Основы общей экологии
Классификация факторов среды. Основные принципы аутэкологии: экологического оптимума, индивидуальности экологии видов и лимитирующих факторов. Адаптации к абиотическим факторам. Биологическое разнообразие, его охрана, экологическая ниша, "r" и "К-отбор".
Рубрика | Экология и охрана природы |
Вид | книга |
Язык | русский |
Дата добавления | 30.01.2015 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Б.М. Миркин, Л.Г. Наумова
Основы общей экологии. Учебник
От авторов
На рубеже тысячелетий слово «экология» превратилось в одно из самых расхожих клише, которым стали пользоваться не только учёные, но и экономисты, политики и даже домохозяйки. Если с самого начала признать неправомочность использования этого клише для обозначения состояния окружающей среды («плохая экология», «хорошая экология»), то все равно им будут обозначаться многие науки, в той или иной мере связанные с изучением отношений организмов и окружающей среды.
В момент своего официального рождения в середине XIX столетия экология была биологической наукой. «Придумавший» экологию Э. Геккель определил её объем следующим образом: «Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все «условия существования». Они частично органической, частично неорганической природы; но как те, так и другие имеют весьма большое значение для форм организмов, так как они принуждают их приспосабливаться к среде... Каждый организм имеет среди остальных своих друзей и врагов, таких, которые способствуют его существованию, и тех, что ему вредят. Организмы, которые служат пищей остальным или паразитируют в них, во всяком случае относятся к данной категории органических условий существования» (Haeckel, 1866; цит. по: Шилов, 1998, с. 6).
К концу XX века экология утеряла первоначальный «биологический» объем и разрослась в широкий междисциплинарный комплекс из многих наук. Большая часть наук этого комплекса изучает последствия влияния на окружающую среду всего одного биологического вида - Homo sapiens (Человек разумный). Разнообразие форм и масштабы его влияния на природу не имеют прецедентов и создали реальные предпосылки для самоуничтожения Человека в результате истощения ресурсов и загрязнения среды обитания. Осознание этой ужасной перспективы отодвинуло на второй, и даже третий, план изучение взаимоотношений всех других видов и условий среды их обитания. Экологи стали лихорадочно искать пути предотвращения надвигающегося экологического кризиса.
Как итог на книжных прилавках появилось море учебной литературы по различным аспектам прикладной (о рациональном природопользовании и охране природы) и социальной (об отношениях общества и природы) экологии, а интерес к центральной науке комплекса - общей (биологической) экологии - резко спал. И это несмотря на то, что общая экология служит теоретическим фундаментом для разработки системы урегулирования отношений человека и окружающей среды и этот предмет входит в состав учебных планов подготовки студентов-биологов и географов университетов и педагогических институтов, преподается студентам многих специальностей сельскохозяйственных и медицинских вузов.
Учебной литературы по общей экологии для высших учебных заведений, опубликованной за последние десять лет, мало. Это учебник Н.М. Черновой и А.М. Быловой «Экология» (1991) для студентов педагогических институтов, учебное пособие А.М. Гилярова «Популяционная экология» (1990) для студентов университетов и учебник И.А. Шилова «Экология» (1998) «для студентов биологических и медицинских факультетов и специальностей высших учебных заведений».
Из числа зарубежных учебников, переведённых на русский язык, нельзя не отметить современный и очень полный (но очевидно избыточный для студента-биолога, если он не специализируется по общей экологии) двухтомник М. Бигона с соавторами «Экология: особи, популяции, сообщества» (1989). В оригинале этот учебник выдержал 5 изданий.
Авторы поставили задачу заполнить возникший вакуум учебной литературы по общей экологии и написать учебник достаточно полный по кругу обсуждаемых вопросов, лаконичный и популярный по стилю изложения. Учебник задуман как составная часть учебно-методического обеспечения общебиологического образования и ориентирован на студентов-биологов, географов, «аграрников» и медиков.
Вопросы социальной и прикладной экологии в учебнике не рассматриваются. Тем не менее, в соответствии с широким пониманием экосистемы (как совокупности организмов и условий среды их обитания, вне зависимости от того, естественна ли она или создана человеком, обладает она способностью к саморегуляции состава и структуры или нет), в учебнике в самом общем плане рассматриваются и экосистемы, созданные человеком (городские, сельскохозяйственные).
В соответствии с традиционной структурой экологии главы книги объединены в три части: аутэкологию (экологию видов, включая характеристику факторов среды их обитания, главы 2-6), экологию популяций (главы 7-8) и экологию экосистем (включая биосферу как самую большую экосистему, главы 9-12). Основному содержанию предпослана глава 1, в которой дан краткий исторический очерк экологии.
