Основы психофизиологии

Строение мозга и методы его исследований. Особенности передачи и переработки сенсорных сигналов, управления движениями. Характеристика памяти и эмоций, внимания и сознания. Сущность научения, его механизмы. Основные аспекты отраслей психофизиологии.

Рубрика Психология
Вид книга
Язык русский
Дата добавления 21.05.2009
Размер файла 563,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Нейрофизиологические исследования распределенное энграммы. В опытах на изолированных нейронах виноградной улитки обнаружены клетки, у которых формирование следа памяти происходит во время ассоциативного обучения, так что после определенного числа сочетаний условного и безусловного стимулов формируется энграмма, достигающая уровня актуализации по электрофизиологическим показателям (рис. 6.1). Количество таких нейронов относительно невелико -- менее 15 % от общего количества зарегистрированных в ситуации ассоциативного обучения (687 нейронов). Более 80 % клеток продемонстрировали феномен отсроченного обучения -- он заключался в том, что во время предъявления ассоциированных стимулов ответ на «условный» стимул или не изменялся, или же ухудшался при любой частоте предъявления пары. Основная особенность заключалась в том, что увеличение ответа на «условный» стимул после обучения развивалось постепенно (рис. 6.2). [Grechenko, 1993]. Достижение максимальной величины ответа, которая зависит от количества предъявленных сочетаний и от количества проведенных циклов обучения, у разных клеток происходит через неодинаковое время. После выполнения первой серии, состоявшей из предъявления 15-20 пар ассоциированных стимулов, время достижения максимальной величины ответа на условный стимул составляло от 5 до 40 мин (см. рис. 6.2). Опыты на идентифицированных нейронах показали, что независимо от вида ассоциируемых стимулов и от особенностей предъявления сочетаний данный конкретный нейрон всегда обучается по одному и тому же способу -- или во время обучения, или отсроченно. Это качество является его индивидуальной характеристикой в отношении данного вида обучения. (В опытах использовали ассоциации стимулов, Адресованных различным структурам клетки, -- два внутриклеточных деполяризационных стимула, активирующих пейсмекерный механизм, или электровозбудимые мембраны и две микроаппликации медиатора, или микроаппликацию медиатора в комбинации с электрическим стимулом. ) По-видимому, в основе этого феномена лежат особенности внутриклеточных процессов, опосредующих ассоциативное обучение, и эти процессы различны по скорости своего развития.

Время сохранения следа памяти в состоянии наивысшей активности на изолцт рованных нейронах не слишком велико -- так, после выполнения первой серии обучения у клеток, обучающихся во время предъявления ассоциированных стимулов, оно не превышает 20 мин, а у отсроченно обучающихся нейронов -- 40 мин. Время достижения максимума ответа после выполнения второй и последующих серий обучения изменяется. У нейронов первой группы все события развиваются традиционно -- при выполнении каждой следующей серии требуется все меньшее количество ассоциированных стимулов, а время сохранения следа на максимальном уровне актуализации увеличивается (после выполнения 2-4 серий оно может достигать 90 мин). У нейронов же второй группы выполнение каждой следующей серии значительно продлевает время «жизни» следа -- после второй серии оно может увеличиться в 2 раза -- и, как ни удивительно, увеличивает время достижения максимальной активности следа памяти. Например, если след после первой серии обучения достигал наиболее высокого уровня актуализации через 10 мин, то после второй или третьей серии -- только через 30-40 мин. Кажется вероятным, что такие характеристики пластичности нейронов могут лежать в основе распределенности энграммы по популяции клеток, опосредующих конкретную форму поведения. Воспроизведение следа памяти через разное время после обучения происходит с различных нейронов, отличающихся временными характеристиками достижения максимальной активности, инициированной обучением.

Факты, полученные в опытах на изолированных нейронах, совпадают по существу с данными экспериментов, проведенных на полуинтактном препарате улитю [Максимова, Балабан, 1983]. В частности, для командного идентифицированноп нейрона ЛПаЗ в этих опытах получили весьма похожие временные параметры актуализации активной энграммы -- около 90 мин после выполнения трех серий предъявлений ассоциированных стимулов. (В опытах изучали условную пассивно оборонительную реакцию.) Так как на поведенческом уровне этот условны ответ обнаруживается непосредственно после обучения, то, следовательно, он осуществляется ансамблем нервных клеток, в котором не участвует командный нейрон ЛПаЗ (его энграмма актуализируется отсроченно). Это наблюдение заставляет предполагать, что в зависимости от времени, прошедшего после обучения, peaлизацию следа памяти осуществляют разные по своему составу нейронны ансамбли. Изменение элементов системы обеспечивает функциональную неоднородность энграммы, воспроизводимой через разное время после обучения.

6.4 ПРОЦЕДУРНАЯ И ДЕКЛАРАТИВНАЯ ПАМЯТЬ

В последнее время стало приобретать все большее значение представление о множественности систем памяти. Это представление сформировалось на основе данных, полученных при исследовании больных с различными поражениями мозга а также в опытах на здоровых испытуемых, выполненных с использованием регистрации вызванных потенциалов, и в опытах на животных с различными поврежданиями мозговых структур.

Эти системы памяти имеют разные оперативные характеристики, участвую в приобретении знаний разного рода и осуществляются разными мозговыми структурами. Исследователи предположили, что переработка по крайней мере двух видов информации ведется в мозгу раздельно и каждый из этих видов хранится так же отдельно [Squire, 1994]. Упомянутые ранее данные, полученные как на амнезированных пациентах, так и на людях с обычной памятью и на животных, позволил разделить системы памяти на две большие группы: процедурную и декларативную память.

Процедурная память -- это знание того, как нужно действовать. Процедурна память, вероятно, развивается в ходе эволюции раньше, чем декларативная. Dpi выкание и классическое обусловливание -- это примеры приобретения процедур ной памяти. Процедурная память основана на биохимических и биофизически изменениях, происходящих только в тех нервных сетях, которые непосредствен!) участвуют в усвоенных действиях. !

Декларативная память обеспечивает ясный и доступный отчет о прошлом индивидуальном опыте. В отличие от имплицитной процедурной памяти, она является эксплицитной, сознательной. Память на события и факты включает запоминание слов, лиц и т. д. Содержание декларативной памяти может быть декларировано. Она зависит от интеграции в мозговых структурах и связей с медиальной височной корой и диэнцефалоном, повреждение которых становится причиной ее нарушения. Организация декларативной памяти требует переработки информации в височных долях мозга и таламусе. Структурой, важной для декларативной памяти, является гиппокамп (включая собственно гиппо-камп и зубчатую извилину, субикулярный комплекс и энторинальную кору) вместе с парагиппокампальной корой. Внутри диэнцефалона важные для декларативной памяти структуры и связи включают медиодорзальные ядра таламуса, передние ядра, маммило-таламический тракт и внутреннюю медуллярную пластинку.

