Разведение, селекция, генетика и воспроизводство сельскохозяйственных животных
Гомогенный и гетерогенный подбор. Гетерозис: формы проявления, причины возникновения, использование в животноводстве. Абсолютный и относительный прирост, значение показателей роста при отборе. Закономерности роста и развития сельскохозяйственных животных.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 31.08.2014 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Опыты Менделя послужили основой для развития современной генетики - науки, изучающей два основных свойства организма - наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:
1) Мендель удачно выбрал объект исследования;
2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;
3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.
Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.
69. Сцепленное наследование признаков
В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.
Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.
Дрозофила каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.
Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, - над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1: 1: 1:
1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% - серые длиннокрылые и 41,5% - черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% - черные длиннокрылые и 8,5% - серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.
Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и аb, а отцовский - один тип - аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1: 1: 1: 1.
Группа сцепления - гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.
Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Мысль о расположении генов в хромосомах высказал Сеттон еще в 1902 г. Он обнаружил параллелизм в поведении хромосом в мейозе и наследовании признаков у одного из видов кузнечика. Дальнейшие исследования, проведенные Морганом, показали, что сцепление генов, расположенных в одной хромосоме, может быть полным или неполным.
Наиболее четко разница в поведении сцепленных и независимо наследующихся генов выявляется при проведении анализирующего скрещивания. При независимом наследовании двух пар признаков у гибрида Fi (АаВЬ) с равной вероятностью образуется 4 сорта гамет: АВ, Ab, aB, ab. При скрещивании с полным рецессивом (aabb) количество сортов гамет у гибрида обусловливает число типов потомков и одинаковую вероятность их появления, так как гаметы рецессивной особи (ab) не могут изменить проявления доминантных и рецессивных генов гамет гибрида. В результате соотношение фенотипов потомства будет равно 1: 1: 1:
1. Если же обе пары аллельных генов расположены в одной паре хромосом, то при образовании половых клеток гены этих аллелей не смогут свободно комбинироваться. В этом случае наблюдается сцепленное наследование.
Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.
Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.
Независимое наследование - наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.
Некроссоверные гаметы - гаметы, в процессе образования которых кроссинговер не произошел.
Кроссоверные гаметы - гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.
Нерекомбинанты - гибридные особи, у которых такое же сочетание признаков, как и у родителей.
Рекомбинанты - гибридные особи, имеющие иное сочетание признаков, чем у родителей.
Расстояние между генами измеряется в морганидах - условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.
У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).
Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:
гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
гены расположены в хромосомах в определенной линейной последовательности;
гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
каждый вид имеет характерный только для него набор хромосом - кариотип.
70. Процесс биосинтеза белка в клетке
До середины 50-х гг. считалось, что центром синтеза белка являются микросомы. Позднее было установлено, что в биосинтезе участвуют не все микросомы, а только рибонуклеопротеидные комплексы, которые Р. Робертсон назвал рибосомами. Отечественный биохимик А.С. Спирин в 1963 г. выделил две рибосомальные субъединицы и установил их строение. Обнаружение в клетках полисомы - структуры, состоящей из 5-70 рибосом, позволило Дж. Уотсону высказать предположение, что синтез белка протекает одновременно на множестве рибосом, которые связаны с иРНК. В ходе дальнейших экспериментов был установлен весь механизм трансляции. Белки - единственные органические вещества клетки (кроме нуклеиновых кислот), биосинтез которых осуществляется под прямым контролем ее генетического аппарата. Сама сборка белковых молекул осуществляется в цитоплазме клетки и представляет собой многоэтапный процесс, для которого нужны определенные условия и ряд компонентов.
Условия и компоненты биосинтеза белка. Биосинтез белка зависит от деятельности различных видов РНК. Информационная РНК (иРНК) служит посредником в передаче информации о первичной структуре белка и матрицей для его сборки. Транспортная РНК (тРНК) переносит аминокислоты к месту синтеза и обеспечивает последовательность их соединений. Рибосомальная РНК (рРНК) входит в состав рибосом, на которых происходит сборка полипептидной цепи. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называют трансляцией (от лат. трансляцио - передача).
Для непосредственного биосинтеза белка необходимо, чтобы в клетке присутствовали следующие компоненты:
информационная РНК (иРНК) - переносчик информации от ДНК к месту сборки белковой молекулы;
рибосомы - органоиды, где происходит собственно биосинтез белка;
набор аминокислот в цитоплазме;
транспортные РНК (тРНК), кодирующие аминокислоты и переносящие их к месту биосинтеза на рибосомы;
ферменты, катализирующие процесс биосинтеза;
АТФ - вещество, обеспечивающее энергией все процессы.
Строение и функции тРНК. Процесс синтеза любых РНК - транскрипция (от лат. транскрипций - переписывание) - относится к матричным реакциям. Транспортные РНК представляют собой небольшие молекулы, состоящие из 70-90 нуклеотидов. Молекулы тРНК свернуты определенным образом и напоминают по форме клеверный лист. В молекуле выделяются несколько петель. Наиболее важной является центральная петля, в которой располагается антикодон. Антикодоном называют тройку нуклеотидов в структуре тРНК, комплементарно соответствующих кодону определенной аминокислоты. Своим антикодоном тРНК способна соединяться с кодоном иРНК.
