10 тем нормальной физиологии

История открытия биопотенциалов. Физиология возбудимых тканей, центральной нервной системы, сенсорных систем и высшей нервной деятельности. Характеристика гуморальной регуляции. Рассмотрение крови и кровообращения, дыхания, пищеварения и выделений.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 09.12.2014
Размер файла 8,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В системе управления дыханием можно выделить два основных уровня регуляции:

Саморегуляторный уровень - включает дыхательный центр посредством активации механорецепторов легких, дыхательных мышц, центральных и периферических хеморецепторов. Данный уровень регуляции осуществляет поддержание постоянства газового состава артериальной крови.

Регуляторный, корректирующий уровень - включает сложные поведенческие условные и безусловные акты. На этом уровне регуляции происходят процессы, приспосабливающие дыхание к изменяющимся условиям окружающие среды и жизнедеятельности организма.

Саморегуляция дыхания, дыхательный центр.

Выявление структур мозга, отвечающих за акты вдоха и выдоха, производилось путем перерезки и разрушения мозговых структур.

Было установлено, что отделение головного мозга от спинного приводит к полной остановке дыхания.

А.Н.Миславский (1885) показал, что разрушение медиальной части продолговатого мозга в нижнем углу ромбовидной ямки приводит к полной остановке дыхания.

Люмсден (1923) показал, что в варолиевом мосту также есть скопления нейронов, разрушение которых нарушает паттерн дыхания. Он ввел понятия о пневмотоксическом и апнейстическом центрах варолиевого моста.

Пневмотоксический центр (нейроны, ответственные за смену вдоха на выдох) - ростральные отделы варолиевого моста. При их разрушении дыхательные циклы становятся нерегулярными. Если одновременно перерезать афферентные волокна вагуса, то возникает апнейстическое дыхание (длительный вдох, короткий выдох, снова длительный вдох).

Если разрушить ядра, расположенные в средней и каудальной областях варолиевого моста (апнейстический центр, нейроны которого способствуют быстрому переходу выдоха на вдох), апнейзис исчезает. Он исчезает также при отделении продолговатого мозга от варолиевого моста. В этих случаях возникает гаспинг - редкие судорожные вдохи.

Теория Питтса:

В медиальной части продолговатого мозга расположен дыхательный центр, имеющий инспираторный (вдоха) и экспирационный (выдоха) отделы.

Акт вдоха возникает в результате возбуждения нейронов инспираторного отдела, которые посылают импульсы к б-мотонейронам дыхательной мускулатуры, в пневмотоксический центр и в экспираторный отдел. Это вызывает торможение нейронов инспираторного отдела и возбуждение экспираторного - возникает выдох. Возбужденные нейроны экспираторного отдела посылают сигнал в пневмотоксический центр (чтобы он затормозил экспиратоные нейроны и активировал инспираторные) и к инспираторным нейронам. И т.д.

Одновременно на состояние нейронов дыхательного центра влияет поток импульсов от хеморецепторов и механорецепторов, благодаря чему происходит регуляция частоты и глубины дыхания (т.е. вентиляция легких в соответствии с запросами организма).

Однако при исследовании электрической активности дыхательных нейронов эта гипотеза потерпела неудачу.

Было показано, что дыхательные нейроны продолговатого мозга в нижнем углу ромбовидной ямки расположены латерально. В медиальной области (разрушение которой вызывало остановку дыхания) - нейроны, обрабатывающие афферентную информацию, идущую к дыхательным нейронам, а также, вероятно, аксоны дыхательных нейронов.

В продолговатом мозге имеется 2 скопления дыхательных нейронов: одно в дорсальной части, недалеко от одиночного ядра - дорсальная дыхательная группа (ДДГ), другое расположено вентральнее, вблизи от двойного ядра - вентральная дыхательная группа (ВДГ).

ДДГ - 2 класса нейронов - инспираторные I и I. При вдохе возбуждаются оба класса этих нейронов, но выполняют разные задачи:

Инспираторные I-нейроны активируют б-мотонейроны диафрагмальной мышцы, и, одновременно, посылают сигналы к инспираторным нейронам ВДГ, которые, в свою очередь, возбуждают б-мотонейроны остальных инспираторных мышц;

Инспираторные I-нейроны, возможно с помощью вставочных нейронов, запускают процесс торможения I-нейронов.

В ВДГ 2 типа нейронов - инспираторные и экспираторные нейроны (активируют экспираторные скелетные мышцы).

Среди популяций инспираторных и экспираторных нейронов были выделены ранние (возбуждаются в начале вдоха или выдоха) поздние (в конце) и постоянные (на всем протяжении вдоха или выдоха).

Т.е. в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией.

Дыхательные нейроны варолиевого моста.

Пневмотаксический центр - инспираторно-экспираторные нейроны (возбуждаются в конце вдоха, начале выдоха) и экспираторно-инспираторные (в коце выдоха, начале вдоха). Для активности этих нейронов необходим поток импульсов от механорецепторов легких по афферентным волокнам вагуса.

Центр апнейзиса: в средней области находятся преимущественно инспираторно-экспираторные нейроны, а в каудальной области - преимущественно экспираторно-инспираторные.

Совокупность дыхательных нейронов продолговатого мозга и моста в последнее время принято называть центральным механизмом дыхания (ЦМД).

В основе представлений о функционировании ЦМД лежит представление Брэдли (1975) о наличии в мозге 2-х нейронных блоков: 1) генератора центральной инспираторной активности (ЦИА); 2) механизма выключения инспирации.

Генератор ЦИА представлен инспираторными нейронами типа I, локализованными в ДДГ продолговатого мозга. Инспираторные нейроны возбуждаются при постоянном поступлении ритмических импульсов с центральных и периферических хеморецепторов. Активность данных рецепторов находится в прямой зависимости от содержания в крови кислорода и углекислого газа (периферические хеморецепторы) и концентрации протонов в ликворе (центральные хеморецепторы).

Потоки импульсов от б- инспираторных нейронов устремляются к ядрам дыхательных мышц спинного мозга, и, активируя их, вызывают сокращение диафрагмы и увеличение объема грудной клетки, а также возбуждают в - инспираторные нейроны. Одновременно, в процессе увеличения объема грудной клетки, нарастают потоки импульсов от механорецепторов легких на в - нейроны. Предполагают, что в - инспираторные нейроны возбуждают инспираторно - тормозящие нейроны, замыкающиеся на б - инспираторных нейронах (механизм выключения инспирации). Как следствие происходит прекращение вдоха и наступает выдох.