В то время как декларативная память относится к биологически значимым категориям памяти, зависящим от специфических мозговых систем, иедекларативная память охватывает несколько видов памяти и зависит от множества структур мозга.

6.5 МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПАМЯТИ

В нейронауках исследование механизмов научения и памяти ведется преимущественно в контексте пластичности (см, гл. 15). Именно поэтому многие исследования имели своей целью идентификацию пластических изменений активности и морфологии мозга во время обучения и запоминания. Так как пластичность стала доступной для исследований на клеточном и молекулярном уровнях, в настоящее *время идентифицировано множество механизмов нейронной пластичности, которые, как предполагается, вносят свой вклад в разные формы обучения (см. гл. 20).

Обычно в качестве основного изменения при формировании памяти рассматривают модификацию синаптических связей. Эта идея была разработана до теории клеточных ансамблей Д. О. Хеббом [Hebb, 1949]. Интересы современных исследователей направлены не только на синапсы, но и на внутриклеточные процессы (см. гл. 20). Эксперименты, в которых изучаются механизмы долговременной растичности, показывают, что по нейрофизиологическим показателям «старые» ц «новые» следы памяти неразличимы, а качественно электрическая активность дейронов одинакова. Выдвигается предположение, согласно которому в основе даительно сохраняющихся следов памяти лежат долговременные изменения хе-мореактивных свойств мембраны нейронов. Это предположение поддерживается результатами экспериментов, в которых осуществляется прямой контроль за содержанием хемочувствительной мембраны на разных этапах ее формирования и последующего сохранения во времени [Schwartz et al., 1971; Соколов, Тер-Маргарян, 1984]. Полученные факты позволяют рассматривать длительно сохраняющие изменения хемочувствительных мембран нейронов в качестве одного из реальных механизмов, лежащих в основе сохранения энграмм.

По этой причине в современных исследованиях одно из наиболее разрабатывемых направлений -- это изучение структуры и функции синаптических мембр и их роли в передаче, фиксировании и хранении информации. Мембрана моя рассматриваться как двойной посредник в передаче информации: состояние мембраны определяет чувствительность к стимулу, а перестройка мембраны после по; лучения сигнала определяет силу, специфичность и адекватность ответа. Исключительная роль мембран в передаче и хранении информации связана с кооперативными структурными переходами в них. Эти переходы могут индуцировать изменениями в липидах и белках [Бурлакова, 1990]. Не только кратковременная но и долговременная память связана с изменением структуры липидного бислоя синаптических мембран. И кратковременная, и долговременная память зависят от перехода липидов в одно и то же новое жидкокристаллическое состояние [Крепе Ашмарин, 1982].

Современный уровень понимания природы синаптической пластичности и эндонейрональных процессов позволяет успешно изучать целенаправленное воздействие на метаболические процессы нервных клеток, обеспечивающие привыкание, ассоциативное обучение, долговременную потенциацию, длительно сохраняющееся изменение синаптической эффективности и другие разнообразные формы пластичности нервных клеток [Салганик и др., 1981; Lynch, Baudry, 1984; Bliss et al., 1986]. Наиболее интересные результаты получают в опытах по изучению пластичности и ее изменений под влиянием высокоспециализированных веществ при регистрации электрической активности нейронов [Костюк и др., 1984; Цитоловский, 1986; Belardetti et al., 1986]. Идентификация тонких внутриклеточных биохимических механизмов научения позволила понять особую роль ионов кальция. По предположению, кальций осуществляет взаимосвязь между метаболизмом нейрона и его мембраной, являясь метаболически зависимым компонентом клеточной1 проводимости; он принимает непосредственное участие в формировании пластических реакций нейронов.

6.6 ДИСКРЕТНОСТЬ МНЕМИЧЕСКИХ ПРОЦЕССОВ

Буквы алфавита, атомы и молекулы -- все это кодовые обозначения важных сущностей, значение открытий которых нельзя переоценить.

Первым было открытие иероглифов и азбуки. Азбука состоит из малого количества букв. Например, кириллица -- из 33 букв, а латиница -- из 26. Этого, да еще немногих цифр и знаков, как оказалось, достаточно, чтобы удовлетворить все нужды цивилизации в приобретении, накоплении и передаче знаний. Идея дискретности мира наглядно проявляется в азбуке.

Векторное представление субъективного пространства в комплексных числах с высокой точностью отражает особенности восприятия

Вторым было открытие атомной структуры вещества, о чем впервые догадались Демокрит и Лукреций. В таблице Менделеева около ста различных атомов. Таков размер [алфавита кодовых обозначений материи. Число формул [вещества и кодовых комбинаций, т. е. кодовых «слов» в языке природы неимоверно велико, намного больше, чем обычных слов. Не все они и расшифрованы.

Третьим было открытие молекулярных кодов генетической памяти. Это всего четыре «буквы» -- четыре нуклеотида, составляющих молекулу дезоксирибонуклеиновой кислоты; чуть больше двух десятков «слогов» -- аминокислот, и бесконечное множество длинных кодовых «слов». Классический (Пример -- молекула гемоглобина.

На очереди открытие нейронных кодов, выражающих внутренний мир человека, его ощущения, эмоции, память, закономерности обработки информации, особенности личности. Что представляют из себя нейронные «буквы» и «слова»? 10 пройденном пути в этом захватывающе интересном направлении пойдет речь в настоящей главе.

Одно из условий успешного поиска -- накопленные в психологии количественные закономерности, характеризующие внутренний мир человека (в генетике также все начиналось с законов Менделя).

