Основы психофизиологии

Строение мозга и методы его исследований. Особенности передачи и переработки сенсорных сигналов, управления движениями. Характеристика памяти и эмоций, внимания и сознания. Сущность научения, его механизмы. Основные аспекты отраслей психофизиологии.

Рубрика Психология
Вид книга
Язык русский
Дата добавления 21.05.2009
Размер файла 563,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Оглавление

ПРЕДИСЛОВИЕ

ГЛАВА 1. МОЗГ

1.1 Общие сведения

1.2 Нейрон. Его строение и функции

ГЛАВА 2. МЕТОДЫ ПСИХОФИЗИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

2.1 Регистрация импульсной активности нервных клеток

2.2 Электроэнцефалография

2.3 Магнитоэнцефалография

2.4 Позитронно-эмиссионная томография мозга

2.5 Окулография

2.6 Электромиография

2.7 Электрическая активность кожи

ГЛАВА 3. ПЕРЕДАЧА И ПЕРЕРАБОТКА СЕНСОРНЫХ СИГНАЛОВ

3.1 Обнаружение и различение сигналов

3.2 Передача и преобразование сигналов

3.3 Кодирование информации

3.4 Детектирование сигналов

3.5 Опознание образов

3.6 Адаптация сенсорной системы

3.7 Взаимодействие сенсорных систем

3.8 Механизмы переработки информации в сенсорной системе

ГЛАВА 4. ПСИХОФИЗИОЛОГИЯ СЕНСОРНЫХ ПРОЦЕССОВ

4.1 Общие свойства сенсорных систем

4.2 Зрительная система

4.3 Слуховая система

4.4 Вестибулярная система

4.5 Соматосенсорная система

4.6 Обонятельная система

4.7 Вкусовая система

4.8 Висцеральная сенсорная система

4.9 Основные количественные характеристики сенсорных систем человека

ГЛАВА 5. УПРАВЛЕНИЕ ДВИЖЕНИЯМИ

5.1 Общие сведения о нервно-мышечной системе

5.2 Проприоцепция

5.3 Центральные аппараты управления движениями

5.4 Двигательные программы

5.5 Координация движений

5.6 Типы движений

5.7 Выработка двигательных навыков

5.8 Схема тела и система внутреннего представления

ГЛАВА 6. ПСИХОФИЗИОЛОГИЯ ПАМЯТИ

6.1 Временная организация памяти

6.2 Состояния энграммы

6.3 Гипотеза о распределенное™ энграммы

6.4 Процедурная и декларативная память

6.5 Молекулярные механизмы памяти

6.6 Дискретность мнемических процессов

6.7 Константа Ливанова

6.8 Объем и быстродействие памяти

6.9 Диапазон ощущений

6.10 Нейронные коды памяти

ГЛАВА 7. ПСИХОФИЗИОЛОГИЯ ЭМОЦИЙ

7.1 Эмоция как отражение актуальной потребности и вероятности ее удовлетворения

7.2 Структуры мозга, реализующие подкрепляющую, переключающую, компенсаторно-замещающую и коммуникативную функции эмоций

7.3 Индивидуальные особенности взаимодействия структур мозга, реализующих функции эмоций как основу темпераментов

7.4 Влияние эмоций на деятельность и объективные методы контроля эмоционального состояния человека

ГЛАВА 8. ФУНКЦИОНАЛЬНЫЕ СОСТОЯНИЯ

8.1 Определение функционального состояния

8.2 Роль и место функционального состояния в поведении

8.3 Модулирующая система мозга

ГЛАВА 9. ПСИХОФИЗИОЛОГИЯ ВНИМАНИЯ

9.1 Что такое внимание

9.2 Теории фильтра

9.3 Проблема внимания в традиционной психофизиологии

9.4 Проблема внимания в системной психофизиологии

ГЛАВА 10. ОРИЕНТИРОВОЧНЫЙ РЕФЛЕКС И ОРИЕНТИРОВОЧНО-ИССЛЕДОВАТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ

10.1 Ориентировочный рефлекс

10.2 Ориентировочно-исследовательская деятельность

ГЛАВА 11. ПСИХОФИЗИОЛОГИЯ СОЗНАНИЯ

11.1 Основные концепции сознания

11.2 «Светлое пятно»

11.3 Повторный вход возбуждения и информационный синтез

11.4 Сознание, общение и речь

11.5 Функции сознания

11.6 Три концепции -- одно сознание

ГЛАВА 12. ПСИХОФИЗИОЛОГИЯ БЕССОЗНАТЕЛЬНОГО

12.1 Понятие бессознательного в психофизиологии

12.2 Индикаторы осознаваемого и неосознаваемого восприятия

12.3 Семантическое дифференцирование неосознаваемых стимулов

12.4 Временные связи (ассоциации) на неосознаваемом уровне

12.5 Функциональная асимметрия полушарий и бессознательное

12.6 Обратные временные связи и бессознательное

12.7 Роль бессознательного при некоторых формах патологии

ГЛАВА 13. СОН И СНОВИДЕНИЯ

13.1 Активное наступление сна или лишение бодрствования?

13.2 Единый процесс или различные состояния?

13.3 Стадии медленного сна и быстрый сон

13.4 Сон в онто- и филогенезе

13.5 Потребность в сне

13.6 Депривация сна

13.7 Сновидения

13.8 Почему мы спим? (Функциональное значение сна)

ГЛАВА 14. СИСТЕМНАЯ ПСИХОФИЗИОЛОГИЯ

14.1 Активность и реактивность

14.2 Теория функциональных систем

14.3 Системная детерминация активности нейрона

14.4 Субъективность отражения

14.5 Психофизиологическая проблема и задачи системной психофизиологии

14.6 Системогенез

14.7 Структура и динамика субъективного мира человека и животных

14.8 Проекция индивидуального опыта на структуры мозга в норме и патологии

14.9 Требования к методологии системного анализа в психологии и системная психофизиология

ГЛАВА 15. ПСИХОФИЗИОЛОГИЯ НАУЧЕНИЯ

15.1 Психологические и биологические теории научения

15.2 Подход к научению как процессу

15.3 Представление о нейрофизиологических механизмах научения

15.4 Специфика психофизиологического рассмотрения научения

15.5 Системная психофизиология научения. Проблема элементов индивидуального опыта

15.6 Фиксация этапов обучения в виде элементов опыта

15.7 Влияние истории научения на структуру опыта и организацию мозговой активности