По остроумной классификации В.Н. Тутубалина (Тутубалин и др., 2000) экологи разделяются на «пророков», «апостолов» и «приходских священников». В соответствии с этим «табелем о рангах» авторы относят себя к «приходским священникам»: они «читают проповеди прихожанам», то есть преподают экологию студентам. В основу учебника положены не оригинальные концепции, а целенаправленно выполненные компиляции трудов экологических «апостолов» и «пророков».
Авторы благодарят редактора учебника члена-корреспондента РАН Г.С. Розенберга и рецензента профессора А.Д. Булохова. Особую благодарность они выражают профессору А.М. Гилярову, который неоднократно консультировал авторов при написании учебника и очень помог им своей рецензией со скрупулёзным анализом рукописи.
Глава 1. Краткий очерк истории экологии
Обычная житейская ситуация - сначала ребёнок рождается, потом ему дают имя - многократно повторялась и в истории развития знания: большинство наук обретало своё лицо до того, как получало имя. Это относится и к экологии. Если её «имя» появилось около полутора веков назад благодаря Э.Геккелю (1866), то рождение экологических идей датируется значительно более ранним временем.
Круг вопросов, очерченных Геккелем, интересовал любого пользователя природой, так как жизнь консумента-человека была невозможна без растений и животных. И потому даже до начала цивилизации человек не мог не интересоваться тем, в каких условиях обитают интересующие его ресурсные виды живых организмов.
Первые сведения об экологических представлениях человека датируются теми же годами, что и появление письменности (Розенберг и др., 1999). Зачатки будущей науки содержались в самых ранних письменных памятниках культуры древности - в египетских «текстах пирамид» (XXV-XX вв. до н.э.), в Аккадской мифологии Вавилона (XXII-XVIII вв. до н.э.), в индийских эпических поэмах «Махабхарата» и «Рамаяна» (VI-IV вв. до н.э.). Первыми экологами Г.С. Розенберг считает древнегреческих поэтов и философов - Гомера, Фалеса, Эмпедокла, Гиппократа, Демокрита, Платона, Аристотеля, Теофраста и римских прагматиков - Варрона, Сенеку, Плиния Старшего и многих других. В особенности велик вклад «отца ботаники» Теофраста, который стоял у истоков учения об адаптивных типах растений (жизненных формах) и о географической зональности.
К первым экологам периода Возрождения, который наступил после длительной «средневековой научной пустыни», Г.С. Розенберг отнес всех значительных естествоиспытателей и философов - Леонардо да Винчи, Ф. Бэкона, Р. Бойля, Х. Менцеля, Ф. Реди, Дж. Рея. Однако все перечисленные философы и естествоиспытатели представляют младенческий период науки, о более или менее серьезном вкладе в её развитие можно говорить, лишь анализируя научное наследие XVIII-XIX вв. С этого времени начинается развитие экологии, которое можно разделить на три периода.
1.1 Предыстория
XVIII-XIX вв. были временем появления тех ростков экологии, которые пышно расцвели в следующем столетии. В эти годы формируются представления об адаптациях (приспособлениях) организмов к условиям среды, зарождаются идеи популяционной экологии и представления о биогенном круговороте веществ (экосистемный подход). Зарождение экологии связано с рядом крупных исторических фигур, которые создали предпосылки для её расцвета в ХХ в.
К. Линней (1707-1778). Великий натуралист, посвятивший свою жизнь идее создания системы знаний о разнообразии живых организмов. При описании видов Линней указывал их связь с условиями среды и сведения о распространении, то есть был одним из первых аутэкологов. В работах Линнея упоминаются растительные сообщества, которые позднее будут использоваться как маркеры границ экосистем.
Линней развивал представления об «экономии природы». Он считал, что в природе существует созданное Богом равновесие, которое достигается взаимными отношениями всех естественных тел. Для поддержания этого равновесия наряду с размножением и существованием организмов необходимо и их разрушение. По Линнею, гибель одного организма делает возможным существование других. Идея равновесия входит в фундамент теории экологии с той лишь разницей, что современный эколог считает это состояние экосистем формирующимся не «сверху» (Богом), а «снизу» (в результате сложного процесса естественного отбора).
А.Л. Лавуазье (1743-1794). Этот выдающийся химик стоял у истоков экосистемного подхода. В докладе «Круговорот элементов на поверхности земного шара» (1792) Лавуазье обосновал суть биологического круговорота главного элемента органического вещества - углерода, который растения берут из воздуха, а при разложении органического вещества он вновь возвращается в атмосферу. По существу, он сформулировал представление о трёх функциональных группах организмов - продуцентах, консументах и редуцентах (без использования этих терминов).