6.7 КОНСТАНТА ЛИВАНОВА

"Существует множество эмпирических зависимостей, называемых законами. В качестве примеров можно назвать основной психофизический закон, устанавливающий зависимость силы ощущения от физической интенсивности стимула, закон I постоянства скорости обработки информации человеком, закон постоянства объема кратковременной, или оперативной, памяти, закон постоянства времени поиска Ц-сведений в памяти и др. Но не имеется ни физиологического объяснения подобным законам, ни предсказаний еще неизвестных психологических феноменов на f-основе физиологических данных. Открытия клеточной нейрофизиологии, какими бы привлекательными они ни казались, в чем-то главном даже и разоружили физиологов и психологов, занятых проблемой нейронных основ поведения. Все внимание было устремлено на особенности активности одиночных нейронов, особенно I .нейронов-детекторов простых и сложных признаков, открытых Д. Хьюбелем и Т. Визелем. Многим казалось, что наборы таких нейронов объясняют процессы | обобщения сигналов, инвариантного восприятия изменчивого окружающего мира, р Нейронные импульсы служат носителями информации и являются своеобразны-|;ми нейронными буквами, наподобие электрических импульсов в компьютере. 1В России Е.Н. Соколов и его коллеги продвинулись, пожалуй, дальше всех в расшифровке нейронных кодов памяти. Соколов блестяще овладел техникой микро электродных исследований, выработал условные рефлексы у изолированных нейронов и раскрыл нейронные механизмы ориентировочного рефлекса. Наконец, Coj колов связал вместе поведение отдельных нейронов и индивида в целом, протори! дорогу к созданию искусственного интеллекта [Соколов, Вайткявичус, 1989; Sokq lov, 1994]. Он создал векторную психофизиологию, объяснив количественно фундаментальные явления в психологии взаимодействием двух физиологически векторов: векторов синаптической проводимости и векторов возбуждений, т. е. ней ровных импульсаций, поступающих к синапсам. Синаптические векторы -- основа памяти. Векторы возбуждения порождаются воспринимаемыми стимулами ] нейронными командами, обеспечивающими поведение. Развивая идею Соколова мы показали, что векторное представление субъективного пространства в комплексных числах (с использованием мнимых осей) с высокой точностью отражав1 особенности восприятия [Lebedev, 1993а]. Следующий после Е.Н. Соколова шаг расшифровке клеточных, нейронных механизмов психики был сделан Н.П. Бехтеревой. Именно она широко использовала термин «нейронные коды». Во время диагностических процедур Н.П. Бехтерева погружала множество микроэлектродов в глубь мозга и сумела записать группы импульсов, закономерно связанных в течение какого-то времени с физическими особенностями и смыслом воспринимаемы: и проговариваемых сигналов.

Группы импульсов и были названы «нейронными кодами», составляющим] «язык» мозга. Казалось, можно записать словарь нейронных кодов памяти [Бехтерева, 1980].

Про электроэнцефалограмму (ЭЭГ), к сожалению, забыли. П.К. Анохин сравнивал волны ЭЭГ с колебаниями температуры возле паровоза: попробуй догадайся по ним об устройстве двигателя. Н.А. Бернштейн рассуждал так: существуют некие кинетические процессы -- нейронная импульсация, появившаяся в филогенезе довольно поздно, и палеокинетические -- медленные колебания мембранных потенциалов, по происхождению более древние, метаболические, свойственные не только нейронам. Они не способны отразить тонкие психические особенности. Это что-то вроде ритмов дыхания, пищеварения или сердечной деятельности, т. е. вегетатика.

Однако объяснить количественно психологические явления в их динамик с учетом временных характеристик нейронной импульсаций не удавалось долго время. Это стало все же возможным с привлечением характеристик ЭЭГ, казавшейся столь «грубой» для решения замысловатых психологических загадок.

Предпосылки для их решения были созданы прежде всего М. Н. Ливановы; и его коллегами [Лебедев, Нилова, 1983; Ливанов, 1989]. Он в самом начале свои исследований, еще до Великой Отечественной войны, доказал, что периодически процессы мозга узкополосны, а их спектры гребенчаты. И это не случайное Ливанов впервые описал явление захвата ритмов. Независимо от него, с помощы первого компьютера феномен захвата частот выявил Норберт Винер, указав и принципиальную важность этого феномена для понимания механизмов психик! Как правило, условные рефлексы требуют многих сочетаний для своего закрепления. Ливанов, увлеченный идеей частотного взаимодействия, синхронизировал условные ритмичные вспышки с безусловными стимулами -- ритмичными ударами электрическим током -- и наблюдал сравнительно быструю выработку условного рефлекса. Аритмичные и несинхронные раздражения прочного рефлекса не вызывали.

Позже Ливанов обнаружил, что синхронизация ритмичных колебаний в пространственно разнесенных билатерально симметричных пунктах мозга как зеркало отражает напряженность психической деятельности человека и является зримым проявлением ассоциативных процессов. Он стал пионером метода многоканальной регистрации электрических потенциалов мозга, его первооткрывателем наряду с английским исследователем Г. Уолтером, и первым же из ученых столкнулся с трудностью, не преодоленной до сих пор. Как представить результаты картирования биопотенциальных полей мозга в сжатом виде, удобном для анализа? Многообразие картограмм подавляет, и многие электрофизиологи, не преодолев возникших трудностей, предпочитают старинный визуальный анализ рутинных электроэнцефалограмм, чернильных записей.

В самом деле, многообразие электроэнцефалографических узоров сопоставимо с многообразием субъективных переживаний, но явная связь двух миров не поддается легкому анализу. Отсюда понятен скепсис в отношении электроэнцефалограммы. Активность одиночных нейронов выглядит более обещающей. Однако нейронов миллиарды, и законы их взаимосвязи в психических актах ускользают от исследователя. Но разве и в самом деле между волнами импульсации одиночных нейронов и волнами ЭЭГ лежит пропасть?

В 1963 г. А. Н. Лебедев и его коллеги обнаружили, что между волнами вызванных потенциалов, т. е. реактивных изменений ЭЭГ, и волнами импульсации в толще мозговой коры существует явная связь. Поверхностной негативности соответствует урежение импульсов в толще коры, а поверхностной позитивности -- учащение. Об этом впервые сообщил М. Н. Ливанов на Международной конференции, посвященной 100-летию выхода в свет книги И.М. Сеченова «Рефлексы головного мозга». Он рассказал о результатах, раскрывающих искомую связь. Импульсы и волны -- два разных выражения одной и той же сущности, а именно пространственно-временной организации периодических процессов мозга. В опытах на животных (при исследовании взаимосвязи медленных колебаний В диапазоне частот электроэнцефалограммы с импульсной активностью центральных нейронов) было установлено, что отдельные нейроны не являются простыми алгебраическими сумматорами [Забродин, Лебедев, 1977]. Нейроны избирательно относятся к стимуляции в зависимости от исходного состояния. Последнее циклически изменяется из-за связи импульсации с метаболизмом нейрона.

Решение дифференциального уравнения первого порядка с запаздыванием объяснило характерные особенности нейронных циклов, регулярность волн электроэнцефалограммы и способность к захвату частот (феномен был впервые описан . Н. Ливановым в 1938 г. и Н. Винером в 1948 г. ), в том числе ступенчатость отличий между периодами колебаний и полифазность вызванных потенциалов.