ГЛАВА 16. СВЯЗАННЫЕ С СОБЫТИЯМИ ПОТЕНЦИАЛЫ МОЗГА (ССП) В ПСИХОФИЗИОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ

16.1 Определение, основные проблемы и краткая история метода ССП

16.2 Методические особенности регистрации и обработки ССП

16.3 Феноменология и типология ССП

16.4 Проблема функционального значения ССП

16.5 ССП как отражение динамики индивидуального опыта

16.6 Перспективы использования метода ССП

ГЛАВА 17. ДИФФЕРЕНЦИАЛЬНАЯ ПСИХОФИЗИОЛОГИЯ

17.1 Концепция свойств нервной системы

17.2 Общие свойства нервной системы и целостные формально-динамические характеристики индивидуальности

17.3 Интегральная индивидуальность и ее структура

17.4 Индивидуальные особенности поведения у животных

17.5 Интеграция знаний об индивидуальности

17.6 Кросс-культурные исследования индивидуальности

ГЛАВА 18. ПСИХОФИЗИОЛОГИЯ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

18.1 Теоретические основания применения психофизиологии для решения практических задач в психологии труда

18.2 Методическое обеспечение психофизиологического аспекта прикладных исследований

18.3 Психофизиология профессионального отбора и профпригодное

18.4 Психофизиологические компоненты работоспособности

18.5 Психофизиологические детерминанты адаптации человека к экстремальным условиям деятельности

18.6 Психофизиологические функциональные состояния (ПФС)

18.7 Биологическая обратная связь (БОС)

18.8 Психофизиологический анализ содержания профессиональной деятельности

ГЛАВА 19. СРАВНИТЕЛЬНАЯ ПСИХОФИЗИОЛОГИЯ

19.1 Появление психического

19.2 Эволюция видов

19.3 Эволюционные преобразования мозга

19.4 Сравнительный метод в системной психофизиологии

ГЛАВА 20. ПСИХОФИЗИОЛОГИЯ И МОЛЕКУЛЯРНАЯ ГЕНЕТИКА МОЗГА

20.1 Мозг -- орган, экспрессирующий наибольшее число генов в организме

20.2 Эволюция генома млекопитающих в значительной степени обеспечивала эволюцию головного мозга

20.3 Проблема нейроэволюции связывает биологию с психологией

20.4 Молекулярная генетика устанавливает контакт между развитием мозга и научением

20.5 На молекулярно-генетическом уровне научение составляет с развитием единый континуум

20.6 На системном уровне активность «ранних» генов в мозге при научении переходит под когнитивный контроль

20.7 Мозг, психика и эволюция генома: На пути к теории нейроэволюции

ГЛАВА 21. КЛИНИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ

21.1 Предмет и задачи

21.2 Методы исследования

21.3 Шизофрения

21.4 Депрессия

21.5 Эволюционные аспекты шизофрении и депрессии

21.6 Нарушение внутрикорковых связей -- ключевое звено в патогенетических механизмах шизофрении и депрессии

СПИСОК ЛИТЕРАТУРЫ

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

ПРЕДИСЛОВИЕ

По-видимому, каждый, кто откроет эту книгу, согласится со следующим высказыванием И.П. Павлова: «В сущности, интересует нас в жизни только одно: наше психическое содержание» [1949, с. 351]. В то же время поддержка выдвинутого еще Аристотелем положения: «Исследование души есть дело естествоиспытателя» [Аристотель, 1937, с. 7] -- не будет столь же безоговорочной.

Самое общее уточнение могло бы состоять в том, что познание «психического содержания» -- дело не только науки, но и других видов человеческой деятельности, таких, например, как искусство или религия. Если же рассмотреть лишь один вид деятельности -- науку, то и здесь оказывается, что «психическое содержание» исследуется представителями как естественных, например физиологии, так и общественных наук, к которым принято относить психологию, сочетающую естественнонаучные методы с «герменевтическими» (моделирование в психике исследователя психики испытуемого, зависящее от индивидуально-психологических особенностей исследователя [Дружинин, 1993]).

Контакты между названными науками, которые возникают при решении проблем, представляющих взаимный интерес, часто «искрят» [Швырков, 1995], что вызывает у многих физиологов и психологов желание изолировать свою дисциплину, оградить ее от посторонних посягательств.

Однако выдающимся психологам уже давно было очевидно, что предпринимаемые как психологами, так иногда и физиологами попытки отделить психологию от физиологии совершенно неправомерны, поскольку предмет психологии -- нейро-психический процесс [Бехтерев, 1991], целостная психофизиологическая реальность [Выготский, 1982], которая лежит в основе всех без исключения психических процессов, включая и самые высшие [Рубинштейн, 1973]. Со стороны психофизиологии также были приведены веские аргументы в пользу того, что самостоятельная, отделенная от психологии физиология не может выдвинуть обоснованной концепции целостной деятельности мозга [Швырков, 1995].

«Изоляция какой-либо дисциплины есть верный показатель ее ненаучности», -- справедливо заключает М. Бунге, отвечая на вопрос: «Является ли психология автономной дисциплиной?» Психология же тесно связана и даже перекрывается с биологией, в частности с физиологией [Bunge, 1990], причем область их перекрытия постоянно увеличивается. Логика развития методологии и методов науки, а также «социальные заказы», заставляющие преодолевать междисциплинарные барьеры [ Абульханова и др., 1996], определяют возможность и необходимость все большего привлечения методов физиологии для разработки проблем профессионального и психического здоровья, сознания и бессознательного, изучения структуры сложной деятельности человека -- совместной, речевой, операторской и др. Связь и взаимозависимость психологии и физиологии настолько сильны, что позволяют рассматривать их развитие как коэволюцию. Вкратце охарактеризуем этот процесс.

Современная психология в значительной степени представлена обыденным знанием, или «обыденной психологией» (folk psychology), под которой понимается основанное на здравом смысле, не требующее точных определений понимание психических процессов и состояний [Churchland, 1986].

Понятия обыденной психологии: память, внимание, воля, ум, влечение, чувство и другие -- не только употребляются в быту для объяснения и предсказания поведения людей, но и влияют на формирование собственно научного знания [Sternberg, 1985; Semin, 1987]. Они используются в психологических исследованиях как при обосновании проблем исследования, так и при трактовке его результатов. Закономерности и феномены, выявляемые в подобных исследованиях, становятся базой не только для следующих психологических исследований, но и для формулировки задач экспериментов, в которых применяются методы физиологии. Решение этих задач способствует пересмотру и фрагментации исходных концепций и понятий (сколько, например, разнообразнейших процессов, «систем» и прочего объединяется сейчас термином «память»!), формулировке новых вопросов и т. д. В конце концов в ряде случаев может даже оказаться, что выяснять надо что-то совсем другое. Скажем, современная физиология не исследует, как образуются и движутся «животные духи».