Феномен раздражения рецепторов растяжения легких и прекращение вдоха получило название - инспираторно-тормозящий рефлекс Геринга и Брейера. Напротив, если существенно уменьшить объем легких, то произойдет глубокий вдох. Дуга этого рефлекса начинается от рецепторов растяжений легочной паренхимы (подобные рецепторы обнаружение в трахее, бронхах и бронхиолах). Некоторые из этих рецепторов реагируют на степень растяжения легочной ткани, другие только при уменьшении или увеличении растяжения (независимо от степени). Афферентные волокна от рецепторов растяжения легких идут в составе блуждающих нервов, а эфферентное звено представлено двигательными нервами, идущими к дыхательной мускулатуре. Физиологическое значение рефлекса Геринга-Брейера состоит в ограничении дыхательных экскурсий, благодаря рефлексу достигается соответствие глубины дыхания сиюминутным условиям функционирования организма, работа дыхательной системы совершается более экономично. Кроме того, рефлекс препятствует перерастяжению легких.

Уменьшение при вдохе объема легких снижает поток импульсов с механорецепторов на в - инспираторные нейроны и вновь наступает вдох.

Принудительное увеличение времени выдоха (например, при раздувании легких в период экспирации) продлевает время возбуждения рецепторов растяжения легких, и как следствие, задерживает наступление следующего вдоха - экспираторно-облегчающий рефлекс Геринга-Брейера.

Таким образом, чередование вдоха и выдоха происходит по принципу отрицательной обратной связи.

Регуляторный, корректирующий уровень

Основой активности б-инспираторных нейронов является постоянная активирующая импульсация от центральных и периферических хеморецепторов. Роль ведущих возбуждающих агентов указанных рецепторных образований выполняют СО2 и О2 в крови, а также концентрация протонов в ликворе.

Однако, на регуляторном, корректирующем уровне осуществляется опережающая регуляция дыхания без учёта изменения газового состава в крови (стресс, эмоциональные состояния, творческий подъем, и т.д.). В отличие от саморегуляторного уровня, контролируемого гуморальными агентами, на регуляторном уровне - преобладающее значение играет взаимодействие нейронов дыхательного центра с другими нервными центрами ЦНС.

В механизме адаптивных реакций легких важное место занимают рефлекторные механизмы. При этом следует учитывать, что в самой легочной ткани отсутствуют какие-либо водители ритма (пейсмекеры). Ритм дыхания целиком и полностью задается дыхательным центром.

На ритм дыхания могут рефлекторно оказывать влияние раздражения различных отделов организма, а поскольку водителем ритма является дыхательный центр, то и афферентные пути рефлекторной дуги должны замыкаться на дыхательном центре, а эфферентные пути от центра к исполнительным структурам дыхательной системы. При этом можно выделить ряд рецепторных зон, оказывающих наибольшее влияние на ритм дыхания.

Среди таких висцеро-пульмональных рефлексов наиболее известны:

Рефлексы Геринга - Брейера (см. выше).

Рефлексы с дыхательных мышц. В случае если либо вдох, либо выдох затруднены, мышечные веретена соответствующих мышц возбуждаются и вызывают рефлекторное усиление сокращения этих мышц. Благодаря этому достигается соответствие механических параметров дыхания сопротивлению дыхательной мускулатуры. Кроме того афферентная импульсация от мышечных веретен поступает также к дыхательным центрам, изменяя деятельность дыхательной мускулатуры.

Рефлексы с обширных рецептивных полей висцеральной и париетальной плевры, приводящие к изменению фаз дыхательного цикла.

Рефлексы с хеморецепторов (раздражителями служат повышение концентрации углекислого газа, понижение pH, снижение концентрации кислорода). Центральные хеморецепторы располагаются в стволовой части мозга (в частности около корешков блуждающего и подъязычного нервов), периферические - параганглии каротидной зоны, параганглии дуги аорты.

Рефлексы с барорецепторов дуги аорты и синокартидной зоны - повышение артериального давления приводит к торможения как инспираторных, так и экспираторных нейронов, и в результате уменьшается как глубина, так и частота дыхания.

Рефлексы с кожных терморецепторов - сильное холодовое или тепловое воздействие на кожу приводят к возбуждению дыхательных центров. Применяя контрастные ванны, можно запустить дыхание новорожденного. С рефлекторным влиянием с терморецепторов на дыхательный центр сталкивается и взрослый организм. Например, холодный бассейн после парной или финской бани. Эта процедура приводит к субъективному ощущению облегченного дыхания в результате раздражения дыхательного центра.

Раздражение болевых рецепторов стимулируют дыхание.

Рефлексы с работающих мышц - импульсы с двигательных центров проводятся не только к рабочей мускулатуре, но также к дыхательным центрам, вызывая возбуждение дыхательных нейронов, т.е. имеет место феномен коиннервации. Действие на дыхательный центр может осуществляться также с механо- и хеморецепторов мышц.

На состояние дыхательного центра оказывает влияние не только рефлекторные механизмы, но и эндокринная система - адреналин и прогестерон возбуждают дыхательный центр.

Наряду с висцеро-пульмональными рефлексами существуют и пульмоно-висцеральные рефлексы - это группа рефлекторных реакций, афферентное звено которых расположено в тканях легкого, а эфферентным звеном рефлексов могут быть сосуды головного мозга, миокарда брюшной полости, почки, печень.

Выделяют также дыхательные рефлексы (reflexus respiratorius) - ответные реакции организма, опосредованные нервной системой и изменяющие характер внешнего дыхания. По конечному эффекту их подразделяют на:

регуляторные (рефлекс Геринга-Брейера);

защитные - предотвращающие или уменьшающие попадание в дыхательные пути раздражающих или повреждающих веществ (непроизвольная рефлекторная задержка дыхания при попадании в атмосферу, насыщенную парами летучих соединений);

обонятельные - при возбуждении обонятельных рецепторов (реакции принюхивания);

оборонительные - направлены на устранение раздражителей из дыхательных путей (кашель, чихание).

Большинство экстремальных воздействий требуют от организма повышения метаболической активности, а значит большего потребления кислорода, поэтому наиболее частой реакцией легочного дыхания будет тахипноэ, т.е. учащение ритма дыхательных движений. При этом возможно развитие двух его типов: 1) учащение и углубление - тахигиперпноэ, 2) учащение и уменьшение глубины - тахигипоноэ. У животных с тахигиперпноэ в фазе учащения дыхания нарастают все параметры дыхания, при тахигипноэ они снижаются относительно исходных величин.