Согласованность во времени нейронных импульсов -главное условие для существования нейронных ансамблей, создаваемых как под влиянием стимуляции, так i независимо от нее в ходе творческих озарений и обобщения данных, хранящихся в памяти. Волны импульсаци в глубинах мозга следуют одна за другой с небольшии промежутками, равными длительности относительно рефрактерности после каждого нейронного импульса Способность нейрона к генерации следующего импульса восстанавливается не сразу после предыдущего, а с некоторой задержкой. Задержка, необходимая для восстановления исходного состояния, очень мала, порядка одной сотой секунды. Ее можно оценить по расположению главного пика в распределении интервалов между импульсами, вызванными афферентной бомбардировкой.

В ЭЭГ относительная рефрактерность проявляется в скачкообразных смещениях фазы биоэлектрических волн при плавном учащении или урежении воспринимаемых стимулов, например вспышек света. Впервые такой феномен захвата был описан М. Н. Ливановым в 1938 г. «Достаточно возникнуть расхождению между частотой раздражения и частотой мозгового ритма на 1/10 долю периода, как прежний корковый процесс замещается новым», -- утверждал он, объясняя скачкообразные изменения частоты потенциалов навязывания при плавном изменении частоты вспышек [Ливанов, 1989, с. 44].

Таким образом, М. Н. Ливанов первым определил численное значение ступеньки (около 10 % (R = 0,1) по отношению к периоду исходного колебания). Применительно к диапазону самого мощного ритма у человека (альфа-ритма, по Бергеру), с периодом колебаний в 100 мс, длительность ступеньки равна 10 мс [Lebedev, 1990]. Относительная величина ступеньки, названная нами частотной рефрактерностью, проявляется в биениях разночастотных альфа-колебаний в так называемых веретенах альфа-ритма, периодических волнообразных вздутиях и спадах амлитуды волн. Относительную величину ступеньки, равную десятой части периода, мы назовем константой Ливанова (первый параметр). Этот показатель мозговой ритмики доступен измерению и контролю.

Второй параметр -- частота самых мощных колебаний в спектре ЭЭГ, чаще всего 10 Гц (F - 10 Гц). Это константа, индивидуально свойственная каждому человеку (у одного -- 9 Гц, у второго -- 10 Гц, у третьего -- 11 Гц). Логично назвать ее по имени первооткрывателя константой Бергера.

У очень малой части взрослых людей альфа-ритм явно не выражен. Возможно, причина этого кроется в индивидуальных вариациях размещения нейронов, продуцирующих ритм. Вероятно, это одинаково ориентированные нейроны, причем где таких нейронов больше, там и альфа-ритм мощнее. Альфа-волны регистрируются даже у людей без альфа-ритма. В спектре мощности ЭЭГ в диапазоне альфа-частот от 8 до 13 Гц никогда не бывает провала до нуля.

Человек отличается от животных не только интеллектом и относительно большим весом головного мозга, но и ярко выраженной регулярностью и ритмичностью мозговых волн с частотой около 10 Гц. Как же их не связать с интеллектом?

Приходится удивляться прозорливости Дэвида Гартли, еще в XVIII в. догадавшегося о связи высокого интеллекта человека с регулярностью мозговых биоэлектрических волн (задолго до учения о самом электричестве). Во времена Гартли электричество было известно только как свойство янтаря притягивать пылинки. Его догадка о том, что периодические процессы мозга, возможно, имеют электрическую природу, изумительна [Гартли, 1967]. Этот знаменитый английский врач, пораженный формулой планетарных циклов, выведенной незадолго до того Исааком "Ньютоном, впервые предположил, что даже самые высокие движения души человека в поисках смысла жизни, Бога и справедливости закономерны, неизбежны и объективно обусловлены именно периодическими, необычайно устойчивыми мозговыми I процессами (в современных терминах -- циклами нейронной активности).

Не велика ли дистанция? Что общего между космическими законами, управляющими движениями планет, и душой человека? Психологам и сейчас свойственно увлекаться поверхностными аналогиями. Так, часто называют законами весьма) слабые связи. Но вышло так, что смелая догадка оправдалась. Д. Гартли намного ; опередил свое время.

Циклические движения планет необычайно устойчивы и вечны. Аналогично, по "предположению Д. Гартли, лишь циклически повторяющиеся (тогда еще неясные) .превращения материи служат основой личности и памяти, т. е. основой человеческого духа. Изменения структуры не могут быть носителем информации, как сказали бы мы. Структурные изменения гораздо менее устойчивы, чем циклы активности.

6.8 ОБЪЕМ И БЫСТРОДЕЙСТВИЕ ПАМЯТИ

Есди следовать логике Д. Гартли, А. А. Ухтомского, А. Ф. Самойлова, М. Н. Ливанова, Г. Уолтера, Е. Р. Джона, К. Прибрама и других сторонников идеи динамического кодирования воспринимаемой и хранимой в памяти информации, то можно предположить, что нейронные ансамбли, ответственные за субъективное отражение, активируются периодически, разряжаясь импульсами.

Из-за биений частот, слагающих ЭЭГ, актуализированные образы памяти как бы пульсируют с периодом биений, максимальная длительность которого вычисляется по следующей формуле: Т = \/(FR). Заметим, что 1/R = FT.

Из всего набора С образов долговременной памяти в каждый текущий момент актуализировано ограниченное число М разных образов [Atkinson et al., 1974]. В каждый текущий момент с вероятностью 1/Модин из образов имеет максимальную возбудимость. Время реакции в ответ на появление стимула, адекватного об->* разу, в этот момент минимально. Стимулы подаются независимо от периодических колебаний активности нейронов (экспериментатор их не видит). Следовательно, вероятность совпадения стимула с той или иной фазой колебаний возбудимости одинакова в течение всего периода колебаний. Какие-то стимулы совпадаю с фазой повышенной возбудимости, и ответные реакции следуют без всякой дополнительной задержки. В остальных случаях задержка равномерно распределяется в течение всего отрезка пониженной возбудимости ансамблей нейронов.

Сказанного достаточно для расчета средней длительности задержки t в завис мости от числа М равновероятно ожидаемых и числа К одновременно предъявляемых стимулов:

где р = (1-(1- R)/KM); Т = i/FR; F- 10 Гц (константа Бергера);

R = 0,1 (константа Ливанова).

Уравнение выражает количественно скорость обработки информации человеком. В частности, время, необходимое в среднем для опознания одного стимула» числа М равновероятных стимулов, определяется по следующей формуле:

В психологии существует закон скорости обработки информации человеком установленный У. Хиком [Hick, 1952]. Время обработки прирастает линейно в линейном росте логарифма от количества альтернатив в ситуациях выбора. Основ ной недостаток этого закона -- узкая сфера его действия. Закон справедлив, количество альтернатив меньше десяти. Закон подвергался критике и был предметом многих дискуссий.