На другом конце молекул тРНК всегда находится тройка одинаковых нуклеотидов, к которым присоединяется аминокислота. Реакция осуществляется в присутствие специального фермента с использованием энергии АТФ.
Сборка полипептидной цепи на рибосоме. Сборка цепи начинается с соединения молекулы иРНК с рибосомой. По принципу комплементарности тРНК с первой аминокислотой соединяется антикодоном с соответствующим кодоном иРНК и входит в рибосому. Информационная РНК сдвигается на один триплет и вносит новую тРНК со второй аминокислотой. Первая тРНК передвигается в рибосоме. Аминокислоты сближаются друг с другом, между ними возникает пептидная связь. Затем иРНК вновь передвигается ровно на один триплет. Первая тРНК освобождается и покидает рибосому. Вторая тРНК с двумя аминокислотами передвигается на ее место, а в рибосому входит следующая тРНК с третьей аминокислотой. Весь процесс вновь и вновь повторяется. Информационная РНК, последовательно продвигаясь через рибосому, каждый раз вносит новую тРНК с аминокислотой и выносит освободившуюся. На рибосоме постепенно растет полипептидная цепь. Весь процесс обеспечивается деятельностью ферментов и энергией АТФ.
Сборка полипептидной цепи прекращается как только в рибосому попадает один из трех стоп-кодонов. С ними не связана ни одна тРНК. Освобождается последняя тРНК и собранная полипептидная цепь, а рибосома снимается с иРНК. Полипептидная цепь затем претерпевает структурные изменения и превращается в белок. Биосинтез белка закончен.
Процесс сборки одной молекулы белка длится в среднем от 20 до 500 с. и зависит от длины полипептидной цепи. Например, белок из 300 аминокислот синтезируется приблизительно за 15-20 с. Белки структурно и функционально очень разнообразны. Они определяют развитие того или иного признака организма, что является основой специфичности и неоднородности живого.
Реализация наследственной информации в живом организме осуществляется в реакциях матричного синтеза, протекающих в клетке.
Редупликация ведет к построению новых молекул ДНК, что необходимо для точного копирования генов и их передачи дочерним клеткам от материнской при делении. Биосинтез белка также связан с генетическим кодом и генами. Посредством реакций транскрипции и трансляции, для которых необходимы РНК, аминокислоты, рибосомы, ферменты и АТФ, в клетке синтезируются специфические белки. Они определяют ее характерные признаки, т.к. в первую очередь при биосинтезе происходит сборка белков-ферментов, отвечающих за протекание жизненных реакций в клетке.
Биосинтез белка является частью процесса реализации генетической программы клетки и всего организма. Этот процесс, как и синтез РНК, и редупликация ДНК, относится к реакциям матричного синтеза. Но в отличие от двух последних реакций биосинтез белка протекает на органоидно-клеточном уровне организации живого.
Таким образом этапы биосинтеза белка включают в себя:
1) транскрипция - переписывание в ядре информации о структуре белка с ДНК на иРНК. Значение дополнительности азотистых оснований в этом процессе. Молекула иРНК - копия одного гена, содержащего информацию о структуре одного белка. Генетический код - последовательность нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка. Кодирование аминокислот триплетами - тремя рядом расположенными нуклеотидами;
2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК. Расположение в месте контакта иРНК и рибосомы двух триплетов, к одному из которых подходит тРНК с аминокислотой. Дополнительность нуклеотидов иРНК и тРНК - основа взаимодействия аминокислот. Передвижение рибосомы на новый участок иРНК, содержащий два триплета, и повторение всех процессов: доставка новых аминокислот, их соединение с фрагментом молекулы белка. Движение рибосомы до конца иРНК и завершение синтеза всей молекулы белка.
Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.
71. Клетка как основа наследственности и воспроизводства
Цитогенетика - это раздел генетики, изучающий закономерности наследственности и изменчивости на клеточном и молекулярном уровне.
Индивидуальное развитие от одной клетки до многоклеточного организма с различными специализированными тканями и органами - это результат последовательного, избирательного включения в активное состояние разных генных участков хромосом в различных клетках. Таким образом, любая клетка многоклеточного организма тотипотентна, то есть обладает одинаковым полным фондом генетического материала, всеми возможными потенциями для проявления его свойств. Но вследствие дифференцировки как результата избирательной (дифференцированной) активности разных генов в клетках по мере развития многоклеточного организма, одни и те же гены в разных клетках могут находиться либо в активном, либо в репрессивном состоянии. То есть в процессе онтогенеза происходит специализация клеток и тканей. При этом у животных организмов такая специализация часто необратима, а у растений даже из отдельных клеток можно получить нормальные растения (вегетативное размножение).
У живых организмов существует два типа организации клеток: прокариотическая (доядерная), такая, как у бактерий и сине-зеленых водорослей, которые обычно делятся бинарным образом, то есть простой перегородкой без участия специальных аппаратов деления; и эукариотическая (собственно ядерная), у которых клеточное ядро отделено от цитоплазмы ядерной оболочкой, и нормальным полноценным способом деления является митоз, при котором происходит образование специального аппарата клеточного деления - веретена. Благодаря веретену деления равномерно и точно по двум дочерним клеткам распределяются после деления центромеры 2 хроматиды одной хромосомы, и, таким образом, сохраняется постоянство числа хромосом (2n) и идентичность генетического материала.