Вентиляция легких возрастает при увеличении напряжения углекислого газа в артериальной крови (гиперкапнии), снижении рН артериальной крови ниже 7,4 (ацидоз), недостатке кислорода в артериальной крови (гипоксия), физической нагрузке, незначительном понижении температуры тела (умеренная гипотермия), лихорадке, боли, выбросе в кровь адреналина (физическая или умственная нагрузка, стресс), повышении уровня прогестерона (беременность).

Ряд воздействий на организм, наоборот, сопровождается уменьшением вентиляции легких. Например, гипероксия (дыхание воздухом с повышенным содержанием кислорода или чистым кислородом), резкое охлаждение организма (глубокая гипотермия). Урежение дыхательного ритма брадипноэ также может развиваться в двух вариантах: 1) урежение и углубление - брадигиперпноэ, 2) урежение и уменьшение глубины - брадигипноэ.

ОСОБЕННОСТИ ДЫХАНИЯ В УСЛОВИЯХ ПОВЫШЕННОГО И ПОНИЖЕННОГО БАРОМЕТРИЧЕСКОГО ДАВЛЕНИЯ

Классический пример дыхания в условиях повышенного барометрического давления - это дыхание под водой при плавании с аквалангом. На поверхности моря барометрическое давление равняется 1 атмосфере. Погружение под воду на каждые 10 метров добавляет по 1 атмосфере (10 м - 2 атм.; 20 м - 3 атм.; 30 м - 4 атм.; и т.д.). Но если барометрическое давление, по сравнению с уровнем моря, увеличивается в 2, 3, 4, и т.д. раз, то и парциальные давления газов в дыхательной газовой смеси увеличиваются соответственно в 2, 3, 4, и т.д. раз, что, в свою очередь, приводит к высокой растворимости газов в крови. Это вызывает ряд проблем, и необходимость корректировки состава дыхательной газовой смеси.

1) Высокое растворение О2, когда его в крови становится больше, чем может быть связано гемоглобином, опасно и требует корректировки состава газовой смеси. На глубинах превышающих 40 м необходимо использовать дыхательные газовые смеси не с 20,9 об. % О2, как в атмосферном воздухе, а всего лишь 5 об. %; а на глубинах свыше 100 м - 2 об. % О2.

2) Повышенное растворение азота вызывает наркотическое состояние (опьянение). На глубинах превышающих 60 м, азотно-кислородная дыхательная газовая смесь должна заменяться гелиево-кислородной. Гелий вызывает наркотический эффект на глубине 200-300 м. Исследуется возможность использования водородно-кислородных смесей на глубинах свыше 300 м и до 2-х км.

3) Необходимость декомпрессии. При быстром подъёме водолаза с глубины, растворённые в крови, газы вскипают, и вызывают газовую эмболию - закупорку сосудов. Подъём водолаза с глубины 300 м требует 2-недельной декомпрессии. Поэтому, при работе на больших глубинах используется вахтовый метод: водолаз живёт 2-3 недели в барокамере под водой, затем его подвергают постепенной декомпрессии.

При подъёме в горы, барометрическое давление понижается, а, следовательно, понижается и парциальное давление кислорода. На высоте 5 км над уровнем моря парциальное давление кислорода становится < 50 мм рт.ст. (на уровне моря ~ 100 мм рт. ст.). Возникает острая гипоксия, а в ответ на неё, из-за возбуждения хеморецепторов каротидного синуса, возникает гипервентиляция. В результате гипервентиляции развивается гипокапния, т.е. вымывание углекислого газа, импульсация с центральных хеморецепторов снижается, возникает гипопноэ.

У людей, живущих высоко в горах, наблюдаются характерные адаптивные приспособления организма:

1) снижена чувствительность периферических хеморецепторов к недостатку О2;

2) повышена диффузионная способность лёгких;

3) увеличена кислородная ёмкость крови за счёт увеличения содержания гемоглобина в крови;

4) снижено сродство гемоглобина к кислороду (в том числе и за счёт увеличения в эритроцитах 2,3-дифосфоглицерата), кислород легче отдаётся в ткани.

У неадаптированного человека, когда парциальное давление О2 становится < 50 мм рт.ст., возникает необходимость дышать газовой смесью с повышенным содержанием О2, а на высоте 9 км (где парциальное давление О2 - 30 мм рт.ст.) - чистым О2. На высоте 18 км необходим скафандр с автономным атмосферным давлением.

ПЕРВЫЙ ВДОХ РЕБЁНКА, ПРИЧИНЫ ЕГО ВОЗНИКНОВЕНИЯ. ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ДЫХАНИЯ

Во внутриутробном периоде развития легкие не являются органом внешнего дыхания плода, эту функцию выполняет плацента. Но задолго до рождения появляются дыхательные движения, которые необходимы для нормального развития легких. Легкие до начала вентиляции заполнены жидкостью (около 100 мл).

Рождение вызывает резкие изменения состояния дыхательного центра, приводящие к началу вентиляции. Первый вдох наступает через 15-70 секунд после рождения, обычно после пережатия пуповины, иногда - до него, т.е. сразу после рождения.

Факторы, стимулирующие первый вдох:

Наличие в крови гуморальных раздражителей дыхания: СО2, Н+ и недостаток О2. В процессе родов, особенно после перевязки пуповины, напряжение СО2 и концентрация Н+ возрастают, усиливается гипоксия. Но сами по себе гиперкапния, ацидоз и гипоксия не объясняют наступления первого вдоха. Возможно, что у новорожденных небольшие уровни гипоксии могут возбуждать дыхательный центр, действуя непосредственно на ткань мозга.

Не менее важный фактор, стимулирующий первый вдох, - резкое усиление потока афферентных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов, наступающее в процессе родов и сразу после рождения. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра.

Стимулирующим фактором является устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс «ныряльщика»). Поэтому сразу при рождении головки плода из родовых путей, акушеры удаляют слизь и оклоплодные воды из воздухоносных путей.

Таким образом, возникновение первого вдоха - результат одновременного действия ряда факторов.