Уравнение (1), включающее в себя обе физиологические константы и выведенное из представлений о кодировании информации циклами нейронной активности, намного точнее. Оно действенно при неограниченном количестве альтерната и предсказывает результаты психологических опытов с высокой степенью точное ти [Бовин, 1985]. В исследованиях И. Ю. Мышкина, А. В. Пасынковой, Ю. А. Шштенко, Т. С. Князевой, Г. В. Котковой, Д. В. Лозового, О. Ж. Кондратьевой, В. К. Ош и других сотрудников лаборатории А. Н. Лебедева было установлено, что уравнение (1) для оценки быстродействия восприятия и памяти правильно предсказывает разнообразные психологические данные. Следовательно, представление о кодировании воспринимаемых и хранимых в памяти сведений волнами нейроннойы тивности имеет солидное экспериментальное основание.

Теперь перейдем от временных характеристик восприятия к оценке объеме воспринимаемой и хранимой в памяти информации. Психологи давно уже выделили несколько типов памяти человека: иконическую, кратковременную и долге временную. Имеются и другие классификации.

С одной стороны, память человека выглядит безбрежной. Это долговременна память. С другой -- удивительно маленькой. Такова оперативная, или кратковременная (рабочая, как ее иногда называют), память. А раньше ее называли объемом сознания. Психологи попробовали решить задачу о зависимости объема кратковременной памяти от алфавита запоминаемых стимулов и отступились. Появилось правило Д. Миллера «семь плюс или минус два», утверждающее независимость объема от алфавита запоминаемых стимулов [Miller, 1956]. Заданный разброс широк, но наделе он еще больше: от одной-двух единиц (например, в случае иероглифов) до 25-30 в случае бинарных сигналов. Представление о циклах нейронной активности как материальном субстрате памяти и здесь оправдало себя в полном соответствии с исходной идеей Д. Гартли.

Единицами памяти, ее нейронными кодами служат пакеты волн, т. е. синхронных импульсных разрядов многих нейронов в составе одного ансамбля. Нейронных I ансамблей огромное множество. Каждый из них хранит информацию о каком-то объекте памяти в виде устойчивого волнового узора. Ансамбль состоит из нескольких групп нейронов. Отдельная группа способна генерировать последовательно от 1 до 10 когерентных залпов импульсов за один период доминирующих колебаний при условии, что интервалы между залпами не меньше, чем ливановская ступенька R - 0,1 по отношению к длительности доминирующего периода. Число нейронов в ансамбле варьирует. Чем больше нейронов вовлекается в ритмы какого-то ансамбля, тем выше вероятность осознания соответствующего образа. Минимальное количество нейронов, обеспечивающее устойчивость ансамбля, порядка 100-300, согласно расчету А. Н. Лебедева и В. А. Луцкого (цит. по [Забродин, Лебедев, 1977, с. 243].

Не синапсы и даже не отдельные нейроны типа нейронов-детекторов или командных нейронов служат единицами хранения, а лишь группы, ансамбли содружественно пульсирующих нейронов. Разумеется, это не атомные и не молекулярные, а клеточные, именно нейронные коды. Их можно назвать также циклическими кодами памяти, потому что цикличность, т. е. регулярность разрядов массы нейронов, отражаемая в регулярности волн электроэнцефалограммы, является специфической особенностью таких кодов.

Алфавит нейронных единиц памяти легко рассчитывается. Он находится в обратной зависимости к константе Ливанова. А именно, один из множества залпов указывает на начало периода. Именно поэтому размер алфавита таких кодовых единиц на единицу меньше, т. е. N = 1/R -- 1. Число нейронных групп, вовлекаемых в активное состояние за один период (последовательно друг за другом) равно тому же числу, N = 1/R -- 1. Как мы видим, длина кодовых цепочек, т.е. последовательно вовлекаемых нейронных ансамблей, лимитирована той же самой частотной рефрактерностью и так же легко рассчитывается.

Отсюда выводится максимально возможное количество разных кодовых последовательностей (около полумиллиарда) по формуле: С = Л^ = (1/7? -- 1)<'/к-о Такова емкость долговременной памяти, С -- 99 = 387 420 489 единиц памяти.

Каждая единица памяти -- это одно определенное приятие или команда, т. е. паттерн действия. Приведем сравнение: размер активного словаря на родном языке около 10 000, и даже у Шекспира и Пушкина, словарь произведений которь подсчитан, он меньше 100 000 слов. Следовательно, человек способен владеть i сятками языков, что, конечно, не ново. Ново то, что емкость памяти -- функци одной-единственной физиологической константы (R = 0,1). Это дробь Ливано|| (она названа так по аналогии с другой знаменитой константой -- дробью Вебер (см. след, параграф).

Вычисленная емкость позволяет узнать зависимость объема кратковременно памяти от алфавита запоминаемых стимулов. В одном уравнении мы связали * фундаментальных психологических показателя: емкость долговременной памят (С), емкость оперативной, или рабочей памяти (Я), и емкость внимания (Л т. е. число актуализированных различных образов долговременной памяти:

С = М« (2)

где А<М<АхН, и, в свою очередь, С = (1/.R -- 1) <1/R"1), где R -- физиологическая константа Ливанова (R - 0,1); А - размер заданного алфавита стимулов.

Следует пояснить еще раз, что не все единицы памяти, т. е. не все ансамбл! актуализированы одновременно. Только небольшое число М ансамблей актуал» зировано в каждый текущий момент времени. Это число служит мерой объема внимания.

Если человек сосредоточил внимание в определенный момент времени на запоминании двоичных элементов (нулей и единиц), то наименьший объем внимания равен размеру объективно заданного двоичного алфавита, знакомого ему, т. е. М - А = 2. Наибольший объем внимания равен следующему произведена М = А х Я (в данном примере М = 2 х Я, где Я -- коэффициент пропорциональности, равный объему кратковременной, или рабочей, памяти для запоминаемых эле-| ментов; это максимальное значение коэффициента). :[

Кратковременная память Я измеряется максимальным числом элементов, не обязательно разных и правильно воспроизведенных с учетом их значения и позиции в ряду после однократного восприятия. Длительность однократного восприятия не превышает 2-10 с.

Из уравнения (2) следует простое правило для прогноза емкости кратковременной памяти на комбинации признаков, если измерены емкости на каждый из признаков в отдельности:

где Я -- искомый объем для комбинации; Я,, Я2, Я3 -- объемы кратковременной i памяти на исходные признаки.