Неклеточной формой являются вирусы, которые состоят из капсида - защитной белковой оболочки и генетического материала. В качестве наследственного материала вирусы могут содержать 2 вида нуклеиновых кислот и поэтому вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
ДНК - дезоксирибонуклеиновая кислота - биологическая макромолекула, носитель генетической информации во всех эукариотических и прокариотических клетках и во многих вирусах. В 1928 г.Ф. Гриффит обнаружил у пневмококков явление трансформации (преобразование свойств бактерий). Он показал, что клетки невирулентных штаммов бактерий (шероховатые без капсул) приобретают свойства вирулентных (гладких с капсулами) штаммов, убитых нагреванием. Природа трансформирующего агента была установлена Эвери, Мак-Леодом и Мак-Карти в 1944 г., им оказалась ДНК. Так открытие и изучение трансформации доказало роль ДНК как материального носителя наследственной информации.
Трехмерная модель пространственного строения двухцепочечной ДНК была описана в апрельском журнале Nature в 1953 г. Дж. Уотсоном, Френсисом Криком и Морисом Уилкинсом. Эти исследования легли в основу молекулярной биологии, изучающей основные свойства и проявления жизни на молекулярном уровне.
Структура ДНК - полимер, структурной единицей которого является нуклеотид. Нуклеотид состоит из азотистого основания пуринового: аденин (А) или гуанин (Г) или пиримидинового: цитозин (Ц) или тимин (Т), углевода дезоксирибозы (пятиугольное сахарное кольцо) и остатка фосфорной кислоты (НРО3). Фосфатные группировки находятся снаружи спиралей, а основания - внутри и расположены с интервалом 34 нм. Двойная спираль ДНК правосторонняя.10 пар оснований составляют полный оборот 360 градусов, следовательно, каждая пара оснований повернута на 36 градусов вокруг спирали относительно следующей пары. Цепи удерживаются вместе водородными связями между основаниями и закручены одна вокруг другой и вокруг общей оси.
В разработке модели ДНК важную роль сыграли наблюдения Чаргаффа (1949) о том, что количественные отношения гаунина всегда равны содержанию цитозина, а содержание аденина соответствует содержанию Тимина. Это положение было названо "правило Чаргаффа":
А=Т; Г=Ц или А+Г/Ц+Т=1,
т.е. пропорция пуриновых и пиримидиновых оснований всегда равная. Чаргаффом для характеристики нуклеотидного состава ДНК был предложен коэффициент специфичности, учитывающий долю гуанин-цитозиновых пар:
Г+Ц/А+Т или (Г+Ц/А+Т+Г+Ц) Х 100%.
Нуклеотиды соединены в полинуклеотидную цепь связями между 5` положения одного пентозного конца и 3` положения следующего пентозного кольца через фосфатную группу с образованием фосфодиэфирных мостиков, т.е. сахарно-фосфатный остов ДНК состоит из 5` - 3` связей. Генетическая информация записана в последовательности нуклеотидов в направлении от 5` конца к 3` концу - такая нить называется смысловой ДНК, здесь расположены гены. Вторая нить направления 3`-5` считается антисмысловой, но является необходимым "эталоном" хранения генетической информации. Антисмысловая нить играет большую роль в процессах репликации и репарации (восстановление структуры поврежденной ДНК). Основания в антипараллельных нитях образуют за счет водородных связей коплементарные пары: А+Т; Г+Ц. Таким образом, структура одной нити определяет последовательность нуклеотидов другой нити. Следовательно, последовательности оснований в нитях ДНК всегда антипараллельны и комплементарны. Принцип комплементарности универсален для процессов репликации и транскрипции.
В настоящее время описаны несколько модификаций молекулы ДНК.
Полиморфизм ДНК - это способность молекулы принимать различные конфигурации. В настоящее время описано 6 форм, часть которых может существовать только in vitro (в пробирке):
В-форма - имеет стандартную структуру, практически соответствующую модели ДНК, которая была предложена Уотсоном, Криком и Уилкинсом, в физиологических условиях (низкая концентрация солей, высокая степень гидратации) является доминирующим структурным типом.
А-форма - обнаружена в более обезвоженных средах и при более высоком содержании ионов калия и натрия. Интересна с биологической точки зрения, т.к. ее информация близка к структуре двухцепочечных ДНК, или для ДНК-РНК дуплексов.
С-форма - имеет меньше форм оснований на виток, чем В-форма. В этих трех формах могут находиться все ДНК независимо от нуклеотидной последовательности. Следующие формы характерны только для молекул ДНК с определенными последовательностями в парах оснований.
D и Е-форма - возможны крайние варианты одной и той же формы, имеют наименьшее число пар оснований на виток. Обнаружены только в молекулах ДНК, не содержащих гуанина.
Z-форма - это зигзагообразная форма, с чередованием лево - и правоспиральности. Эта форма выявляется при наличии ряда факторов: высокая концентрация солей и наличие специфических катионов; высокое содержание отрицательных супервитков в молекуле ДНК и других Z-ДНК встречается на участках, обогащенных парами Г-Ц. Показано, что Z-форма ДНК может участвовать в регуляции экспрессии генов как близко расположенных, так и существенно удаленных от Z-участков, а также играть существенную роль в процессах рекомбинации.
Шотландский ученый Арнотт предположил: "Было бы удивительно, если бы в живой природе никак не использовалась эта способность ДНК - менять свою форму".