Наряду с обыденной психологией существует и обыденное физиологическое знание -- «обыденная физиология», которая взаимодействует и с обыденной психологией, и с собственно наукой.

В процессе коэволюции физиологии и психологии не происходит «истребления» последней, ее замены физиологией

Происходит же внедрение научного знания в обыденное. В связи с этим предполагается, что по ходу коэволюции психология и физиология будут все меньше зависеть от обыденной психологии и на определенном этапе замещение бытовых понятий в психологии и физиологии научными завершится [Churchland, 1986]. По-видимому, это предположение полностью справедливо лишь в том случае, если говорить не об обыденной психологии вообще, а о ныне существующей обыденной психологии. В процессе развития на место замещенных придут новые понятия обыденной науки. На чем основано это утверждение?

Еще до возникновения науки, в доисторическую эпоху, представления о психике, или душе, складывались у людей как обобщенные характеристики внешнего поведения, как гипотезы о его детерминантах и механизмах. В свяьи с этим даже в наиболее примитивных языках имеются обозначения психических свойств и состояний (см. в [Швырков, 1995]). С появлением науки она становится, наряду с религией, искусством, обыденным опытом и т. д., одним из источников концепций, идей и терминов, включающихся в обыденное знание и формирующих обыденную науку. Люди начинают рассматривать их как само собой разумеющиеся и составляющие «реальность» [Московичи, 1995].

Можно полагать в связи с этим, что обыденная наука продолжит свое существование на всем протяжении процесса коэволюции, осуществляя «обмен» с собственно наукой. Первая будет поставщиком концепций и проблем (конечно, не исключительным -- много проблем в собственно науке имеет внутринаучное происхождение) мировоззренческого или практического характера, вторая будет решать эти проблемы и возвращать переработанные концепции, внедрять новые или устранять дискредитированные. При этом количество ассимилированных и преобразованных понятий собственно науки в науке обыденной будет постоянно и быстро увеличиваться, если авторитет науки сохранится и общество не последует антисциентист-ским рекомендациям, например таким, как дополнить отделение государства от церкви отделением его и от науки [Фейрабенд, 1986].

Каково же место психофизиологии -- науки, обязанной своим происхождением и даже названием сосуществованию психологии и физиологии и призванной установить между ними связь, -- в описанной ранее коэволюции? Каков ее специфический вклад? Можно ли свести роль психофизиологии к использованию методов физиологии для изучения психических процессов и состояний? Ответы, которые дают на эти вопросы разные авторы, в том числе и авторы настоящего учебника, значительно различаются.

Содержание учебника отражает современное состояние психофизиологии и соответствует Государственному Образовательному стандарту высшего профессионального образования

Известно, что даже физическую систему нельзя описать каким-либо одним теоретическим языком, множественность точек зрения на нее неустранима [Пригожий, Стенгерс, 1986]. Тем более не должно вызывать удивления существование различающихся позиций, разных теоретических языков и школ в психофизиологии, которая, по-видимому, имеет дело с наиболее сложным комплексом проблем, стоящих перед человеком.

Упомянутые различия находят свое выражение не только в многообразии ответов на один и тот же вопрос, но и в том, что отдельные вопросы психофизиологии, рассматриваемые исследователями как центральные, с других тео-ретических позиций могут расцениваться как малозначимые или даже неверно поставленные. Поэтому мы полагали, что в учебнике по психофизиологии, написанном одним автором, даже сам набор освещаемых проблем окажется в сильнейшей мере зависимым от взглядов автора. Кроме того, мы учитывали, что психофизиология находится на стыке разных наук: философии, психологии, нейронаук, физиологии, в том числе физиологии высшей нервной деятельности, генетики, биохимии и т. д. Во многом ситуация здесь сходна с имевшей место при подготовке руководства по экспериментальной психологии [I960], в предисловии к которому С.С. Стивене отмечал, что никто из представителей этой науки не обладает достаточной эрудицией, чтобы справиться с подобной задачей в одиночку. В связи с уже сказанным мы, считая, что высокое качество всех разделов учебника, а также достаточно полный охват обширного проблемного поля психофизиологии может обеспечить только совместная деятельность коллектива ученых, обладающих взаимно дополняющей квалификацией и представляющих позиции разных научных школ, выбрали коллективный путь его подготовки.

Список глав настоящего учебника включает все пункты Государственного образовательного стандарта высшего профессионального образования (М., 2000), а также дополнительно и те вопросы, которые представляют собой «точки роста», привлекают значительное внимание исследователей и игнорирование которых не позволило бы считать учебник отражающим современное состояние психофизиологии. В результате содержание учебника соответствует не только Государственному образовательному стандарту высшего профессионального образования, но и Программе по психофизиологии, подготовленной Советом по психологии Объединения государственных университетов Российской Федерации (М., 1996).

Настоящий учебник, который отражает современное состояние психофизиологии во всей ее полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.

Глава 1

1.1 ОБЩИЕ СВЕДЕНИЯ

Традиционно со времен французского физиолога Биша (начало XIX в.) нервную систему разделяют на соматическую и вегетативную, в каждую из которых входят структуры головного и спинного мозга, называемые центральной нервной системой (ЦНС), а также лежащие вне спинного и головного мозга и поэтому относящиеся к периферической нервной системе нервные клетки и нервные волокна, иннер-вирующие органы и ткани организма.

Соматическая нервная система представлена эфферентными (двигательными) нервными волокнами, иннервиру-юшими скелетную мускулатуру, и афферентными (чувствительными) нервными волокнами, идущими в ЦНС от рецепторов. Вегетативная нервная система включает в себя эфферентные нервные волокна, идущие к внутренним органам и рецепторам, и афферентные волокна от рецепторов внутренних органов. По морфологическим и функциональным особенностям вегетативная нервная система разделяется на симпатическую и парасимпатическую.

По своему развитию, а также структурной и функциональной организации нервная система человека имеет сходство с нервной системой разных видов животных, что существенно расширяет возможности ее исследования не только морфологами и нейрофизиологами, но и психофизиологами.

У всех видов позвоночных нервная система развивается из пласта клеток на наружной поверхности эмбриона -- эктодермы. Часть эктодермы, называемая нервной

У человека каждую минуту формируется примерно 250 000 нейронов По некоторым данным, у человека и у других приматов не менее 70 % всех нервных клеток ЦНС локализовано в коре больших полушарий пластинкой, сворачивается в полую трубку, из которой формируются головной и спинной мозг. В основе этого процесса лежит интенсивное деление эктодермальных клеток и формирование нервных клеток. Каждую минуту формируется примерно 250 000 нейронов [Коуэн, 1982].