Эта формула, выведенная аналитически из предыдущей, предсказала существование нового феномена, ранее неизвестного в психологии (кроме того, с высокой степенью точности). Ошибка прогноза в разных опытах Н. А. Скопинцевой,

Л. П. Бычковой, М. Н. Сыренова и других исследователей по проверке формулы , (3) нередко составляла всего 3-5 %. Сравните этот показатель с 25-35 % по правилу Миллера, которое в этой ситуации работает неудовлетворительно. По Миллеру, такая задача неразрешима.

В работах И. Ю. Мышкина и В. В. Майорова [Мышкин, Майоров, 1993], плодотворно развивающих теорию динамической памяти, а также в других исследованиях [Маркина и др., 1995] были установлены искомые зависимости объема памяти от параметров электроэнцефалограммы. Таким образом, была реализована цель И. П. Павлова -- количественно описать известные психологические явления и предсказать новые с помощью физиологических понятий (причем фундаментальные психологические явления, описывающие объем памяти и ее быстродействие).

Примечательно, что в уравнения для расчета емкости памяти человека и ее быстродействия входят два параметра ЭЭГ, частотная рефрактерность (К) и доминирующая частота (F). Они являются, как принято говорить после П. К. Анохина, системообразующими параметрами, должными объяснить множество психологических показателей.

Уравнения (1), (2) вместе с их выводом и экспериментальной проверкой детально рассмотрены в некоторых работах [Лебедев, 1982; Лебедев и др., 1985].

Найденные физиологические формулы памяти и ее быстродействия обеспечили решение двух старинных психологических проблем. Нас интересует, в первую очередь, проблема моментального выбора, поиска нужных сведений в памяти, сведений, необходимых на каждом шаге для реализации целенаправленного поведения.

В когнитивной психологии, пожалуй, больше всего литературы по парадигме С. Стернберга, ученика Д. Луса, касающейся скорости поиска сведений в памяти [Sternberg, 1969]. С. Стернберг придумал методику для определения такой скорости. Выявилась яркая зависимость скорости от размера ряда запомненных стимулов. П. Каванох [Cavanagh, 1972] обработал данные множества исследователей и обнаружил константу около 1/4 с, характеризующую время сканирования всего содержимого кратковременной памяти независимо от содержания запомненного материала.

По методике С. Стернберга, человек сначала запоминает ряд стимулов, например цифр, как целое, -- как единичный образ, -- и удерживает этот новый образ до момента появления одного-единственного стимула, который входит в запомненный набор (или, напротив, не входит в него), отвечая нажатием на соответствующую клавишу. В этом случае, по условиям опыта, параметр М из уравнения (1) равен объему Я кратковременной памяти, а параметр К" 1.

Для сличения одного образа стимула с предъявленным требуется t/Hвремени, а для опознания предъявленного стимула, если его образ присутствует в запомненном ряду, требуется в сумме от 1 до числа Я сличений, в среднем (1+Я)/2 сравнений, т. е. 0,5(Я + 1 )t/H единиц времени, что равно 0,25 с при типичных значениях F-10 Гц и Л-0,1.

Вычисленная из физиологических данных величина отличается от опытного значения, определенного Каванохом по множеству психологических данных, менее чем на 3 %. Интересно заметить, что при Я = 1 (разумеется, по условиям измерения К = 1) время сличения по формуле (1) минимальн (около 5 мс). Оно равно константе Гайсслера, с точность до 0,3 мс [Geissler, 1990].

Для оценки среднего прироста времени при Я > i в расчете на один стимул следует разделить найденно значение 0,5(Я + 1)?/Я времени сканирования всего i держимого кратковременной памяти на количество : ращений (Я - 1) стимульного ряда. Психологические да ные полностью согласуются с физиологическим расчет [Лебедев и др., 1985; Lebedev, 1990].

Еще одно предсказание касается скорости зрительного поиска, также следу щей чисто аналитически из уравнения (1). Формула (1) не только устанавлив зависимость скорости поиска от индивидуальных электрофизиологических кон| стант, но и от размера алфавита воспринимаемых зрительных сигналов [Лебедев! др., 1985].

Из-за циклических колебаний возбудимости нейронных ансамблей образы долговременной памяти, в том числе образы воспринимаемых и произносимь слов, актуализируются не все сразу, а по очереди, причем некоторые чаще, друг реже. По частоте актуализации, т. е., например, по частоте появления одного и тог же слова в письменной речи, можно судить о закономерностях циклических ней ровных процессов и, наоборот, по особенностям нейронных циклов предсказывав характеристики речи.

Если моменты актуализации разных образов совпадают, то такие единицы памяти имеют шанс объединиться. Таким образом вырабатывается новое понятие. Так происходит научение и реализуются акты творчества.

Выживают, т. е. не объединяются навсегда в одном ансамбле, только те образы памяти, циклическая активность которых не коррелирует между собой. Периоды циклов такой активности соотносятся как члены натурального ряда 1:2:3:4. а вероятности актуализации, как члены гармонического ряда (1/1) : (1/2) : (1/3): (1/4). Сумма вероятностей равна единице, а значение первого члена равно физио-» логической константе Ливанова. Так выводится следующая формула, с помощью которой можно предсказать зависимость частоты появления слова (р) в связной речи от номера его ранга:

Р = R/i, (4)

где i -- ранг слова по частоте появления в тексте.

Формула, включающая в себя физиологическую константу, выражает собой известный с 1930-х гг. закон Ципфа [Zipf, 1935]. Из формулы (4) следуют уравнения для расчета зависимости объема словаря от размера текста, в котором данный словарь реализован, и вычисления интервалов между повторениями одного и того же слова в тексте [Лебедев, 1985]. Речь, письменная или устная, причем не только поэзия, музыкальна. Константа Ливанова входит в уравнение (4) гармонического ряда слов, ранжированных по частоте.

Используя уравнения множественной линейной регрессии для оценки способности школьников к обучению по характеристикам ЭЭГ, мы нашли, что параметры альфа-ритма, определяющие емкость памяти, влияют также на успешность прогноза интеллектуального развития [Артеменко и др., 1995], что неудивительно. Таким образом, теория циклических нейронных кодов памяти позволяет по-новому взглянуть на уже известные психологические законы.

6.9 ДИАПАЗОН ОЩУЩЕНИЙ

В психофизике дробь Вебера определяет границу между ощущаемым и неощущаемым. Это едва заметный субъективно прирост ощущения, взятый по отношению к исходной величине стимула. Вытекающая из дроби опенка величины ощущений -- одна из центральных проблем психологии. Нед;!, м закон, открытый Г. Фехнером, во всех энциклопедиях называют основным законом психофизики. До сих пор не затухают жаркие дискуссии по поводу основного психофизического закона в двух его ипостасях: формулировке его первооткрывателя Г. Фехнера о логарифмической зависимости силы ощущения от интенсивности стимула и утверждении С. Стивенса о степенном характере такой зависимости [Забродин, Лебедев, 1977].