Некоторые из форм могут при определенных условиях, связанных с изменениями концентрации солей и степени гидратации, переходить друг в друга, например, А - В; а также Z - В. Предполагают, что взаимные переходы А - и В-форм регулируют работу генов. Показательно, что в ДНК человека имеются участки, потенциально способные переходить в Z-форму. Предполагается, что в клетках человека существуют условия, стабилизирующие Z-форму.
Знание структуры и функции ДНК необходимо для понимания сути некоторых генетических процессов, которые являются матричными.
В свою очередь, молекулы РНК служат матрицами для последовательного соединения аминокислот с образованием полипептидных цепей белков в процессе трансляции, названном так потому, что "текст", написанный на "языке" нуклеотидов, переводится (транслируется) на "язык" аминокислот. Группа нуклеотидов, кодирующая одну аминокислоту, называется кодоном.
На последних этапах, предшествующих делению клетки, ядерный материал (хроматин) претерпевает определенные физико-химические изменения, приводящие к конденсации нитеобразных структур ядра. Эти образования немецкий морфолог В. Вальдейер (1888) предложил назвать хромосомами, поскольку они интенсивно окрашивались некоторыми красителями.
Хромосомы - это нуклеопротеиновые тела, в которых хранится, передается потомству и реализуется наследственная информация. По иронии судьбы сначала были открыты ядерные структуры, которые в течение многих последующих лет никто не считал хромосомами. В 1881 году Э. Бальбиани описал в клетках слюнных желез хирономуса поперечно-исчерченные ленты. Их назвали "структурами Бальбиани". Только в 1912 году чешский ученый Ф. Рамбоусек предположил, что это специализированные хромосомы. А окончательно это название утвердилось в 1930-1935 гг.
Хромосомы, как "окрашивающиеся тела" были открыты в митотически и мейотически делящихся клетках классиками цитологии Флеммингом и Страсбургером (1882-1884).
Для каждого вида растений и животных характерны свое число и свои морфологические особенности хромосомного набора, т.е. определенный кариотип. В норме все хромосомы клеток организма эукариот парны, т.е. каждая хромосома имеет своего аналогичного по размеру, форме и особенностям расположения генов гомолога, и составляют двойной (2n), или диплоидный, набор. Только зрелые половые клетки содержат одинарный (1n), или гаплоидный, набор хромосом (от греч. haplous - одинарный). Точное число и структуру отдельных хромосом можно оценить в делящихся клетках на стадии метафазы, когда хромосомы наиболее утолщены и укорочены.
В настоящее время наиболее известны три типа хромосом:
а. У прокариот в нуклеоиде и в клеточных органеллах у эукариот.
б. Хромосомы из делящихся клеток эукариот.
в. Интерфазные хромосомы эукариот.
Клетки многоклеточного организма чрезвычайно разнообразны по выполняемым функциям. В соответствии со специализацией клетки имеют разную продолжительность жизни. Так нервные клетки после завершения эмбриогенеза перестают делиться и функционируют на протяжении всей жизни организма. Клетки же других тканей (костного мозга, эпидермиса, эпителия тонкого кишечника) в процессе выполнения своей функции быстро погибают и замещаются новыми в результате клеточного деления. Деление клеток лежит в основе развития, роста и размножения организмов. Деление клеток также обеспечивает самообновление тканей на протяжении жизни организма и восстановление их целостности после повреждения. Существует два способа деления соматических клеток: амитоз и митоз. Преимущественно распространено непрямое деление клеток (митоз). Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием.
Жизненный цикл клетки (клеточный цикл) - это существование клетки от деления до следующего деления или смерти. Продолжительность клеточного цикла в размножающихся клетках составляет 10-50 ч и зависит от типа клеток, их возраста, гормонального баланса организма, температуры и других факторов. Детали клеточного цикла варьируют среди разных организмов. У одноклеточных организмов жизненный цикл совпадает с жизнью особи. В непрерывно размножающихся тканевых клетках клеточный цикл совпадает с митотическим циклом.
Жизнь клетки и переход от одной фазы клеточного цикла к другой регулируется изменением концентраций белков циклинов.
Митотический цикл - совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению и период деления (рис 1). В соответствие с приведенным выше определением митотический цикл подразделяют на интерфазу и митоз (греч. "митос" - нить).
Процесс деления, при котором исходно диплоидная клетка дает две дочерние, также диплоидные, клетки, называется митозом. Митоз условно разделяют на четыре фазы: профазу, метафазу, анафазу и телофазу.
Амитоз (от греч. а - отриц. частица и митоз) - прямое деление интерфазного ядра путем перешнуровывания без преобразования хромосом. При амитозе не происходит равномерное расхождение хроматид к полюсам. И это деление не обеспечивает образование генетически равноценных ядер и клеток. По сравнению с митозом амитоз более кратковременный и экономичный процесс. Амитотическое деление может осуществляться несколькими способами. Наиболее распространенный тип амитоза - это перешнуровывание ядра на две части. Этот процесс начинается с разделения ядрышка. Перетяжка углубляется, и ядро разделяется надвое. После этого начинается разделение цитоплазмы, однако это происходит не всегда. Если амитоз ограничивается только делением ядра, то это приводит к образованию дву - и многоядерных клеток. При амитозе может также происходить почкование и фрагментация ядер.