Молодые несформированные нервные клетки постепенно мигрируют из областей, где они возникли, к местам своей постоянной локализации и объединяются в группы. В результате стенка трубки утолщается, сама трубка начинает трансформироваться, и на ней появляются идентифицируемые участки мозга, а именно: в ее передней части, которая будет в дальнейшем заключена в череп, образуются три первичных мозговых пузыря -- это rhombencephalon, или задний мозг; mesencephalon, или средний мозг, и prosencephalon, или передний мозг (рис. 1.1 Л, J5). Из задней части трубки формируется спинной мозг. Мигрировав на место постоянной локализации, нейроны начинают дифференцироваться, у них появляются отростки (аксоны и дендриты) и их тела приобретают определенную форму (см. параграф 2).

Одновременно происходит дальнейшая дифференциация мозга. Задний мозг дифференцируется на продолговатый мозг, мост и мозжечок; в среднем мозге нервные клетки группируются в виде двух пар крупных ядер, называемых верхними и нижними бугорками четверохолмия. Центральное скопление нервных клеток (серое вещество) на этом уровне носит название покрышек среднего мозга.

В переднем мозге происходят наиболее существенные изменения. Из него дифференцируются правая и левая камеры. Из выпячиваний этих камер в дальнейшем формируются сетчатки глаз. Остальная, большая часть правой и левой камер превращается в полушария; эта часть мозга называется конечным мозгом (telencepha-lori), и наиболее интенсивное развитие она получает у человека.

Образовавшийся после дифференциации полушарий центральный отдел переднего мозга получил название промежуточного мозга (diencephalori); он включает в себя таламус и гипоталамус с железистым придатком, или гипофизарным комплексом. Части мозга, расположенные ниже конечного мозга, т. е. от промежуточного до продолговатого мозга включительно, называют стволом мозга.

Под влиянием сопротивления черепа интенсивно увеличивающиеся стенки конечного мозга отодвигаются назад и прижимаются к стволу мозга (рис. 1.1 В). Наружный слой стенок конечного мозга становится корой больших полушарий, а их складки между корой и верхней частью ствола, т. е. таламусом, образуют базальные ядра -- полосатое тело и бледный шар. Кора больших полушарий мозга -- это наиболее позднее в эволюции образование. По некоторым данным, у человека и у других приматов не менее 70 % всех нервных клеток ЦНС локализовано в коре больших полушарий [Наута, Фейртаг, 1982];

При формировании структур мозга происходит гибель некоторых клеток и ликвидация ранее сформированных связей извилин. В нижней части полушарий кора подворачивается вовнутрь и образует сложные складки, которые на поперечном срезе напоминают морского конька -- гиппокамп.

В толще стенок дифференцирующихся структур мозга в результате агрегации нервных клеток формируются глубинные мозговые образования в виде ядер, формаций и субстанций, причем в большинстве областей мозга клетки не только агрегируют друг с другом, но и приобретают некоторую предпочтительную ориентацию. Например, в коре головного мозга большинство крупных пирамидных нейронов выстраиваются в ряд таким образом, что их верхние полюса с дендритами направлены к поверхности коры, а нижние полюса с аксонами -- в направлении белого вещества. С помощью отростков нейроны формируют связи с другими нейронами; при этом аксоны многих нейронов, прорастая в отдаленные участки, образуют специфические анатомически и гистологически выявляемые проводящие пути. Следует отметить, что процесс формирования структур мозга и проводящих путей между ними происходит не только за счет дифференциации нервных клеток и прорастания их отростков, но и за счет обратного процесса, заключающегося в гибели некоторых клеток и ликвидации ранее сформированных связей.

В результате описанных ранее трансформаций образуется мозг -- предельно сложное морфологическое образование. Схематическое изображение мозга человека представлено на рис. 1.2.

1.2 НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ

Мозг человека состоит из 1012 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передает сотням и тысячам, а количество соединений в головном мозге превышает 1014-1015. Открытые более 150 лет тому назад в морфологических исследованиях Р. Дютроше, К. Эренберга и И. Пуркинье, нервные клетки не перестают привлекать к себе внимание исследователей. Как независимые элементы нервной системы они были открыты сравнительно недавно -- в XIX в. К. Гольджи и С. Рамон-и-Кахал применили достаточно совершенные методы окраски нервной ткани и нашли, что в структурах мозга можно выделить клетки двух типов: нейроны и глию. Нейробиолог и нейроанатом Рамон-и-Кахал использовал метод окраски по Гольджи для картирования участков головного и спинного мозга. В результате была показана не только чрезвычайная сложность, но и высокая степень упорядоченности нервной системы. С тех пор появились новые методы исследования нервной ткани, позволяющие выполнить тонкий анализ ее строения, -- например, использование гисторадиохимии выявляет сложнейшие связи между нервными клетками, что позволяет выдвигать принципиально новые предположения о построении нейронных систем.

Имеющая исключительно сложное строение, нервная клетка -- это субстрат самых высокоорганизованных физиологических реакций, лежащих в основе способности живых организмов к дифференцированному реагированию на изменения внешней среды. К функциям нервной клетки относят передачу информации об этих изменениях внутри организма и ее запоминание на длительные сроки, создание образа внешнего мира и организацию поведения наиболее целесообразным способом, обеспечивающим живому существу максимальный успех в борьбе за свое существование.

Исследования основных и вспомогательных функций нервной клетки в настоящее время развились в большие самостоятельные области нейробиологии. Природа рецепторных свойств чувствительных нервных окончаний, механизмы межнейронной синаптической передачи нервных влияний, механизмы появления и распространения нервного импульса по нервной клетке и ее отросткам, природа сопряжения возбудительного и сократительного или секреторного процессов, механизмы сохранения следов в нервных клетках -- все это кардинальные проблемы, в решении которых за последние десятилетия достигнуты большие успехи благодаря широкому внедрению новейших методов структурного, электрофизиологического и биохимического анализов.

1.2.1 Размер и форма

Размеры нейронов могут быть от 1 (размер фоторецептора) до 1000 мкм (размер гигантского нейрона у морского моллюска Aplysia) (см. [Сахаров, 1992]). Форма нейронов также исключительно разнообразна. Наиболее ясно форма нейронов видна при приготовлении препарата полностью изолированных нервных клеток. Нейроны чаще всего имеют неправильную форму. Существуют нейроны, напоминающие «листик» или «цветок». Иногда поверхность клеток напоминает мозг -- она имеет «борозды» и «извилины». Исчерченность мембраны нейронов увеличивает ее поверхность более чем в 7 раз.