Опираясь на данные французского психолога А. Пьерона о нелинейной зависимости времени простой реакции от интенсивности стимула, мы находим физиологическое решение проблемы основного психофизического закона. А. Пьерон обнаружил, что скрытое время простой сенсомоторной реакции обратно связано с интенсивностью стимула, возведенной в некую степень. Позже было обнаружено, что показатель степени имеет ту же величину, что и показатель степени в основном психофизическом законе Стивенса [Bonnet, 1990] для яркости и громкости. Следовательно, произведение скрытого времени t на величину ощущения S, измеренного по Стивенсу, есть константа, выраженная в условных единицах:

tS-1 (5)

Диапазон всевозможных ощущений задан константой С = № согласно формуле (1). Минимальная перцептивная задержка вычисляется по формуле (1) при К = 1 ИМ -1. Она равна 5 мс, что соответствует константе Гайсслера (Geissler, 1990). Максимальная задержка для слабых, околопороговых сигналов при К> 1 иМ»1 приближается к 1000 мс. Отношение максимальной задержки к минимальной

(1000/5 = 200) соответствует диапазону ощущений. Минимальное значение пою зателя степени (Kmin) в законе Стивенса находится по формуле

-log 200/log (С),

где С -- объем долговременной памяти, вычисленный ранее.

Остальные значения показателя (/f.) вычисляются по той же формуле с: становкой в нее логарифма отношения верхнего (болевого) порога интенсивное!1 для г-й модальности (зрительной и слуховой) к нижнему абсолютному порогу виё сто выражения log(C). Опытные данные многих авторов, обобщеннные Р. Тете няном [Teghtsoonian, 1971], подтверждают точность подобного расчета.

Отношение (tl -- t2)/?, выражает характерную особенность дроби Вебера, в ко торой tl и ?2 -- скрытые задержки восприятия, вычисленные по формуле (5) при подстановке в нее ощущений (5) в относительных единицах (от 1 до 200), вызванн едва различимыми по интенсивности стимулами. Последовательно уменьшающиеся значения дроби равны членам гармонического ряда 1; 0,5; 0,33; 0,25 и т. д. Дробь Вебера, надо заметить, также служит предметом незатухающих дискуссий [Lebedev, 1993b; Link, 1992]. Оригинальную ее интерпретацию предложил недавно Е. Н. Соколов в докладе, посвященном памяти Э. Г. Вебера.

Таким образом, из физиологических предпосылок вытекает органическая связь временных параметров восприятия стимулов с ощущением их интенсивности. Показатель степени в законе Стивенса (6) является сложной функцией нейрофизиологических параметров. Чем больше разнообразие нейронных кодов, тем шире диапазон ощущений.

6.10 НЕЙРОННЫЕ КОДЫ ПАМЯТИ

Нейронными кодами памяти служат циклически повторяющиеся волны импульсов, порождаемые нейронными ансамблями. Длительность одного цикла составляет около 100 мс. Заметим, что по данным А. М. Иваницкого, работавшего с вызванными потенциалами, примерно столько же времени уходит на формирование перцептивного образа [Иваницкий, 1976]. Число ансамблей, последовательно вовлекаемых в активность за этот период, определяется константой Ливанова. Чаще всего оно равно 10. Каждый ансамбль за один цикл активности генерирует от 1 до 10 залпов из нейронных импульсов множества нервных клеток, образующих ансамбль. Минимальное число нейронов, обеспечивающее устойчивые, незатухающие колебания ансамблевой ативности, составляет около 100 клеток. Максимальное число неизвестно (порядка десятков и сотен тысяч). Указанные числовые значения зависят от индивидуальных значений двух электрофизиологических констант -- Ливанова (около 1/10 от цикла активности) и Бергера (порядка 10 Гц).

В уравнениях (1)--(6) с электрофизиологическими константами нашла выражение упомянутая ранее мечта И. П. Павлова -- количественно объяснить известные психологические явления и предсказать новые с помощью физиологических показателей. Впервые по физиологическим показателям благодаря трудам Г. Бергера и М. Н. Ливанова вычислены объем памяти и ее быстродействие. Весьма вероятно, что на этой основе будут созданы новые эффективные методы обучения с использованием компьютеров, воспринимающих потенциалы мозга, и разработаны новые поколения нейрокомпьютеров, способных к творчеству и далекому прогнозу событий.

Компьютерные сети, которые распространяются по всему миру, уподобятся человеческому мозгу и превзойдут человеческий интеллект. Несомненно, наступит эпоха самоорганизации и «кристаллизации» информации, заключенной в гигантских нейроноподобных сетях.

То, что теория условных рефлексов была названа учением, т. е. непогрешимой истиной, нельзя ставить в вину И. П. Павлову. Теория Павлова -- одна из первых ступенек на лестнице, ведущей к преобразованию психологии в точную науку по пути, ранее пройденному физиками и химиками. В этом ее смысл.

В заключение еще раз подчеркнем, что крупной вехой в движении по заданному Павловым направлению стали работы академика М. Н. Ливанова. Две физиологические константы (Ливанова, R = 0,1, и Бергера, F = 10 Гц) в уравнениях когнитивной психологии количественно объясняют фундаментальные психологические особенности обработки информации человеком, включая закономерности восприятия, памяти и речи. Константа Ливанова ограничивает разнообразие циклических кодов памяти, а вместе с константой Бергера -- также и ее быстродействие.

Впервые по физиологическим показателям благодаря трудам Г. Бергера и М. Н. Ливанова вычислены объем памяти и ее быстродействие. Весьма вероятно, что на этой основе будут созданы новые эффективные методы обучения с использованием компьютеров, воспринимающих потенциалы мозга, и разработаны новые поколения нейрокомпьютеров, способных к творчеству и далекому прогнозу событий

Глава 7. ПСИХОФИЗИОЛОГИЯ ЭМОЦИЙ

7.1 ЭМОЦИЯ КАК ОТРАЖЕНИЕ АКТУАЛЬНОЙ ПОТРЕБНОСТИ И ВЕРОЯТНОСТИ ЕЕ УДОВЛЕТВОРЕНИЯ

Уильям Джеймс -- автор одной из первых физиологических теорий эмоций -- дал своей статье, опубликованной более 100 лет тому назад, весьма выразительное название: «Что такое эмоция?» [James, 1884]. Тем не менее через 100 лет после того, как был сформулирован этот вопрос, мы можем прочесть в руководстве «Физиология человека» следующее признание: «Несмотря на то, что каждый из нас знает, что такое эмоция, дать этому состоянию точное научное определение невозможно... В настоящее время не существует единой общепризнанной научной теории эмоций, а также точных данных о том, в каких центрах и каким образом эти эмоции возникают и каков их нервный субстрат» [Human physiology 1983]. По мнению Б. Райма, современное состояние изучения эмоций представляет «разрозненные знания, непригодные для решения конкретных проблем» [Rime, 1984]. К выводу о кризисном состоянии исследования эмоций склоняется и И. А. Васильев [1992].