Первый вдох новорожденного характеризуется сильным возбуждением инспираторных мышц, прежде всего диафрагмы. В 85 % случаев первый вдох более глубокий, а первый дыхательный цикл более длительный, чем последующие дыхательные циклы. Происходит сильное снижение внутриплеврального давления. Это необходимо для преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой, а также для преодоления силы поверхностного натяжения альвеол на границе жидкость - воздух после попадания в них воздуха. Длительность первого вдоха 0,1-0,4 сек., а выдоха в среднем 3,8 сек. Выдох происходит на фоне суженной голосовой щели и сопровождается криком. Объем выдыхаемого воздуха меньше, чем вдыхаемого, что обеспечивает начало формирования ФОЕ. ФОЕ увеличивается от вдоха к вдоху. Аэрация легких обычно заканчивается ко 2-4 дню после рождения. ФОЕ в этом возрасте составляет около 100 мл. С началом аэрации начинается функционировать малый круг кровообращения. Жидкость, оставшаяся в альвеолах, всасывается в кровеносное русло и лимфу.

У новорожденных ребра расположены с меньшим наклоном, чем у взрослых, поэтому сокращения межреберных мышц менее эффективно изменяют объем грудной полости. Спокойное дыхание у новорожденных является диафрагмальным, инспираторные мышцы работают только при крике и одышке.

Новорожденные всегда дышат носом. Частота дыхания вскоре после рождения в среднем около 40 в минуту. Воздухоносные пути у новорожденных узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых. Легкие малорастяжимы, но податливость стенок грудной полости высокая, результатом этого являются низкие величины эластической тяги легких. Для новорожденных характерен относительно небольшой резервный объем вдоха и относительно большой резервный объем выдоха. Дыхание новорожденных нерегулярно, серии частых дыханий чередуются с более редкими дыханиями, 1-2 раза в минуту возникают глубокие вздохи. Могут наступать задержки дыхания на выдохе (апноэ) до 3 и более секунд. У недоношенных новорожденных может наблюдаться дыхание типа Чейн-Стокса. Деятельность дыхательного центра координируется с активностью центров сосания и глотания. При кормлении частота дыхания обычно соответствует частоте сосательных движений.

Возрастные изменения дыхания:

После рождения до 7-8 лет идут процессы дифференцировки бронхиального дерева и увеличения количества альвеол (особенно в первые три года). В подростковом возрасте происходит увеличение объема альвеол.

Минутный объем дыхания увеличивается с возрастом почти в 10 раз. Но для детей в целом характерен высокий уровень вентиляции легких, приходящийся на единицу массы тела (относительной МОД). Частота дыхания с возрастом уменьшается, особенно сильно в течение первого года после рождения. С возрастом ритм дыхания становиться более стабильным. У детей длительность вдоха и выдоха почти равны. Увеличение продолжительности выдоха у большинства людей происходит в подростковом возрасте.

С возрастом совершенствуется деятельность дыхательного центра, развиваются механизмы, обеспечивающие четкую смену дыхательных фаз. Постепенно формируется способность детей к произвольной регуляции дыхания. С конца первого года жизни дыхание участвует в речевой функции.

ИССЛЕДОВАНИЯ ОБМЕНА ВЕЩЕСТВ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ В ОРГАНИЗМЕ

Обмен веществ в организме взаимосвязан с превращением энергии. Потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую энергии. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма.

Теплообразование в организме носит 2-х фазный характер. При окислении белков, жиров и углеводов большая часть энергии превращается в теплоту (первичная теплота), а меньшая используется для синтеза АТФ, т.е. для аккумулирования в макроэргических связях. При окислении углеводов 77.3 % энергии химической связи глюкозы рассеивается в виде тепла, а 22,7 % идет на синтез АТФ. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, электрических процессов и в конечном счете тоже превращается в теплоту (вторичная теплота). Т.о., количество тепла, образовавшегося в организме, - это мера суммарной энергии химических связей, подвергшихся биологическому окислению. Энергия, образовавшаяся в организме, может быть выражена в единицах измерения тепла - калориях или джоулях.

Для исследования процессов энергообразования в организме используют: прямую калориметрию, непрямую калориметрию и исследование валового обмена.

Прямая калориметрия основана на непосредственном учете тепла, выделенного организмом. Биокалориметр - это герметизированная и хорошо теплоизолированная от внешней среды камера, куда подается О2 и поглощается избыток СО2 и паров. В ней по трубкам циркулирует вода. Тепло, выделяемое человеком или животным, находящимся в камере, нагревает циркулирующую воду, что позволяет по количеству протекающей воды и изменению ее температуры рассчитать количество тепла, выделенного исследуемым организмом.

Т.к. теплообразование в организме обеспечивается окислительными процессами, возможна непрямая калориметрия, т.е. косвенное, непрямое определение теплообразования по газообмену - учету потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции.

Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии) - например, респираторный аппарат Шатерникова. Кратковременное определение газообмена проводят некамерными методами (открытые способы непрямой калориметрии).

Наиболее распространен способ Дугласа-Холдейна. В течение нескольких минут собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем измеряют объем выдохнутого воздуха и определяют в нем количество О2 и СО2 .

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2 .

ДК при окислении углеводов, белков и жиров различен. Окисление 1 г каждого из этих веществ требует неодинакового количества О2 и сопровождается освобождением различного количества тепла.

При окислении углеводов ДК=1. Например, итог окисления глюкозы: С6Н12О6 + 6О2 = 6СО2 + 6Н2О. Число молекул образовавшегося СО2 равно числу молекул затраченного О2. А равное количество молекул газа, при одинаковой температуре и одинаковом давлении, занимает один и тот же объем (закон Авогадро-Жерара).

При окислении белков ДК = 0,8; жиров ДК = 0,7. Когда человек находится на смешанном питании в стандартных условиях ДК = 0,85 - 0,86.

Калорический эквивалент кислорода (КЭК) или калорическая стоимость кислорода - это количество тепла, выделяемого организмом после потребления 1 л кислорода.

Данный показатель зависит от ДК и определяется по специальным таблицам, где каждому значению ДК соответствует определенное значение калорической стоимости кислорода. Например: ДК=0,8; КС=4,801 ккал. ДК=0,9; КС=4,924.

Т.о., данные газоанализа переводят в тепловые единицы.

После определения объема кислорода, потребленного в единицу времени (сутки, час, минута), появляется возможность определить количество тепла, выделенного организмом за это время (КЭК, умноженный на объём потреблённого кислорода).