В нервных клетках различимы тело и отростки. В зависимости от функционального назначения отростков и их количества различают клетки униполярные (монополярные) и мультиполярные (биполярные). Монополярные клетки имеют только один отросток -- это аксон. Согласно классическим представлениям, у нейронов один аксон, по которому возбуждение распространяется от клетки. Согласно же наиболее новым результатам, полученным в электрофизиологических исследованиях с использованием красителей, которые могут распространяться от тела клетки и прокрашивать отростки, нейроны имеют более чем один аксон. Мультиполярные клетки имеют не только аксоны, но и дендриты. По дендритам сигналы от других клеток поступают в нейрон. Дендриты в зависимости от их локализации могут быть базальными и апикальными. Дендритное дерево некоторых нейронов чрезвычайно разветвлено, а на дендритах находятся синапсы -- структурно и функционально оформленные места контактов одной клетки с другой.

Какие клетки более совершенны -- униполярные или биполярные? Униполярные нейроны могут быть определенным этапом в развитии биполярных клеток. В то же время у моллюсков, которые на эволюционной лестнице занимают далеко не верхний этаж, нейроны униполярные. Новыми гистологическими исследованиями показано, что даже у человека при развитии нервной системы клетки некоторых структур мозга из униполярных «превращаются» в биполярные. Подробное исследование онтогенеза и филогенеза нервных клеток убедительно показало, что униполярное строение клетки является вторичным явлением и что во время эмбрионального развития можно шаг за шагом проследить постепенное превращение биполярных форм нервных клеток в униполярные. Рассматривать биполярный или униполярный тип строения нервной клетки как признак сложности строения нервной системы вряд ли верно.

Отростки-проводники придают нервным клеткам способность объединяться в нервные сети различной сложности, что является основой для создания из элементарных нервных клеток всех систем мозга. Для приведения в действие этого основного механизма и его использования нервные клетки должны обладать вспомогательными механизмами. Назначением одного из них является превращение энергии различных внешних воздействий в тот вид энергии, который может включить процесс электрического возбуждения. У рецепторных нервных клеток таким вспомогательным механизмом являются особые сенсорные структуры мембраны, позволяющие изменять ее ионную проводимость при действии тех или иных внешних факторов (механических, химических, световых). У большинства других нервных клеток -- это хемочувствительные структуры тех участков поверхностной мембраны, к которым прилежат окончания отростков других нервных клеток (по-стсинаптические участки) и которые могут изменять ионную проводимость мембраны при взаимодействии с химическими веществами, выделяемыми нервными окончаниями. Возникающий при таком изменении локальный электрический ток является непосредственным раздражителем, включающим основной механизм электрической возбудимости. Назначение второго вспомогательного механизма -- преобразование нервного импульса в процесс, который позволяет использовать принесенную этим сигналом информацию для запуска определенных форм клеточной активности.

1.2.2 Цвет нейронов

Следующая внешняя характеристика нервных клеток -- это их цвет. Он также разнообразен и может указывать на функцию клетки -- например, нейроэндокринные клетки имеют белый цвет. Желтый, оранжевый, а иногда и коричневый цвет нейронов объясняется пигментами, которые содержатся в этих клетках. Размещение пигментов в клетке неравномерно, поэтому ее окраска различна по поверхности -- наиболее окрашенные участки часто сосредоточены вблизи аксонного холмика. По-видимому, существует определенная взаимосвязь между функцией клетки, ее цветом и ее формой. Наиболее интересные данные об этом получены в исследованиях на нервных клетках моллюсков.

1.2.3 Синапсы

Биофизический и клеточно-биологический подход к анализу нейронных функций, возможность идентификации и клонирования генов, существенных для сигнализации, вскрыли тесную связь между принципами, которые лежат в основе синаптиче-ской передачи и взаимодействия клеток. В результате было обеспечено концептуальное единство нейробиологии с клеточной биологией.

Когда выяснилось, что ткани мозга состоят из отдельных клеток, соединенных между собой отростками, возник вопрос: каким образом совместная работа этих клеток обеспечивает функционирование мозга в целом? На протяжении десятилетий споры вызывал вопрос о способе передачи возбуждения между нейронами, т. е. каким путем она осуществляется: электрическим или химическим. К середине 1920-х гг. большинство ученых приняли ту точку зрения, что возбуждение мышц, регуляция сердечного ритма и других периферийных органов -- результат воздействия химических сигналов, возникающих в нервах. Эксперименты английского фармаколога Г. Дейла и австрийского биолога О. Леви были признаны решающими подтверждениями гипотезы о химической передаче.

Усложнение нервной системы развивается по пути установления связей между клетками и усложнения самих соединений. Каждый нейрон имеет множество связей с клетками-мишенями.

Мозг - существенная часть информации передается ретроградно -- от постсинаптического

Нейрона к пресинаптическим терминалям нейросекреторными клетками или мышечными клетками. Взаимодействие нервных клеток в значительной мере ограничено специфическими местами, в которые могут приходить соединения -- это синапсы. Данный термин произошел от греческого слова «застегивать» и был введен Ч. Шеррингтоном в 1897 г. А на полвека раньше К. Бернар уже отмечал, что контакты, которые формируют нейроны с клетками-мишенями, специализированы, и, как следствие, природа сигналов, распространяющихся между нейронами и клетками-мишенями, каким-то образом изменяется в месте этого контакта. Критичные морфологические данные о существовании синапсов появились позже. Их получил С. Рамон-и-Кахал (1911), который показал, что все синапсы состоят из двух элементов -- пресинаптической и постси-наптической мембраны. Рамон-и-Кахал предсказал также существование третьего элемента синапса -- синаптической щели (пространства между пресинаптическим и постсинаптическим элементами синапса). Совместная работа этих трех элементов и лежит в основе коммуникации между нейронами и процессами передачи синаптической информации. Сложные формы синаптических связей, формирующихся по мере развития мозга, составляют основу всех функций нервных клеток -- от сенсорной перцепции до обучения и памяти. Дефекты синаптической передачи лежат в основе многих заболеваний нервной системы.