В 1964 г. результаты психофизиологических экспериментов и анализ имевшихся к тому времени литературных данных привели к заключению о том, что эмоции высших животных и человека определяются какой-либо актуальной потребностью и оценкой вероятности (возможности)

В наиболее общей форме правило возникновения эмоций может быть представлено в виде следующей структурной формулы:

где Э -- эмоция, ее сила, качество и знак; Я -- сила и качество актуальной потребности в самом широком смысле слова (для человека это не только витальные потребности типа голода и жажды, но в равной мере многообразные социальные и идеальные (духовные) потребности вплоть до самых сложных и возвышенных); (Ян-Яс) -- оценка вероятности (возможности) удовлетворения потребности на основе филогенетического и ранее приобретенного индивидуального опыта, где И -- информация о средствах и времени, прогностически необходимых для удовлетворения потребности; Ис -- информация о средствах и времени, которыми субъект располагает в данный момент. Термин «информация» здесь употребляется в смысле ее прагматического значения, которое определяется изменением вероятности достижения цели.

В 1984 г. Д. Прайс и Дж. Баррелл [Price, Barrell, 1984] воспроизвели опыты П. В. Симонова и его коллег в чисто психологическом варианте, предложив испытуемым мысленно представить себе какое-либо эмоционально окрашенное событие и затем отметить на специальных шкалах силу своего желания, предполагаемую вероятность достижения цели и степень эмоционального переживания. Количественная обработка полученных данных подтвердила существование зависимости, названной «общим законом человеческих эмоций». Соответствие информационной теории эмоций реально наблюдаемым и экспериментально полученным фактам было многократно продемонстрировано на примерах из авиакосмической [Лебедев, 1980; Береговой, Пономаренко, 1983], управленческой [Котик, Емельянов, 1985] и педагогической [Конев и др., 1987] практики. «Формула эмоций» вошла в учебники и руководства [Godefroid, 1988].

7.2 СТРУКТУРЫ МОЗГА, РЕАЛИЗУЮЩИЕ ПОДКРЕПЛЯЮЩУЮ, ПЕРЕКЛЮЧАЮЩУЮ, КОМПЕНСАТОРНО-ЗАМЕЩАЮЩУЮ И КОММУНИКАТИВНУЮ ФУНКЦИИ ЭМОЦИЙ

Результаты нейрофизиологических экспериментов показывают, что потребности, мотивации и эмоции имеют различный морфологический субстрат. Так, при стимуляции зон самораздражения латерального гипоталамуса градуально нарастающим электрическим током поведенческие реакции крысы всегда имеют одну и ту же последовательность. Слабое раздражение вызывает генерализованное поисковое поведение без обращения к находящимся в камере целевым объектам -- пище, воде, педали для самораздражения. При усилении интенсивности тока животное начинает есть, пить, грызть и т. п. По мере дальнейшего усиления тока возникает реакция самораздражения с сопутствующими мотивационными эффектами, а затем -- только самораздражение. Введением определенных фармакологических веществ в зоны самораздражения можно избирательно повлиять на мотивационные и эмоциональные компоненты поведения, например ослабить стремление животного к пище, не изменив объем ее поглощения в случае контакта [Ikeinoto, Panksepp, 1996].


Подобные документы

  • Значение компьютерной метафоры для психофизиологии. Диагностика состояния периферических сосудов. Значение комплексного подхода в изучении функциональных состояний. Функции фронтальных долей мозга в обеспечении внимания. Гипотеза Г. Линча и М. Бодри.

    контрольная работа [23,8 K], добавлен 07.05.2012

  • Предмет, сущность, задачи, основные понятия психофизиологии профессиональной деятельности. Методы психофизиологического исследования. Сравнительный анализ методов психофизиологических исследований в психофизиологии профессиональной деятельности.

    курсовая работа [35,3 K], добавлен 20.01.2016

  • Становление психофизиологии как одной из ветвей нейронауки. Понятие сенсорных систем, их основные функции и свойства, адаптация и взаимодействие. Физиологические основы сновидений и причина сомнамбулизма. Психофизиология творческой деятельности и речи.

    шпаргалка [93,5 K], добавлен 21.06.2009

  • Положение психофизиологии по отношению к другим дисциплинам. Проблемы соотношения мозга и психики, души и тела. Сущность "дуализма" Р. Декарта. Эволюция представлений о рефлексии. Современные представления о соотношении психического и физиологического.

    презентация [287,0 K], добавлен 09.10.2013

  • Сущность психофизиологии как науки и физиология познавательных способностей человека, роль психических процессов в его поведении. Зависимость сознания от моделирующей системы мозга и физиология мышления. Рефлекторная теория и основные свойства памяти.

    реферат [34,0 K], добавлен 04.08.2009

  • Исследования памяти: микроэлектродный метод, электроэнцефалография (ЭЭГ), магнитоэнцефалография. Визуальные методы исследования памяти: позитронно-эмиссионная томография, ядерная магнитная резонансная интроскопия. Структуры мозга, отвечающие за память.

    реферат [15,0 K], добавлен 05.10.2009

  • Прикладные области психофизиологии: клиническая, эргономическая психофизиология, психофизиология диагностики и компенсации когнитивных нарушений. Методы психофизиологического исследования: полиграфия, электродермография. Психофизиология памяти и научения.

    контрольная работа [21,3 K], добавлен 15.04.2012

  • Внимание как динамика психического процесса. Селективный отбор информации. Непроизвольная и произвольная формы внимания. Селективное протекание психических процессов. Вызванные потенциалы как перспективные методы для исследования всех видов внимания.

    реферат [30,3 K], добавлен 12.05.2009

  • Специальные методы сбора информации в психологии. Особенности изучения работы головного мозга методами психофизиологии. Управление памятью, недостатки детектора лжи в определении обмана. Волевая регуляция поведения. Основные методы обучения и воспитания.

    контрольная работа [56,4 K], добавлен 04.05.2013

  • Краткая характеристика эпохи Средневековья и Возрождения, особенности развития психологии в этот период. Зарождение психофизиологии в Средневековье. Первые ученые, занимающиеся исследованием анатомо-физиологического строения человеческого организма.

    реферат [20,3 K], добавлен 26.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.