Во время работы ДК повышается и в большинстве случаев приближается к 1. Это объясняется тем, что во время напряженной мышечной работы главным источником энергии является окисление углеводов. После завершения работы ДК сначала повышается, затем резко снижается, и только спустя 30-50 мин нормализуется. Эти изменения ДК после работы не отражают истинного отношения между используемым в данный момент кислородом и выделенным СО2.

ДК в начале восстановительного периода повышается из-за того, что во время работы в мышцах накапливается молочная кислота, на окисление которой не хватало кислорода (кислородный долг). Молочная кислота поступает в кровь и вытесняет СО2 из гидрокарбонатов, присоединяя основания. Благодаря этому количество выделенного СО2 становится больше количества СО2, образовавшегося в данный момент в тканях.

Обратная картина наблюдается в дальнейшем, когда молочная кислота постепенно исчезает из крови. Одна ее часть окисляется, другая ресинтезируется в гликоген, третья выделяется с потом и мочой. По мере уменьшения количества молочной кислоты освобождаются основания. Основания связывают СО2 и образуют гидрокарбонаты. Поэтому ДК падает вследствие задержки в крови СО2, поступающей из тканей.

Исследование валового обмена - это длительное (на протяжении суток) определение газообмена, которое дает возможность не только найти теплопродукцию организма, но и решить вопрос о том, за счет окисления каких веществ шло теплообразование. Для этого, помимо использовавшегося кислорода и выделившегося СО2 определяются выделенные с мочой азот (1 г азота содержится в 6,25 г белка) и углерод (в белках содержится примерно 53% углерода).

Основной обмен (ОО) - это показатель, отражающий уровень энергетических процессов в стандартных условиях, которые максимально приближены к состоянию функционального покоя организма.

Энерготраты в условиях ОО связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем - дыхательной мускулатуры, сердца, почек, печени, с поддержанием мышечного тонуса. Освобождение в ходе этих процессов тепловой энергии обеспечивает теплопродукцию, необходимую для поддержания температуры тела.

5 условий определения ОО.

Время. Исследование проводят утром до 9 часов после сна.

Натощак (через 12-16 часов после приема пищи), так как прием и действие пищи вызывает интенсификацию энергетических процессов (специфическое динамическое действие пищи). СДДП сохраняется в течение нескольких часов. При белковой пище обмен увеличивается на 30%, при жирах и углеводах на 14-15%.

Температура комфорта в помещении: 18-20 град.С. (температура, барометрическое давление, влажность воздуха и т.д. могут оказывать влияние на интенсивность окислительных процессов).

Исследование проводится лежа, т.е. в состоянии мышечного покоя.

Предварительно исключается прием фармакологических препаратов, влияющих на энергетические процессы, а также наркотических веществ.

В данных условиях у здорового человека ОО составляет от 1600 до 1800 ккал в сутки в зависимости от: 1.Возраста, 2. Пола, 3Массы тела (веса), 4. Роста.

Формулы и таблицы ОО - средние данные большого числа исследованных здоровых людей разного пола, возраста, массы тела и роста. Допустимые колебания - 10%.

Несоразмерно высокие величины ОО наблюдаются при избыточной функции щитовидной железы. Понижение ОО встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Интенсивность ОО, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина ОО человека в возрасте 20-40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте ОО снижается.

Правило поверхности - затраты энергии теплокровными животными пропорциональны поверхности тела.

Если пересчитать интенсивность ОО на 1 кг массы тела, то окажется, что у разных видов животных и даже у людей с разной массой тела и ростом этот показатель сильно различается. Если же произвести перерасчет интенсивности ОО на 1 м2 поверхности тела, то полученные результаты различаются не столь резко.

Это правило относительно. У 2-х индивидуумов с одинаковой поверхностью тела обмен веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.

Обмен энергии при физическом труде.

Мышечная работа значительно увеличивает расход энергии, поэтому суточный расход энергии значительно превышает величину ОО. Это увеличение составляет рабочую прибавку. Она тем больше, чем интенсивнее мышечная работа.

Степень энергетических затрат при различной физической активности определяется коэффициентом физической активности (КФА). КФА - отношение общих энергозатрат за сутки к величине ОО. По этому принципу выделяется 5 групп:

Группа

Особенности профессии

КФА

Общий суточный расход энергии, ккал

1

Преимущественно умственного труда

1,4

2100-2450

2

Легкого физического труда

1,6

2500-2800

3

Труд средней тяжести

1,9

2950-3300

4

Тяжелого труда

2,2

3400-3850

5

Особо тяжелого физического труда (мужчины)

2,5

3850-4200

Умственный труд вызывает ничтожные (2-3%) повышения затрат энергии по сравнению с полным покоем, если не сопровождается движением. Однако двигательная активность и эмоциональное возбуждение повышают энергозатраты (пережитое эмоциональное возбуждение может вызвать повышение обмена на 11-19% в течение нескольких дней).

Суточный расход энергии у детей и подростков зависит от возраста:

6 мес.- 1 г - 800 ккал

1 - 1,5 г - 1300

1,5 - 2 - 1500

3 - 4 - 1800

5 - 6 - 2000

7 - 10 - 2400

11 - 14 - 2850

14 - 17 (юноши) - 3150

13 - 17 (девушки) - 2750.

К 80 годам энерготраты снижаются (2000-2200 ккал).

Пищеварение

КОНЦЕПЦИИ ПИЩЕВАРЕНИЯ И ПИТАНИЯ

Пищеварение - сложный физиологический процесс, благодаря которому пища, поступившая в пищеварительный тракт, подвергается физико-химическим изменениям и содержащиеся в ней питательные вещества, лишённые видовой специфичности, всасываются в ЖКТ и попадают в кровь и лимфу.

В зависимости от происхождения гидролитических ферментов А.М. Уголев выделяет 3 типа пищеварения:

1) Собственное пищеварение - осуществляется ферментами, синтезированными данным макроорганизмом, его железами, эпителиальными клетками - ферментами слюны, желудочного и поджелудочного соков, эпителия тонкой кишки. В результате собственного пищеварения образуются первичные нутриенты (белки, жиры, углеводы).

2) Симбионтное пищеварение - гидролиз питательных веществ за счет ферментов, синтезированных симбионтами макроорганизма - бактериями и простейшими пищеварительного тракта. У человека осуществляется в толстой кишке, где ферментами симбионтов гидролизуется клетчатка пищи. В результате симбионтного пищеварения образуются вторичные пищевые вещества (вторичные нутриенты).