Синаптическая передача через большую часть синапсов мрзга опосредуется при взаимодействии химических сигналов, поступающих из пресинаптической тер-минали, с постсинаптическими рецепторами. В течение более чем 100 лет изучения синапса все данные рассматривались с точки зрения концепции динамической поляризации, выдвинутой С. Рамон-и-Кахалом. В соответствии с общепринятой точкой зрения, синапс передает информацию только в одном направлении: информация течет от пресинаптической к постсинаптической клетке, антероградно направленная передача информации обеспечивает финальный шаг в сформированных нейронных коммуникациях.

Анализ новых результатов заставляет предполагать, что существенная часть .информации передается и ретроградно -- от постсинаптического нейрона к пресинаптическим терминалям нерва [Jessell, Kandel, 1993]. В некоторых случаях были идентифицированы молекулы, которые опосредуют ретроградную передачу информации. Это целый ряд веществ от подвижных маленьких молекул окиси азота до больших полипептидов, таких, как фактор роста нерва. Даже если сигналы, которые передают информацию ретроградно, различны по своей молекулярной природе, принципы, на основе которых эти молекулы действуют, могут быть сходными. Бидирекциональность передачи обеспечивается и в электрическом синапсе, в котором щель в соединительном канале формирует физическую связь между двумя нейронами, без использования нейромедиатора для передачи сигналов от одного нейрона на другой. Это позволяет осуществлять бидирекциональную передачу ионов и других маленьких молекул. Но реципрокная передача существует также в дендро-дендритных химических синапсах, где оба элемента имеют приспособления для высвобождения передатчика и ответа. Так как эти формы передачи часто трудно дифференцировать в сложных сетях мозга, случаев бидирекциональ-ной синаптической коммуникации может оказаться значительно больше, чем это кажется сейчас.

Бидирекциональная передача сигналов в синапсе играет важную роль в любом из трех основных аспектов работы нервной сети: синаптической передаче, пластичности синапсов и созревании синапсов во время развития. Пластичность синапсов -- это основа для формирования связей, которые создаются при развитии мозга и при научении. В обоих случаях требуется ретроградная передача сигналов от пост-к пресинаптической клетке, сетевой эффект которой заключается в том, чтобы сохранить или потенциировать активные синапсы. Ансамбль синапсов вовлекает координированное действие протеинов, высвобождаемых из пре- и постсинаптической клетки. Первичная-функция белков состоит в том, чтобы индуцировать биохимические компоненты, требуемые для высвобождения передатчика из пресинаптической терминали, а также для того, чтобы организовать устройство для передачи внешнего сигнала постсинаптической клетке.

Комплекс процессов, объединяемых под общим названием «механизм электрической возбудимости», является яркой функциональной характеристикой нервной клетки

1.2.4 Электрическая возбудимость

Все функции, свойственные нервной системе, связаны с наличием у нервных клеток структурных и функциональных особенностей, обеспечивающих возможность генерации под влиянием внешнего воздействия особого сигнального процесса -- нервного импульса (основными свойствами которого являются незатухающее распространение вдоль клетки, возможность передачи сигнала в необходимом направлении и воздействие с его помощью на другие клетки). Способность к генерации нервной клеткой распространяющегося нервного импульса определяется особым молекулярным устройством поверхностной мембраны, позволяющим воспринимать изменения проходящего через нее электрического поля, изменять практически мгновенно свою ионную проводимость и создавать за счет этого трансмембранный ионный ток, используя в качестве движущей силы постоянно существующие между вне- и внутриклеточной средой ионные градиенты.

Этот комплекс процессов, объединяемых под общим названием «механизм электрической возбудимости», является яркой функциональной характеристикой нервной клетки. Возможность направленного распространения нервного импульса обеспечивается наличием у нервной клетки ветвящихся отростков, нередко простирающихся на значительные расстояния от ее сомы и обладающих в области своих окончаний механизмом передачи сигнала через межклеточную щель на последующие клетки.

Применение микроэлектродной техники позволило выполнить тонкие измерения, характеризующие основные электрофизиологические характеристики нервных клеток [Костюк, Крышталь, 1981; Оке, 1974; Ходо-ров, 1974]. Измерения показали, что каждая нервная клетка имеет отрицательный заряд, величина которого равна 40-65 мВ. Главное отличие нервной клетки от любой другой заключается в том, что она способна быстро изменять величину заряда вплоть до противоположного. Критический уровень деполяризации нейрона, при достижении которого возникает быстрый разряд, называется порогом генерации потенциала действия (ПД). Длительность ПД различна у позвоночных и беспозвоночных животных -- у позвоночных она равна 0,1 мс, а у беспозвоночных -- 1-2 мс. Серия потенциалов действия, распределенных во времени, является основой для пространственно-временного кодирования.

Внешняя мембрана нейронов чувствительна к действию специальных веществ, которые выделяются из пресинаптической терминали, -- нейромедиаторов. В настоящее время идентифицировано около 100 веществ, которые выполняют эту функцию. На внешней стороне мембраны расположены специализированные белковые молекулы -- рецепторы, которые и взаимодействуют с нейромедиатором. В результате происходит открытие каналов специфической ионной проницаемости -- только определенные ионы могут массированно проходить в клетку после действия медиатора. Развивается локальная деполяризация или гиперполяризация мембраны, которая называется постсинаптическим потенциалом (ПСП). ПСП могут быть возбудительными (ВПСП) и тормозными (ТПСП). Амплитуда ПСП может достигать 20 мВ.

1.2.5 Пейсмекер

Один из удивительных видов электрической активности нейронов, регистрируемой внутриклеточным микроэлектродом, -- это пейсмекерные потенциалы. А. Арванитаки и И. Халазонитис [Arvanitaki, Chalazonitis, 1955J впервые описали осциллирующие потенциалы нервной клетки, не связанные с поступлением к ней синапти-ческих влияний. Эти колебания в ряде случаев могут приобретать такой размах, что превышают критический уровень потенциала, необходимый для активации механизма электрической возбудимости. Наличие в соме клетки таких волн мембранного потенциала было обнаружено на нейронах моллюсков. Они были расценены как проявление спонтанной, или ауторитмической, активности, имеющей эндогенное происхождение [Alving, 1968].