Клетка, претерпевшая амитоз, в последующем не способна вступить в нормальный митотический цикл.
Амитоз встречается в клетках различных тканей растений и животных. У растений амитотическое деление довольно часто встречается в эндосперме, в специализирующихся клетках корешков и в клетках запасающих тканей. Амитоз также наблюдается в высокоспециализированных клетках с ослабленной жизнеспособностью или дегенерирующих, при различных патологических процессах, таких как злокачественный рост, воспаление и т.п.
Кроме митоза в клетках некоторых органов растений и животных встречаются и другие типы деления: эндомитоз и политения. При эндомитозе не формируется веретено деления и сохраняется ядерная оболочка, вследствие чего образуются полиплоидные клетки с увеличенным числом хромосом. Политения рассматривается как частный случай эндомитоза, поскольку после многократной репликации ДНК все хроматиновые нити (хроматиды) плотно прилегают друг к другу и соединены общей центромерой, образуя гигантские политенные хромосомы.
При образовании гамет, т.е. половых клеток - сперматозоидов и яйцеклеток - происходит деление клетки, называемое мейозом. Мейоз (от греч. meiosis - уменьшение) - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния 2n в гаплоидное n. Этот вид деления был впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. Мейоз включает два последовательных деления: первое (редукционное) и второе (эквационное). В каждом делении выделяют 4 фазы: профаза, метафаза, анафаза, телофаза.
72. Генетические параметры признаков отбора и их использование в селекции
Отбор - это сохранение животных, более приспособленных к определенным жизненным условиям и технологии производства, или выбор человеком наиболее удовлетворяющих его требованиям особей и устранение самой природой или человеком менее приспособленных, худших экземпляров. Учение об отборе разработано Ч. Дарвиным. Обобщив большой материал, он считал, что изменчивость и эволюция домашних животных идут через естественный и искусственный отбор.
В настоящее время при индустриализации животноводства особое значение приобретает технологический отбор. Этот термин предложен А.И. Овсянниковым. Технологический отбор - это отбор животных, наиболее приспособленных к новым условиям содержания и эксплуатации. При этом во внимание берутся особенности поведения животных и устойчивость к стрессам.
Отбор животных по морфологическим признакам, связанным с развитием хозяйственно полезных качеств животных, называют косвенным отбором, он основывается на законе корреляции. С переводом молочного скотоводства на промышленную технологию, когда формируется желательный тип животного, в стаде возникает необходимость выбраковывать особей, уклоняющихся от желательного типа. Такой отбор называют стабилизирующим.
Сельскохозяйственные животные имеют разные хозяйственно полезные признаки. Признаки отбора делятся на простые и сложные. Наследование простых признаков (масть, группа крови и др.) точно укладывается в схему менделевского моногибридного расщепления. Работать с ними легко. К сложным признакам относятся такие, которые слагаются из нескольких более простых признаков, отличающихся полимерной или аддитивной наследственностью. Кроме того, признаки делятся на главные и второстепенные.
В число главных признаков, по которым ведется отбор животных, входят: продуктивность (производительность); конституция, экстерьер и интерьер; характер индивидуального развития (скороспелость, долголетие и др.); приспособленность к условиям жизни; племенная ценность, то есть способность передавать свои достоинства по наследству потомкам. Для определения племенной ценности животного по комплексу главных признаков проводится и оценка его по качеству потомства.
На разных этапах племенной работы со стадом или породой роль и главенство отдельных признаков могут изменяться в зависимости от качественных показателей животных и задач по дальнейшему их совершенствованию. Кроме главных, есть второстепенные признаки: масть, форма и размеры рогов, особенности строения и форма хвоста. При отборе по комплексу признаков можно создавать, усиливать и закреплять в стаде или породе любые признаки и особенности, в том числе и второстепенные. Но отбор по второстепенным признакам нужно вести лишь без ущерба для главных признаков.
В зоотехнии известно немало примеров, когда ценнейшие животные выбраковывались как не имеющие стандартной масти, что отрицательно сказывалось на темпах совершенствования породы. Так, в процессе совершенствования ярославской породы придирчиво относились к животным, которые не были черными, белоголовыми и не имеющими вокруг глаз "очков".
Генетические параметры селекции - это математически обоснованные селекционные показатели, которые определяют и уточняют генетическую ценность отбора животных и признаков, по которым он ведется. К генетическим параметрам селекции животных относятся: изменчивость, наследуемость, повторяемость, корреляция признаков, регрессия, препотентность и некоторые другие показатели наследования.
В настоящее время разрабатываются программы селекции животных на основе положений популяционной генетики и с использованием иммуногенетических методов. Изучение изменчивости, наследуемости, возрастной устойчивости, основных хозяйственно полезных признаков и их взаимосвязи применительно к конкретному стаду, породе позволяет выбрать такие приемы отбора и подбора, которые обеспечат повышение продуктивности животных с каждым поколением
Изменчивость хозяйственно полезных признаков. Изменчивость характерна для всех живых существ. Она проявляется в некоторых различиях между особями одного поколения, создавая материал для естественного и искусственного отбора, и является одним из основных факторов, обусловливающих эволюцию.
В общей фенотипической изменчивости выделяют наследственную (комбинативную и мутационную) и ненаследственную (модификационную) изменчивость. Для племенного отбора ценность представляет только наследственная изменчивость.
