одной из составных частей желчи.

Цветовой показатель (фарб индекс Fi).

Относительная величина, характеризующая насыщение в среднем 1 эритроцита гемоглобином. За 100 % гемоглобина принимают величину равную 166,7 г/л, а за 100 % эритроцитов - 5*1012. Если у человека содержание и гемоглобина и эритроцитов 100 %, то цветовой показатель равен 1.

Вычисляется по формуле: ЦП = Нв (г/л) * 3 / (три первых цифры от числа эритроцитов).

В норме от 0,85 до 1,15 (нормохромные эритроциты). Если меньше 0,85 - гипохромные эритроциты. Если больше 1,15 - гиперхромные. В этом случае объем эритроцита увеличивается, что позволяет ему содержать большую концентрацию гемоглобина. Создается ложное впечатление, что эритроциты перенасыщены гемоглобином.

Гипо- и гиперхромия встречаются при анемиях.

Анемии.

Анемия (бескровие) - снижение способности переносить кислород, связанное либо с уменьшением числа эритроцитов, либо с уменьшением содержания в эритроцитах гемоглобина, либо и то, и другое.

Железодифицитная анемия возникает при недостатке железа в пище (у детей), при нарушениях всасывания железа в пищеварительном тракте, при хронической кровопотере (язвенная болезнь, опухоли, колиты, глистные инвазии и т.д.). В крови образуются мелкие эритроциты с пониженным содержанием гемоглобина.

Мегабластическая анемия - наличие в крови и костном мозгу увеличенных эритроцитов (мегалоцитов) и незрелых предшественников мегалоцитов (мегабластов). Возникает при недостатке веществ, способствующих созреванию эритроцитов (витамин В12), т.е. при замедленном созревании эритроцитов.

Гемолитическая анемия - связана с повышенной хрупкостью эритроцитов, что ведет к возрастанию гемолиза. Причина - врожденные формы сфероцитоза, серповидноклеточной анемии и талассемии. К этой же категории относятся анемии, возникающие при малярии, при резус-несовместимости.

Апластическая анемия и панцитопения - это угнетение костномозгового кроветворения. Подавляется эритропоэз. Причина - наследственная форма и/или поражение костного мозга ионизирующими излучениями.

ЛЕЙКОЦИТЫ

Белые кровяные тельца (лейкоциты), представляют собой образования различной формы и величины. Их делятся на две большие группы:

зернистые (гранулоциты): нейтрофилы, эозинофилы, базофилы

незернистые (агранулоциты): лимфоциты, моноциты.

Гранулоциты получили наименование от их способности окрашиваться красками: эозинофилы окрашиваются эозином (кислая краска), базофилы - гематоксилином (щелочная краска), а нейтрофилы - и той, и другой.

В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 8,5 тыс. в 1 мм3. Увеличенное количество лейкоцитов называется - лейкоцитозом. Уменьшенное - лейкопенией.

Лейкопении встречаются только при патологии. Особенно тяжелые в случае поражения костного мозга (острые лейкозы, лучевая болезнь). При этом не только уменьшается количество лейкоцитов, но и изменяется их функциональная активность. Наблюдаются нарушения в специфической и неспецифической защите, попутные заболевания (часто инфекционного характера).

Лейкоцитозы могут быть физиологические и патологические. Физиологические лейкоцитозы: пищевой; миогенный; эмоциональный; при беременности.

Пищевой лейкоцитоз. Возникает после приема пищи (увеличение на 1-3 тыс. в 1 мкл), редко выходит за границы физиологической нормы. Большое количество лейкоцитов скапливается в подслизистой основе тонкой кишки. Здесь они осуществляют защитную функцию, препятствуют попаданию чужеродных агентов в кровь и лимфу.

Носит перераспределительный характер. Обеспечивается поступлением лейкоцитов в кровоток из депо крови.

Миогенный лейкоцитоз. Наблюдается после выполнения тяжелой мышечной работы. Число лейкоцитов может возрастать в 3-5 раз. Лейкоциты скапливаются в мышцах. Носит как перераспределительный, так и истинный характер, т.к. при этом лейкоцитозе происходит усиление костномозгового кроветворения.

Эмоциональный лейкоцитоз (как и при болевом раздражении) носит перераспределительный характер. Редко достигает высоких показателей.

Лейкоцитоз при беременности. Скапливаются в подслизистой основе матки. Этот лейкоцитоз в основном носит местный характер. Этот лейкоцитоз предупреждает попадание инфекций и стимулирует сократительную функцию матки.

Лейкоцитарная формула (лейкограмма).

ГРАНУЛОЦИТЫ

АГРАНУЛОЦИТЫ

Нейтрофилы

Базофилы

Эозино-филы

Лимфо-циты

Моно-циты

Юные

Палочко-

ядерные

Сегменто-ядерные

0-1 %

1-4 %

45-65 %

0-1 %

1-4 %

25-40 %

2-8 %

В крови могут встречаться зрелые и юные формы лейкоцитов. В норме их легче всего обнаружить у самой многочисленной группы, т.е. у нейтрофилов. Юные нейтрофилы (миелоциты) имеют довольно крупное бобовидное ядро. Палочкоядерные - ядро, не разделенное на отдельные сегменты. Зрелые, или сегментоядерные, имеют ядро, разделенное на 2-3 сегмента. Чем больше сегментов, тем старше нейтрофил.