Аналогичные ритмические колебания были затем описаны и во многих других типах нейронов. Способность к длительной ритмической активности сохраняется у некоторых клеток в течение длительного времени после полного их выделения [Chen et al., 1971; Греченко, Соколов, 1986]. Следовательно, в ее основе действительно лежат эндогенные процессы, приводящие к периодическому изменению ионной проницаемости поверхностной мембраны. Важную роль играют изменения ионной проницаемости мембраны под действием некоторых цитоплазматических факторов, например системы обмена циклических нуклеотидов. Изменения активности этой системы при действии на соматическую мембрану некоторых гормонов или других вне-синаптических химических влияний могут модулировать ритмическую активность клетки (эндогенная модуляция). Запускать генерацию колебаний мембранного потенциала могут синаптические и внесинаптические влияния. Л. Тауц и Г. М. Гершенфельд [Tauc, Gerschenfeld, 1960] обнаружили, что соматическая мембрана нейронов моллюсков, не имеющая на своей поверхности синаптических окончаний, обладает высокой чувствительностью к медиаторным веществам и, следовательно, имеет молекулярные хемоуправляемые структуры, свойственные постсинаптИческой мембране. Наличие внесинаптичес-кой рецепции показывает возможность модуляции пейсмекерной активности диффузным действием выделяющихся медиаторных веществ.

Сложившаяся концепция о двух типах мембранных структур -- электровозбудимой и электроневозбудимой, но химически возбудимой -- заложила основу представлений о нейроне как пороговом устройстве, обладающем свойством суммации возбуждающих и тормозных синаптических потенциалов. Принципиально новое, что вносит эндогенный пейсмекерный потенциал в функционирование нейрона, заключается в следующем: пейсмекерный потенциал превращает нейрон из сумматора синаптических потенциалов в генератор. Представление о нейроне как управляемом генераторе заставляет по-новому взглянуть на организацию многих функций нейрона.

Пейсмекерными потенциалами в собственном смысле этого слова называют близкие к синусоидальным колебания частотой 0,1-10 Гц и амплитудой 5-10 мВ. Именно эта категория эндогенных потенциалов, связанных с активным транспортом ионов, образует механизм внутреннего генератора нейрона, обеспечивающего периодическое достижение порога генерации ПД в отсутствие внешнего источника возбуждения. В самом общем виде нейрон состоит из электровозбудимой мембраны, химически возбудимой мембраны и локуса генерации пейсмекерной активности. Именно пейсмекерный потенциал, взаимодействующий с хемовозбудимой и электровозбудимой мембраной, делает нейрон устройством со «встроенным» управляемым генератором [Bullock, 1984].

Если локальный потенциал является частным случаем механизма генерации ПД, то пейсмекерный потенциал принадлежит к особому классу потенциалов -- электрогенному эффекту активного транспорта ионов. Особенности ионных механизмов электрической возбудимости соматической мембраны лежат в основе важных свойств нервной клетки, в первую очередь ее способности генерировать ритмические разряды нервных импульсов. Электрогенный эффект активного» транспорта возникает в результате несбалансированного переноса ионов в разных направлениях. Широко известен гиперполярйзационный постоянный потенциал как результат активного вывода ионов натрия, суммирующийся потенциалом Нер-нста [Ходоров, 1974]. Дополнительное включение активного насоса ионов натрия создает фазические медленные волны гиперполяризации (негативные отклонения от уровня мембранного потенциала покоя), обычно возникающие вслед за высокочастотной группой ПД, которая приводит к избыточному накоплению натрия в нейроне.

Несомненно, что некоторые из компонентов механизма электрической возбудимости соматической мембраны, а именно электроуправляемые кальциевые каналы, вместе с тем являются фактором, сопрягающим мембранную активность с ци-топлазматическими процессами, в частности с процессами протоплазматического транспорта и нервной трофики. Детальное выяснение этого важного вопроса требует дальнейшего экспериментального изучения.

Пейсмекерный механизм, являясь эндогенным по происхождению, может активироваться и инактивироваться на длительное время в результате афферентных воздействий на нейрон. Пластические реакции нейрона могут обеспечиваться изменениями эффективности синаптической передачи и возбудимости пейсмекерного механизма (Соколов, Тавкхелидзе, 1975).

Пейсмекерный потенциал является компактным способом передачи внутри-нейронной генетической информации. Приводя к генерации ПД, он обеспечивает возможность выхода эндогенных сигналов на другие нейроны, в том числе и эф-фекторные, обеспечивающие реакцию [Bullock, 1984]. Тот факт, что генетическая программа включает звено управления пейсмекерным потенциалом, позволяет нейрону реализовывать последовательность своих генетических программ. Наконец, Пейсмекерный потенциал в той или иной степени может подвергаться си-наптическим влияниям. Этот путь позволяет интегрировать генетические программы с текущей активностью, обеспечивая гибкое управление последовательными программами. Пластические изменения пейсмекерного потенциала еще больше расширяют возможность приспособления наследственно фиксированных форм к потребностям организма. Пластические изменения развиваются в этом случае не в геноме, а на пути выхода наследственной программы на реализацию (на уровне генерации ПД).

Глава 2. МЕТОДЫ

Физиологические процессы, как правило, скрыты от внешнего наблюдения, поэтому они длительное время оставались вне области интересов психологов, занимавшихся в основном исследованием доступных для прямого наблюдения проявлений поведения человека. Однако многие модели психической деятельности человека носили бы чисто умозрительный характер, а психология оставалась бы «безмозглой», если бы психологи не заинтересовались ней-рофизиологическими процессами, лежащими в основе исследуемой ими реальности [Швырков, 1995].

С другой стороны, в нейрофизиологии постоянно возникала потребность описать организацию физиологических процессов в терминах, определяемых в психологических концепциях и теориях. Происходило и происходит взаимное обогащение двух наук о человеке как теоретическими разработками, так и экспериментальными методами (см. Предисловие). Что жг дает изучение физиологических показателей работы нервной системы? Во-первых, в силу своей объективности физиологические показатели становятся надежными элементами, используемыми при описании изучаемого поведения. Во-вторых, они позволяют экспериментаторам включить в сферу своих исследований скрытые для прямого наблюдения проявления активности организма, лежащие в основе поведения. И, как оптимистично заявил Ж. Пайяр, «помимо более полного объективного описания явлений, в основе обращения к физиологическим показателям лежит смелое устремление, которое продолжает направлять усилия современных психологов объяснить психологические явления на органической основе» [1970, с. 10].

Психология оставалась бы «безмозглой», если бы психологи не заинтересовались нейрофизиологически-ми процессами, лежащими в основе исследуемой ими реальности

В психофизиологии основными методами регистрации физиологических процессов являются электрофизиологические методы. В физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы, и поэтому являются исключительно надежными, универсальными и точными показателями течения любых физиологических процессов [Коган, 1969].