3) Аутолитическое пищеварение - осуществляется за счет экзогенных гидролаз, которые вводятся в организм в составе принимаемой пищи. Роль данного пищеварения существенна при недостаточно развитом собственном пищеварении. У новорожденных собственное пищеварение еще не развито, поэтому возможно его сочетание с аутолитическим пищеварением. Т.е. питательные вещества грудного молока перевариваются ферментами, поступающими в пищеварительный тракт младенца в составе грудного молока.

Классическая схема рассматривала процесс пищеварения в желудочно-кишечном тракте (ЖКТ) как двухэтапный: полостной гидролиз и всасывание.

В настоящее время процесс пищеварения рассматривают как трехэтапный: полостное пищеварение - пристеночное пищеварение - всасывание. Полостное заключается в начальном гидролизе полимеров до стадии олигомеров, пристеночное обеспечивает деполимеризацию олигомеров в основном до стадии мономеров, которые затем всасываются.

Пищеварительные функции пищеварительного тракта.

Секреторная функция.

Экзосекреция или внешняя секреция заключается в выработке железистыми клетками секретов, которые через систему протоков поступают в полости пищеварительного тракта (слюна, желудочный сок, поджелудочный сок, кишечный сок и желчь).

Инкреция (эндосекреция). Ферменты пищеварительных желез транспортируются в лимфу и кровь из интерстициальной жидкости, куда попадают инкреторным путем из гландулоцитов (через базолатеральные мембраны), резорбцируются из протоков желез и из тонкой кишки, высвобождаются из разрушенных гландулоцитов. Инкретированные в кровь ферменты могут находиться в свободном или в связанном состоянии (с транспортными белками и форменными элементами). Есть свидетельства их участия в гидролизе пищевых веществ, находящихся в крови и лимфе. Выполняют также и регуляторную функцию: тормозят секрецию одноименных ферментов, могут усиливать секрецию других ферментов.

2. Моторно-эвакуаторная функция - осуществляется мускулатурой пищеварительного аппарата. Обеспечивает жевание, глотание, передвижение пищи вдоль пищеварительного тракта, выбрасывание непереваренных остатков.

Каждый отдел пищеварительного тракта имеет свой специфический характер движений.

3. Всасывательная функция - определяется гидролитическим процессом расщепления высокомолекулярных веществ (полимеров) до мономеров, т.е. это гидролиз белков до аминокислот, жиров до - жирных кислот и глицирина, углеводов - до глюкозы.

Мономеры подвергаются всасыванию на протяжении всего пищеварительно-транспортного комплекса.

Мономеры являются основными элементами в промежуточном обмене, из них вновь синтезируются сложные органические соединения. Вместе с тем есть доказательства всасывания в ЖКТ и олигомеров (дипептидов, дисахаридов и т.д.).

Всасывательный процесс односторонний - это процесс проникновения веществ из полостей тела и полых органов в кровь или лимфу через один или нескольких слоев клеток - биологические мембраны.

4. Рецепторная функция - все отделы ЖКТ имеют полный набор рецепторных клеток, начиная с ротовой полости (вкусовые, термо, болевые, хемо-, боро-, рецепторы) кончая прямой кишкой.

Назначение - обеспечение нервно-гуморальной регуляции ЖКТ, в зависимости от функционального состояния организма (биологических потребностей) качества и количества пищи.

Непищеварительные функции пищеварительного тракта.

1. Экскреторная функция. В пищеварительный тракт путем секреции и рекреции выводятся многие эндогенные и экзогенные вещества (в том числе лекарственные, токсичные, попавшие в кровоток энтеральным и парентеральным путем). Т.е. - участие в сохранении гомеостаза.

2. Участие в водно-солевом обмене. Значительное количество воды и электролитов депонируется в пищеварительном тракте, циркулирует между кровью и содержимым пищеварительного тракта. Дегидратация (обезвоживание) организма снижает секреторную активность пищеварительных желез, что способствует сохранению воды в организме. Диурез и объем секреции, выделение электролитов в составе секретов желез и мочи взаимосвязаны. В одних случаях это процесс одно-, в других - разнонаправленный.

3. Эндокринная функция. Гормоны пищеварительного тракта не только влияют на секрецию, моторику, всасывание, высвобождение других регуляторных пептидов, но и оказывают общие эффекты. Они особенно выражены в отношении изменения обмена веществ, деятельности ССС и эндокринной системы.

Например: Гастрин - усиливает высвобождение гистамина, инсулина, кальцитонина, липолиз в жировой ткани, выделение почками воды, калия, натрия. Секретин - усиливает липолиз и гликолиз, тормозит реабсорбцию гидрокарбонатов в почках, усиливает диурез, ренальное выделение натрия и калия, повышает сердечный выброс. Холецистокинин (ХЦК) - рилизинг-фактор для инсулина.

Кроме гормонов железы синтезируют или элиминируют из крови многие БАВ. Например, выделение желудочными секреторными клетками внутреннего фактора Касла, позволяющего утилизировать витамин В12 (высший фактор Касли) (цианкобаламин) необходимый для эритропоэза.

6. Защитная функция. Местная иммунная система пищеварительного тракта обеспечивает 2 функции: 1) распознавание и индукция толерантности к пищевым антигенам; 2) блокирующий эффект по отношению к патогенным микроорганизмам. Процесс формирования пищевого лейкоцитоза, сводится к защите пищеварительного тракта от инфекционных и токсических воздействий пищевых веществ. Качество пищи влияет не только на содержание ферментов в ЖКТ, но и на иммунологический защитный процесс.

В пищеварительном тракте - 3 группы иммунокомпетентных элементов лимфоидной ткани:

1) лимфоидные фолликулы на всем протяжении, в подвздошной кишке и червеобразном отростке образуют скопления (пейеровы бляшки).

2) плазматические и Т-лимфоидные клетки слизистой оболочки ПТ.

3) малые неидентифицированные лимфоидные клетки.

Питание организма.

Это сложный процесс поступления, переваривания, всасывания и усвоения пищевых веществ, необходимых для покрытия его энергетических затрат, построения и возобновления клеток, тканей и регуляции функций организма.

Сбалансированное питание включает в себя четыре группы пищевых веществ, необходимых организму:

Нутриенты: белки, жиры, углеводы соотношение оптимальное для здорового организма 1:1:4. На долю углеводов приходится около 50% калорий, потребляемых человеком в сутки. Сахароза, крахмал, лактоза, глюкоза, фруктоза.