Наследственная изменчивость возникает благодаря новому сочетанию в потомстве особенностей родителей, то есть их новым комбинациям, или благодаря преобразованию наследственного материала, ведущего к появлению совершенно новых наследственных особенностей, что получило название мутации. В связи с этим различают две формы наследственной изменчивости - комбинативную и мутационную.
Используя закономерности комбинативной изменчивости в племенном деле, создают новые породы животных. На ней основано совершенствование существующих пород путем подбора, цель которого заключается в получении более ценных наследственных сочетаний и исправлении в потомстве недостатков одного из родителей положительными качествами другого.
Мутационная изменчивость характеризуется появлением у особи каких-либо новых особенностей, которых не было у его предков. Мутации появляются в результате изменения числа или структуры хромосом или генов и стойко передаются потомству.
Примером могут служить одомашненные виды пушных зверей - норки, лисицы, у которых за относительно короткое время жизни в условиях клеточного содержания обнаружен ряд мутаций окраски шерстного покрова, представляющей большую ценность для меховой промышленности.
Ненаследственная (модификационная) изменчивость у животных возникает под влиянием среды. Такая изменчивость не отражается на наследственности, обнаруженные различия в признаках, как правило, не наследуются. Модификационная изменчивость для практики племенного дела имеет двоякое значение. Создавая для растущих животных определенные условия, можно усилить развитие желательного признака или ослабить нежелательный. Это положительная для практики особенность модификаций. Нередко среда может сгладить наследственные различия между животными, в результате чего лучшие и худшие особи фенотипически оказываются одинаковыми, что мешает правильному отбору наиболее ценных из них и тормозит улучшение стад.
Все признаки сельскохозяйственных животных, по которым ведется отбор, делятся на качественные и количественные. Качественные признаки, как правило, являются простыми, наследуются по менделевской схеме, и влияние среды на них незначительно. Например, окраска животных, форма гребня у кур, рогатость или комолость у крупного рогатого скота. Большинство хозяйственно полезных признаков - количественные, определяются большим числом генов и характеризуются значительной изменчивостью.
Успех селекции, ее эффективность связаны со степенью изменчивости селекционируемого признака, чем он более изменчив по своей природе, тем легче и быстрее можно его улучшить и наоборот, однако степень фенотипической изменчивости продуктивных признаков сельскохозяйственных животных во многом зависит от влияния внешней среды и других ненаследственных факторов: уровня кормления и содержания животных, их возраста и физиологического состояния, сезона года, различий в интенсивности отбора.
По данным многих авторов, 15-17% общей изменчивости удоя можно отнести за счет кормления скота, 10-30% обусловлено возрастной изменчивостью, 10-18 % - породными различиями.
Наследственность хозяйственно полезных признаков. Эффективность отбора сельскохозяйственных животных по продуктивности определяется степенью наследственного улучшения каждого нового поколения по сравнению с предыдущим. Любой признак является продуктом совокупного влияния наследственности и среды. Однако изменчивость количественных признаков в значительной мере зависит от среды, а изменчивость качественных признаков в основном контролируется наследственностью.
Наследуемость - это доля общей фенотипической изменчивости, которая обусловлена генетическими различиями, или изменчивость данного признака, обусловленная наследственностью. Понятие "наследуемость признака" введено американским ученым Д. Лашем (1939), а величина h2 названа коэффициентом наследуемости. Способы вычисления:
- между показателями одного и того же признака родителей и потомков, например, молочная продуктивность коров, коэффициент наследуемости выражается удвоенным коэффициентом корреляции между продуктивностью матерей и дочерей ;
- между показателями одного и того же признака родителей и потомства; коэффициент наследуемости равняется удвоенному коэффициенту регрессии между показателями признаков родителей и потомства;
, где Мл и Мх - средние показатели лучших и худших матерей по сравнению со средним по стаду; Дмл и Дмх - средние показатели того же признака у дочерей, полученных от лучших и худших матерей.
Величину коэффициента наследуемости выражают в долях единицы или в процентах. Чем выше коэффициент наследуемости тех или иных признаков, тем в большей степени изменчивость их определяется наследственными различиями и тем более эффективным будет массовый отбор по этим признакам.
Для прогнозирования эффективности отбора пользуются следующей формулой: , где SE - эффект селекции;
SD - селекционный дифференциал, показывающий, на какую величину селекционная группа превосходит продуктивность стада;
h2 - коэффициент наследуемости данного признака, вычисленный для этого стада.
Если в племенное ядро отобрать коров, превышающих продуктивность стада в среднем на 1000 кг, то дочери этих коров унаследуют не всю величину превосходства, а лишь ее часть, соответствующую наследуемости признака. Но в хозяйствах так не бывает, обычно идет постепенная замена коров, следовательно, ежегодный прирост продуктивности будет значительно меньше.
Для определения ежегодного прироста вводится показатель tм - интервал времени между поколениями, который представляет собой период между рождением родителей и рождением потомков. В среднем этот период у молочного скота материнского поколения равен 5,5-6 годам. Чем меньше интервал между поколениями, тем быстрее происходит процесс генетического улучшения стада при выполнении других условий селекции. Для его определения следует учитывать средний возраст первого отела у коров и срок их использования в лактациях. Но быстрая смена поколений в хозяйствах, достигших высокой продуктивности, нецелесообразна, так как увеличение продолжительности использования молочных коров имеет огромное народно хозяйственное значение.