Увеличение количества юных и палочкоядерных нейтрофилов свидетельствует об омоложении крови - это сдвиг лейкоцитарной формулы влево (лейкоз, белокровие, инфекции, воспаления). Снижение количества этих клеток свидетельствует о старении крови - это сдвиг лейкоцитарной формулы вправо.

Нейтрофилы.

Созревают в костном мозге, задерживаются в нем на 3-5 дней, составляя костномозговой резерв гранулоцитов. В сосудистое русло попадают благодаря амебоидному движению и выделению протеолитических ферментов, способных растворять белки костного мозга и капилляров.

В циркулирующей крови нейтрофилы живут от 8 часов до 2 суток. Условно делятся на: 1) свободно циркулирующие; и 2) занимающие краевое положение в сосудах. Между этими группами динамическое равновесие и постоянный обмен. Т.о. в сосудистом русле примерно в 2 раза больше нейтрофилов, чем определяется в вытекающей крови.

Предполагается, что разрушение нейтрофилов происходит за пределами сосудистого русла. Все лейкоциты уходят в ткани, где и погибают. Обладают фагоцитарной функцией. Поглощают бактерии и продукты разрушения тканей.

Содержат ферменты, разрушающие бактерии. Способны адсорбировать антитела и переносить их к очагу воспаления. Т.е. принимают участие в обеспечении иммунитета.

В 1968 г. был открыт цитотоксический эффект, или киллинг. В присутствии IgG и при наличии комплемента, подходят к клетке мишени, но не фагоцитируют, а повреждают на расстоянии, за счет выделения активных форм кислорода - пероксида водорода, гипохлорной кислоты и др.

Выделяют продукты, усиливающие митотическую активность клеток, ускоряющие процессы репарации, стимулирующие гемопоэз и растворение фибринового сгустка.

В клинической практике необходимо исследовать не только количество, но и функциональную активность нейтрофилов. Гипофункция нейтрофилов - вариант иммунодефицита. Проявляется в снижении миграционной способности и бактерицидной активности нейтрофилов.

Базофилы.

В крови базофилов мало (40-60 в 1 мкл), однако в различных тканях, в том числе в сосудистой стенке, содержатся «тканевые базофилы» или тучные клетки.

Поглощение, синтез, накопление и выделение БАВ.

Гистамин - усиливает тканевую проницаемость, расширяет кровеносные сосуды, усиливает гемокоагуляцию, в высоких концентрациях вызывает воспаление.

Гепарин - антагонист гистамина. Антикоагулянт (препятствует свертыванию крови). Ингибирует фибринолиз (разрушение фибрина), многие лизосомальные ферменты, гистаминазу (разрушающую гистамин).

Гиалуроновая кислота (влияет на проницаемость сосудистой стенки).

Фактор активации тромбоцитов.

Тромбоксаны (способствуют агрегации тромбоцитов).

Производные арахидоновой кислоты - важная роль при аллергических реакциях (бронхиальная астма, крапивница, лекарственная болезнь).

Количество базофилов возрастает при лейкозах, стрессовых ситуациях и слегка при воспалении.

В связи с выделением различных форм базофилов и выявлением в них разнообразных БАВ - существуют синонимы - гепариноцит, гистаминоцит, лаброцит и т.д.

Антагонистами базофилов являются эозинофилы и макрофаги.

Эозинофилы.

Длительность пребывания эозинофилов в кровотоке не превышает нескольких часов, после чего они проникают в ткани, где и разрушаются.

В тканях эозинофилы скапливаются в тех органах, где содержится гистамин - в слизистой оболочке и подслизистой основе желудка, тонкой кишки, в легких. Эозинофилы захватывают и разрушают гистамин с помощью фермента гистаминазы. Способны также инактивировать гепарин, фагоцитировать гранулы, выделяемые базофилами. С этими свойствами связано участие эозинофилов в уменьшении реакции гиперчувствительности немедленного типа.


Подобные документы

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.

    курсовая работа [61,7 K], добавлен 09.06.2011

  • Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.

    реферат [35,3 K], добавлен 01.08.2010

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Свойства возбудимых тканей. Рефлекторные функции продолговатого мозга. Функции ядер гипоталамуса и сенсорных систем. Стадии свертывания крови. Фазы работы сердца. Свойства желез внутренней секреции. Функции промежуточного мозга, осуществляющие их отделы.

    реферат [47,0 K], добавлен 18.05.2015

  • Значение высшей нервной деятельности в жизнедеятельности человека. Анатомия, физиология и гигиена высшей нервной деятельности. Безусловные и условные нервные рефлексы. Эмоции, память, сон, прогноз и внушение. Нарушения высшей нервной деятельности.

    реферат [19,6 K], добавлен 14.04.2011

  • Исследование психики в трудах ученых до второй половины XIX в. Высказывания о душе древних мыслителей, учение Р. Декарта. И.М. Сеченов как теоретик рефлекторной природы психической деятельности. Исследование физиологии условных рефлексов И.П. Павловым.

    контрольная работа [15,5 K], добавлен 22.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.