К нутриентам относятся такие витамины, как водорастворимые: тиамин, аскорбиновая кислота, рибофлавин, фолиевая кислота; так и жирорастворимые витамины А и D и минеральные вещества Ca, Mg, Fe, K, Na.

Витамин В12 поступает с животной пищей (печень и почки).

Балластные вещества. В основном это пищевые полисахариды структурного типа: целлюлоза, лигнин, агар, пектин, хитин (клетчатка). Они стимулируют моторную функцию ЖКТ, абсорбируют токсины и желчные кислоты, влияют на электролитный обмен, снижают уровень холестерина в крови (абсорбирующий фактор), увеличивают скорость всасывания и уменьшают время транзита пищи через ЖКТ, оказывают антиоксидантный эффект (удаления активных форм кислорода, снижения продуктов свободнорадикального происхождения), антитоксический эффект.

Гормоны поступают вместе с животной пищей. Поскольку гормоны не имеют видовой специфичности их эффект имеет место при употреблении тех или иных пищевых продуктов, содержащих гормональные препараты (молочные продукты, яйца) и физиологически активные вещества растительного происхождения.

Токсины - вещества растительного и животного происхождения, оказывающие вредное влияние на живой организм или вещества, проникающие в организм в определенных дозах, способные вызвать его заболевание или даже смерть. В пищевых продуктах всегда в небольших дозах присутствуют токсины, которые определяют состояние микрофлоры в кишечнике и стимулируют защитные механизмы ЖКТ в виде пищевого лейкоцитоза и соответствующих иммунологических реакций.

В теории адекватного питания (А.М. Уголев), помимо первичных нутриентов, выделяются 3 потока вторичных нутриентов. Это - 1) нутриенты, модифицированные микрофлорой; 2) продукты жизнедеятельности бактерий; 3) модифицированные балластные вещества.

Регуляция пищеварения.

В результате пищеварения и всасывания в крови и лимфе поддерживается относительно постоянный уровень питательных веществ, необходимый для питания клеток организма.

Лишение пищи влечет за собой состояние голода, субъективным выражением которого служат ощущения жжения, «сосания под ложечкой», тошноты, иногда головокружения, головной боли и общей слабости. Стимулирует пищевое поведение, направленное на поиск и прием пищи.

Насыщение - снятие чувства голода, ощущение удовольствия, полноты в желудке после приема пищи. Постепенно угасает. Зависит от психологических факторов и привычек.

И.П. Павлов назвал совокупность нервных элементов различных отделов ЦНС, функциями которых являются регуляция пищевого поведения и пищеварительных функций, пищевым центром.

Пищевой центр - сложный гипоталамо-лимбико-ретикулокортикальный комплекс.

Центр голода (или центр питания) находится в латеральных ядрах гипоталамуса. Их разрушение приводит к афагии (отказу от пищи), а их электрическое раздражение - к повышенному потреблению пищи (гиперфагии).

Центр насыщения - в вентромедиальных ядрах гипоталамуса. Их разрушение приводит к гиперфагии, а электростимуляция - к афагии.

Нарушение пищевого поведения происходит также при поражении лимбической системы, ретикулярной формации и передних отделов КБП.

Функциональное состояние гипоталамических ядер пищевого центра зависит от импульсов, поступающих в ЦНС с периферии от различных экстеро- и интерорецепторов; от состава и свойств крови, притекающей к мозгу; от состава находящейся в мозге цереброспинальной жидкости.

Теории голода и насыщения.

Локальная теория голода. Ощущение голода вызывается импульсами от периодически сокращающегося свободного от пищи желудка. «Голодные сокращения» повторяются через 1,5 ч и продолжаются 15-20 мин. При наполнении желудка пищей прекращаются.

Однако периодические сокращения желудка не совпадают с ощущениями голода у человека.

Собственно прием пищи, активация при этом секреции и моторики пищеварительного тракта имеют сигнальное значение и оказывают влияние на пищевой центр, вызывая первичное, или сенсорное, насыщение (кратковременные изменения состояния пищевого центра). Длительные изменения зависят от процессов гомеостаза, отражающих состояние метаболизма. Всасывание в кровь пищевых веществ обеспечивает вторичное, обменное, или истинное насыщение.

Теории насыщения связаны с видами тех веществ, с которыми связывают изменение состояния пищевого центра.

Глюкостатическая теория. Углеводный обмен влияет на пищевой центр через гипоталамические рецепторы, состояние которых зависит от разницы содержания глюкозы в артериальной и венозной крови.

Аминоцидостатическая теория. Некоторые аминокислоты крови тормозят пищевой центр.

Липостатическая теория. Возбуждение пищевого центра связывает с высвобождением липидов из жировых депо.

Считают, что если глюкостатический механизм определяет кратковременные изменения состояния пищевого центра, то липостатический - долговременные.

Пищевой центр контролирует использование различных пищевых веществ в «метаболическом котле» по интегральным показателям, отражающим состояние энергетического баланса. В роли сигналов об этом могут выступать теплообразование и компоненты цикла трикарбоновых кислот (Кребса).

Термостатическая теория. Избыточное тепло, связанное с метаболизмом и температурой окружающей среды, оказывает тормозное влияние на пищевой центр, является сигналом насыщения.

Метаболическая теория. Сигнальная роль отводится циркулирующим в крови ключевым компонентам цикла трикарбоновых кислот.

Роль таких метаболических сигналов и факторов могут выполнять гормоны поджелудочной железы, гипоталамо-гипофизарной системы, щитовидной железы, пищеварительного тракта, половые, эндогенные и экзогенные опиаты (морфиноподобные вещества). Эти гормоны изменяют функциональное состояние пищевого центра и пищевое поведение.

Аппетит (appetito - стремление желание) - ощущение, связанное со стремлением к определенной пище. Вырабатывается индивидуально. Отражает не столько потребность в пище, сколько потребность, связанную со спецификой обмена веществ, дефицитом тех или иных компонентов пищи, привычками. Избирательный аппетит - стремление к выбору определенной пищи, чаще той, где содержатся недостающие организму вещества (у беременных, у детей, у больных).

У человека выражена произвольная регуляция приема пищи и аппетита. Еда с аппетитом способствует эффективному пищеварению.

Расстройства аппетита.