В нашей стране и за рубежом накоплено большое количество данных о степени наследуемости различных селекционных признаков животных и отмечены большие различия в показателях коэффициента наследуемости даже одних и тех же признаков.
Величина коэффициента наследуемости сильно колеблется в зависимости от породы, генеалогической структуры стада, уровня и направления племенного отбора, применявшихся методов разведения и других особенностей. Коэффициент наследуемости помогает правильно выбрать метод селекции для конкретного стада животных по тому или иному признаку.
Регрессия (тенденция возврата к средним). Сущность ее заключается в том, что сыновья и дочери, полученные от лучших животных, в среднем оказываются несколько хуже их, а от худших - несколько лучше, то есть дети как тех, так и других родителей по качеству отклоняются от них к среднему уровню, характерному для породы или стада. Причиной этого является наследование животными особенностей не только от родителей, но и более дальних предков, которых очень много.
Корреляция (взаимосвязь признаков). Закон корреляции сформулировал Ж. Кювье (1836), этот закон впоследствии использовал Ч. Дарвин в своем учении о соотносительной изменчивости. Использование взаимосвязи признаков открывает возможность при отборе по одному признаку оказывать влияние на изменение другого. Степень и характер корреляции между признаками устанавливают вычислением коэффициента корреляции (r), значение его колеблется от 0до±1, взаимосвязь может быть положительной и отрицательной. При положительной корреляции (когда r приближается к+1) отбор лучших животных по одним признакам ведет одновременно к улучшению других признаков, коррелирующих с ними. При отрицательной корреляции улучшение отбором одного признака повлечет за собой ухудшение другого признака.
Корреляции могут быть использованы в селекции и для ранней (ускоренной) оценки животных. Например, установлена положительная связь между степенью развития молочной железы у телочек в возрасте трех-пяти месяцев и их будущей молочной продуктивностью (r=0,35-0,78).
73. Наследственность и методы ее исследования
Наследственность есть процесс материальной и функциональной дискретной преемственности между поколениями клеток и организмов. В основе ее лежит точная репродукция наследственно значимых структур. Наследование - процесс передачи наследственно детерминированных признаков и свойств организма и клетки в процессе размножения. Изучение наследования позволяет раскрывать сущность наследственности. Поэтому следует строго разделять указанные два явления.
Рассмотренные нами закономерности расщепления и независимого комбинирования относятся, к изучению наследования, а не наследственности. Неверно, когда "закон расщепления" и "закон независимого комбинирования признаков-генов" трактуются как законы наследственности. Открытые Менделем законы являются законами наследования.
К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.
Законы наследственности имеют другое содержание, и формулируются в следующем виде:
1) - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.
2) - закон относительного постоянства наследственной единицы - гена.
3) - закон аллельного состояния гена (доминантность и рецессивность).
Именно эти законы представляют собой главный итог работ Менделя, так как именно они отражают сущность наследственности.
Менделевские законы наследования и законы наследственности являются основным содержанием генетики. Их открытие дало современному естествознанию единицу измерения жизненных процессов - ген и тем самым создало возможности объединения естественных наук - биологии, физики, химии и математики с целью анализа биологических процессов.
Наследственность изучается на разных уровнях организации живой материи: молекулярном, хромосомном, клеточном, организменном и популяционном. Существуют три группы методов исследования наследственности:
К первой группе относятся гибридологический и генеологический методы, с помощью которых определяются закономерности наследования этого или иного признака или группы признаков. С этой целью скрещиваются особи, различающиеся по контрастным признакам, и изучается характер проявления этих признаков в потомстве. Классический генетический (гибридологический) анализ, или, как его еще называют, формальный генетический анализ заключается в последовательном разложении генома анализируемого организма на группы сцепленных генов, а групп сцепления - на генные локусы с дальнейшим установлением последовательности генных локусов вдоль хромосомных пар и выяснением тонкой структуры генов (секвенирование генов).
Генетический анализ в принципе подобен химическому анализу, задача которого заключается в разложении сложных химических соединений на более простые компоненты. Однако в отличие от химического анализа, например, нуклеопротеидов, расщепление которых на структурные части основано на гидролизе, классический генетический анализ основывается на расщеплении (сегрегации) и рекомбинации генов в мейозе и осуществляется путем скрещивания особей с разными признаками и учета результатов скрещиваний. Схема генетического анализа организмов состоит из ряда последовательных этапов, а именно:
1. Идентификация генов.2. Установление генных локусов на хромосомных парах.
3. Установление последовательности генных локусов вдоль хромосомных пар.
4. Выяснение тонкой структуры генов.
Результаты генетического анализа оформляют путем составления генетических карт (нуклеотидных карт).
Одним из важнейших показателей эффективности генетического анализа является его разрешающая способность, которая в общих чертах может быть аналогизирована с разрешающей способностью оптических методов исследования. Подобно тому как разрешающая способность оптических приборов (микроскопов) ограничена волновой природой света, разрешающая способность генетического анализа ограничивается количеством исследуемого потомства, получаемого в скрещиваниях, ибо чем большее количество потомства, тем шире возможность обнаружения среди них редких рекомбинантов и, следовательно, установления частоты кроссинговера.