Надежность электрических показателей по сравнению с другими, по мнению А.Б. Когана, особенно демонстративна, «когда они оказываются единственным средством обнаружения деятельности» [там же, с. 13]. Единообразие потенциалов действия в нервной клетке, нервном волокне, мышечной клетке как у человека, так и у животных говорит об универсальности этих показателей. Точность электрических показателей, т. е. их временное и динамическое соответствие физиологическим процессам, основана на быстрых физико-химических механизмах генерации потенциалов, являющихся неотъемлемым компонентом физиологических процессов в нервной или мышечной структуре.

К перечисленным преимуществам электрических показателей физиологической активности следует добавить и неоспоримые технические удобства их регистрации: помимо специальных электродов, для этого достаточно универсального усилителя биопотенциалов, который ском-мутирован с компьютером, имеющим соответствующее программное обеспечение. И, что важно для психофизиологии, большую часть этих показателей можно регистрировать, никак не вмешиваясь в изучаемые процессы и не травмируя объект исследования. К наиболее широко используемым методам относятся регистрация импульсной активности нервных клеток, регистрация электрической активности кожи, электроэнцефалография, электроокулография, электромиография и электрокардиография. В последнее время в психофизиологию внедряется новый метод регистрации электрической активности мозга -- магнитоэнцефалография и изотопный метод (позитронно-эмиссионная томография).

Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы

2.1 РЕГИСТРАЦИЯ ИМПУЛЬСНОЙ АКТИВНОСТИ НЕРВНЫХ КЛЕТОК

Изучение активности нервных клеток, или нейронов, как целостных морфологических и функциональных единиц нервной системы, безусловно, остается базовым

Одним из показателей активности нейронов являются потенциалы действия -- электрические импульсы длительностью несколько мс и амплитудой до нескольких мВ. Современные технические возможности позволяют регистрировать импульсную активность нейронов у животных в свободном поведении и, таким образом, сопоставлять эту активность с различными поведенческими показателями. В редких случаях в условиях нейрохирургических операций исследователям удается зарегистрировать импульсную активность нейронов у человека.

Поскольку нейроны имеют небольшие размеры (несколько десятков микрон), то и регистрация их активности осуществляется с помощью подводимых вплотную к ним специальных отводящих микроэлектродов. Свое название они получили потому, что диаметр их регистрирующей поверхности составляет около! мкм. Микроэлектроды бывают металлическими и стеклянными. Металлический микроэлектрод представляет собой стержень из специальной высокоомной изолированной проволоки со специальным способом заточенным регистрирующим кончиком. Стеклянный микроэлектрод -- пирексовая тонкая трубочка (диаметр около 1 мм) с тонким незапаянным кончиком, заполненная раствором электролита. Электрод фиксируется в специальном микроманипуляторе, укрепленном на черепе животного, и коммутируется с усилителем. С помощью микроманипулятора электрод через отверствие в черепе пошагово вводят в мозг. Длина шага составляет несколько микрон, что позволяет подвести регистрирующий кончик электрода очень близко к нейрону, не повреждая его (рис. 2.1 Л). Подведение электрода к нейрону осуществляется либо вручную, и в этом случае животное должно находиться в состоянии покоя, либр автоматически на любом этапе поведения животного. Усиленный сигнал поступает на монитор и записывается на магнитную ленту или в память ЭВМ. При «подходе» кончика электрода к активному нейрону экспериментатор видит на мониторе появление импульсов, амплитуда которых при дальнейшем осторожном продвижении электрода постепенно увеличивается. Когда амплитуда импульсов начинает значительно превосходить фоновую активность мозга, электрод больше не подводят, чтобы исключить возможность повреждения мембраны нейрона. Пример импульсной активности нейрона, зарегистрированной у кролика, находящегося в условиях свободного поведения, представлен на рис. 2.1 Б.


Подобные документы

  • Значение компьютерной метафоры для психофизиологии. Диагностика состояния периферических сосудов. Значение комплексного подхода в изучении функциональных состояний. Функции фронтальных долей мозга в обеспечении внимания. Гипотеза Г. Линча и М. Бодри.

    контрольная работа [23,8 K], добавлен 07.05.2012

  • Предмет, сущность, задачи, основные понятия психофизиологии профессиональной деятельности. Методы психофизиологического исследования. Сравнительный анализ методов психофизиологических исследований в психофизиологии профессиональной деятельности.

    курсовая работа [35,3 K], добавлен 20.01.2016

  • Становление психофизиологии как одной из ветвей нейронауки. Понятие сенсорных систем, их основные функции и свойства, адаптация и взаимодействие. Физиологические основы сновидений и причина сомнамбулизма. Психофизиология творческой деятельности и речи.

    шпаргалка [93,5 K], добавлен 21.06.2009

  • Положение психофизиологии по отношению к другим дисциплинам. Проблемы соотношения мозга и психики, души и тела. Сущность "дуализма" Р. Декарта. Эволюция представлений о рефлексии. Современные представления о соотношении психического и физиологического.

    презентация [287,0 K], добавлен 09.10.2013

  • Сущность психофизиологии как науки и физиология познавательных способностей человека, роль психических процессов в его поведении. Зависимость сознания от моделирующей системы мозга и физиология мышления. Рефлекторная теория и основные свойства памяти.

    реферат [34,0 K], добавлен 04.08.2009

  • Исследования памяти: микроэлектродный метод, электроэнцефалография (ЭЭГ), магнитоэнцефалография. Визуальные методы исследования памяти: позитронно-эмиссионная томография, ядерная магнитная резонансная интроскопия. Структуры мозга, отвечающие за память.

    реферат [15,0 K], добавлен 05.10.2009

  • Прикладные области психофизиологии: клиническая, эргономическая психофизиология, психофизиология диагностики и компенсации когнитивных нарушений. Методы психофизиологического исследования: полиграфия, электродермография. Психофизиология памяти и научения.

    контрольная работа [21,3 K], добавлен 15.04.2012

  • Внимание как динамика психического процесса. Селективный отбор информации. Непроизвольная и произвольная формы внимания. Селективное протекание психических процессов. Вызванные потенциалы как перспективные методы для исследования всех видов внимания.

    реферат [30,3 K], добавлен 12.05.2009

  • Специальные методы сбора информации в психологии. Особенности изучения работы головного мозга методами психофизиологии. Управление памятью, недостатки детектора лжи в определении обмана. Волевая регуляция поведения. Основные методы обучения и воспитания.

    контрольная работа [56,4 K], добавлен 04.05.2013

  • Краткая характеристика эпохи Средневековья и Возрождения, особенности развития психологии в этот период. Зарождение психофизиологии в Средневековье. Первые ученые, занимающиеся исследованием анатомо-физиологического строения человеческого организма.

    реферат [20,3 K], добавлен 26.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.