Анорексия - понижение аппетита вплоть до полной потери. Причины анорексии - нарушение деятельности пищевого центра, пищеварительной системы, эндогенные, нейрогенные, психогенные расстройства, интоксикации.

Булимия (прожорливость) - резкое повышение аппетита. Отмечается при заболеваниях ЖКТ, поражениях головного мозга, эндокринных заболеваниях (тиреотоксикоз, избыточная продукция инсулина и т. д.). Иногда булимия является результатом снижения чувства насыщения (акория), при этом наблюдается полифагия (прием чрезмерно большого количества пищи).

Извращенный аппетит - стремление принимать несъедобные вещества. Это может быть мел, известь, золу, землю, уголь, керосин и т.д. В одних случаях это результат выраженного специфического аппетита, в других - психических расстройств и нарушения деятельности пищевого центра.

В полости рта осуществляется осознаваемая рецепция вкусов и запахов, температуры, влажности, механических и др. свойств пищи. Прием пищи оказывает рефлекторное пусковое влияние на проксимальные отделы пищеварительного тракта: резко и кратковременно усиливается секреция слюнных, желудочных и поджелудочных желез, желчевыделение, расслабляется желудок и снижается моторная активность проксимального отдела тонкой кишки.

Далее в пищеварительном тракте осуществляется подсознательная рецепция нервными окончаниями, заложенными в его стенке (механо-, хемо-, осмо-, терморецепторы). Афферентными сигналами служат также всосавшиеся в кровь продукты гидролиза питательных веществ и регуляторные пептиды клеток-продуцентов желудка и кишечника. Афферентная информация поступает в интра- и экстрамуральные ганглии, спинной и головной мозг, откуда затем поступают управляющие импульсы по эфферентным путям.

Т.е. после пусковых рефлекторных влияний дальнейшая регуляция секреции и моторики ЖКТ осуществляется за счет корригирующих нервных, гуморальных и паракринных влияний по принципу обратной связи. Эти влияния формируются на основе рецепции содержимого ЖКТ, его секреции и моторики. Смесь в пищеварительном тракте пищевого содержимого с пищеварительными соками является с одной стороны объектом, в котором происходит пищеварительный процесс, с другой стороны параметры этой смеси служат для регуляции пищеварительного процесса (субстратное регулирование).

Каждому виду пищи соответствует определенная моторика и секреция различных отделов пищеварительного тракта. Адаптация проявляется в соответствии объема, электролитного состава и спектра ферментов выделяемых секретов принятой пище.

Существуют три основных механизма регуляции секреции и моторики, которые в разной степени представлены в различных отделах пищеварительного тракта.

1) Центральные рефлекторные механизмы - регулируют функции преимущественно начального отдела пищеварительного тракта, в отделах, расположенных дистальнее, их роль снижается.

2) Гуморальные - наиболее выражены в «средней» части пищеварительного тракта (в регуляции желудка и двенадцатиперстной кишки, поджелудочной железы, желчеобразования и желчевыделения).

3) Локальные, местные - в наибольшей мере представлены в дистальных отделах (в тонкой и особенно толстой кишке).

ПИЩЕВАРЕНИЕ В РОТОВОЙ ПОЛОСТИ

Начальный процесс переработки пищи происходит в полости рта. В полости рта происходит: измельчение пищи; смачивание ее слюной; формирование пищевого комка.

Пища в полости рта находится 10-15 секунд, после чего она мышечными сокращениями языка проталкивается в глотку и пищевод.

Поступившая в рот пища является раздражителем вкусовых, тактильных и температурных рецепторов, расположенных в слизистой оболочке языка и рассеянных по всей слизистой оболочке полости рта.

Импульсы от рецепторов по центростремительным волокнам тройничного, лицевого и языкоглоточного нервов поступают в нервные центры, рефлекторно возбуждающие секрецию слюнных желез, желез желудка и поджелудочной железы, желчевыделение. Эфферентные влияния также изменяют моторную деятельность пищевода, желудка, проксимального отдела тонкой кишки, влияют на кровоснабжение органов пищеварения, рефлекторно усиливают расход энергии, необходимой для переработки и усвоения пищи.

Т.е. несмотря на кратковременность пребывания пищи в полости рта (15-18 с) с ее рецепторов поступают пусковые влияния почти на весь пищеварительный тракт. Особенно важны раздражения рецепторов языка, слизистой оболочки рта и зубов в осуществлении пищеварительных процессов в самой полости рта.

Жевание одна из начальных фаз процесса поглощения пищи, состоящая в измельчении, растирании и перемешивании пищи со слюной, т.е. в формировании пищевого комка.

Смачивание и перемешивание со слюной необходимо для растворения, без чего невозможна оценка вкусовых качеств пищи и ее гидролиз.

Жевание происходит благодаря сокращениям жевательных мышц, которые перемещают нижнюю челюсть относительно верхней челюсти. В процессе принимают участие также мимические мышцы и мышцы языка.

У человека 2 ряда зубов. В каждом имеются резцы (2), клыки (2) малые (2) и большие (3) коренные. Резцы и клыки откусывают пищу, малые коренные ее раздавливают, большие коренные растирают. Резцы могут развивать давление на пищу 11-25 кг/см2 , коренные - 29-90. Акт жевания осуществляется рефлекторно, имеет цепной характер, автоматизированные и произвольные компоненты.


Подобные документы

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.

    курсовая работа [61,7 K], добавлен 09.06.2011

  • Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.

    реферат [35,3 K], добавлен 01.08.2010

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Свойства возбудимых тканей. Рефлекторные функции продолговатого мозга. Функции ядер гипоталамуса и сенсорных систем. Стадии свертывания крови. Фазы работы сердца. Свойства желез внутренней секреции. Функции промежуточного мозга, осуществляющие их отделы.

    реферат [47,0 K], добавлен 18.05.2015

  • Значение высшей нервной деятельности в жизнедеятельности человека. Анатомия, физиология и гигиена высшей нервной деятельности. Безусловные и условные нервные рефлексы. Эмоции, память, сон, прогноз и внушение. Нарушения высшей нервной деятельности.

    реферат [19,6 K], добавлен 14.04.2011

  • Исследование психики в трудах ученых до второй половины XIX в. Высказывания о душе древних мыслителей, учение Р. Декарта. И.М. Сеченов как теоретик рефлекторной природы психической деятельности. Исследование физиологии условных рефлексов И.П. Павловым.

    контрольная работа [15,5 K], добавлен 22.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.