Генеалогический метод - один из вариантов генетического анализа. Наследование признака при этом изучается путем передачи его потомству в целых семьях или родственных группах. Для этого составляется родословные на несколько поколений предков отдельных особей и целых семей. Этот метод имеет большое значение при изучении наследственности человека, а также долго живущих и поздно вступающих в репродуктивную фазу организмов.
Ко второй группе относятся цитологический и биохимический методы, которые изучают структуры клетки., т.е. изучается клетка, ее происходящие в клетках при а также химическое строение ген и хромосом и происходящие в них изменениях.
Характерной особенностью третьей группы методов изучения наследственности, к которой относятся приемы популяционно - генетического анализа, является изучение степени влияния генов и внешней среды на развитие признаков и свойств организмов. Основная задача этого метода - определение коэффициента наследственности (приемами математического анализа) с целью оценки пригодности изучаемого признака для целей селекции.
74. Наследуемость основных хозяйственно-полезных признаков
Успех селекции обусловлен наследуемостью признаков, определяющих продуктивность животных и урожайность растений.
Термин "наследуемость" (heritability) был предложен известным американским генетиком Дж. Лашем в 1939 г., а общепринятый теперь символ наследуемости h2 заимствован у С. Райта, который 1921 г. обозначил им детерминацию признака наследственностью, первоначальное понимание наследуемости как меры сходства между родителями и детьми, господствовавшее со времен Френсиса Гальтона, т.е. с XIX в., сохранилось и в наше время и нашло отражение расчете коэффициента наследуемости с помощью коэффициентов корреляции и регрессии между родителями и потомками. Тем не менее, сведение наследуемости лишь к "детерминации признака наследственностью" или к выражению сходства между родителями детьми может привести к неправильному пониманию сущности наследуемости.
Наследуемость относится к проявлению признаков в размножающихся популяциях и обусловлена характером передачи наследственной информации от родителей к детям. Наследуемость характеризуется двояко: средним уровнем и определенным разнообразием наследования признаков. В этой связи под наследуемостью следует понимать, прежде всего, наследственную обусловленность разнообразия, т.е. изменчивости изучаемого признака, а под степенью наследуемости - ту долю фенотипического разнообразия признака, которая обусловлена объемом генетической информации, предающейся от родителей к детям.
Фенотипическую и генотипическую изменчивость в биологической статистике (биометрии) характеризуют средним квадратом отклонений от средней арифметической, называемой вариансой к обозначаемой у2.
Подобные документы
Закономерности роста сельскохозяйственных животных и факторы, влияющие на этот процесс. Продолжительность и периодизация роста и развития. Неравномерность роста и развития. Учет интенсивности роста и анализ материалов по росту молодняка в хозяйстве.
курсовая работа [66,6 K], добавлен 30.01.2009Использование инбридинга в селекции животных. Разведение сельскохозяйственных животных с основами частной зоотехнии. Причины возникновения мутаций в естественных условиях. Гибридизация, полиплоидия, трансплантация эмбрионов. Клонирование млекопитающих.
курсовая работа [35,4 K], добавлен 24.12.2016Разведение и генетика сельскохозяйственных животных на примере фермы молочного скотоводства. Переработка и реализация животноводческой продукции. Основы механизации и автоматизации деятельности хозяйства. Особенности кормления и лечения животных.
отчет по практике [6,7 M], добавлен 06.12.2013Описание последствий скрытых форм витаминной недостаточности (гиповитаминозов) у животных: нарушения воспроизводства, снижения устойчивости к болезням, замедления роста и продуктивности. Организация витаминного питания сельскохозяйственных животных.
реферат [23,3 K], добавлен 14.12.2011Породы сельскохозяйственных животных. Методы оценки экстерьера и конституции. Описание, обработка и анализ материалов измерений животных. Учет роста и развития животных. Особенности оценки мясной и молочной продуктивности сельскохозяйственных животных.
курсовая работа [2,8 M], добавлен 15.06.2012Особенности разведения сельскохозяйственных животных. Методические советы по улучшению породы, изменению ее продуктивности. Основы частной зоотехнии: скотоводство, свиноводство, птицеводство, овцеводство. Особенности племенной работы в животноводстве.
методичка [45,5 K], добавлен 25.05.2009Роль трудов А.А. Малигонова, П.Н. Кулешова, Е.А. Богданова, М.И. Придорогина, М.Ф. Иванова в формировании зоотехнической науки. Разработка ими вопросов происхождения и одомашнивания животных, их роста и развития, отбора и подбора, родственного спаривания.
реферат [53,2 K], добавлен 30.11.2013Ветеринарная селекция в разведении сельскохозяйственных животных. Генетические аномалии и устойчивость свиней, овец и птиц к некоторым болезням. Роль мутаций и рекомбинаций генов в возникновении патологии у животных. Хромосомные аберрации у свиней.
курсовая работа [27,3 K], добавлен 09.09.2009Продуктивность сельскохозяйственных животных. Применение аутбридинга, интербридинга, инкросинга, топкроссинга для устранения последствий близкородственного разведения. Отбраковка нежизнеспособных особей; создание для ценных животных благоприятных условий.
курсовая работа [28,6 K], добавлен 30.04.2014Рассмотрение процесса разведения и развития сельскохозяйственных животных, наследования хозяйственно-полезных признаков, проведение сравнительной характеристики линий по признакам продуктивности. Совершенствование племенных и продуктивных качеств стада.
курсовая работа [994,8 K], добавлен 25.03.2018