Спустя 70 лет, Л. Пастер в своём докладе об успехах химических и биологических наук «Роль брожения в природе» специально подчеркнул вклад Лавуазье в понимание сути процесса круговорота веществ (Барбье, 1978). Г.С. Розенберг (Розенберг и др., 1999) по этому поводу заметил, что если бы не гильотина Великой французской революции, которая оборвала жизнь выдающегося учёного, то, возможно, официальное рождение экологии датировалось бы не публикацией работы Э. Геккеля, а докладом А. Лавуазье.
Ж.Б. Ламарк (1744-1829). Выдающийся биолог-эволюционист, который сформулировал представление об адаптациях - приспособлениях организмов к условиям среды. С именем Ламарка связаны истоки концепции биосферы как «глобального результата» переработки организмами неорганического вещества. Ламарк призывал к изучению законов, по которым живёт природа, и считал, что человек наносит себе (и природе) зло именно потому, что не знает или игнорирует эти законы.
Ламарк, независимо от Лавуазье, различал две функциональные группы организмов биосферы: продуценты-растения и консументы-животные (разумеется, также без использования этих терминов). А.М. Гиляров (1999) подчеркнул, что Ламарк считал все живые существа способными создавать сложные соединения, но растения в качестве исходного материала используют находящиеся в «свободном состоянии» основные элементы (т.е. неорганические вещества), а животные могут использовать только соединения, изначально образованные растениями (органические вещества). Однако признавая «постоянное разрушение сложных веществ» одним из основных законов природы, Ламарк, в отличие от Лавуазье, не писал о специальных группах разрушающих организмов, считая, что разрушение - это чисто физический процесс.
Таким образом, в работах Ламарка мы видим истоки и аутэкологического (приспособление видов к условиям среды), и экосистемного (круговорот веществ) подходов Идеи Ламарка о закономерностях адаптивной эволюции в результате заданного Богом порядка вещей по «ступеням прогрессии» лежат в основе гипотезы номогенеза, то есть направленной эволюции по программе, которая неизвестна науке. Представления Ламарка об эволюции являются альтернативой синтетической теории эволюции, связанной с именем Ч. Дарвина, и позволяют лучше объяснить гигантское разнообразие форм органического мира.биоценозом. Этот научный термин был предложен К. Мебиусом в 1877 г. После введения в научный обиход понятия «экосистема» в нем отпала необходимость, так как без условий среды биоценоз существовать не может. Совокупность видов, составляющих живое население экосистемы, можно называть биотой..
Т. Мальтус (1766-1834). Экономист по основной специальности, Мальтус стал основателем популяционного подхода в экологии. Он сформулировал представление об экспоненциальном (т.е. с постоянно возрастающей скоростью) росте численности народонаселения. Хотя его работы имеют значение в первую очередь для социальной экологии (проблема перенаселения), тем не менее, они сыграли большую роль и для развития общей экологии. Последователем Мальтуса был Ч. Дарвин, который именно под влиянием его идеи о способности любого вида к экспоненциальному росту численности и поэтому неизбежности перенаселения сформулировал представления о борьбе за существование и естественном отборе В истории науки вряд ли найдется другая фигура, роль которой оценивалась так неоднозначно, как Мальтус. На основе открытой им экспоненциальной модели роста численности популяций Мальтус дал прогноз неизбежности перенаселения и голода: рост темпов производства продуктов питания в значительной степени отстаёт от скорости приращения народонаселения. Мальтус сделал вывод, что сохранение человечества возможно только благодаря войнам и болезням (о других более гуманных способах регулирования роста народонаселения через снижение рождаемости в его время еще не знали). Классики марксизма-ленинизма прочно приклеили к фамилии Мальтуса эпитет человеконенавистника, а обвинение в мальтузианстве стало одним из самых опасных ярлыков, который навешивали на инакомыслящих. Репутации Мальтуса повредило и то, что его идеи были восприняты идеологами фашизма в Германии, которые, опираясь на них, обосновали необходимость уничтожения целых народов, для того чтобы в ограниченном пространстве ресурсов могли безбедно существовать представители «лучшей» арийской расы. Для реабилитации имени Мальтуса в нашей стране много сделал Н.Ф. Реймерс (1989)..
А. Гумбольдт (1769-1859). Этот великий путешественник внёс вклад в аутэкологию, развив представления Теофраста о жизненных формах и о климатической зональности. Вслед за Ламарком, хотя, видимо, и без влияния его идей, Гумбольдт пришёл к понятию биосферы. Он писал о необходимости построения целостной картины мира. Процесс познания природы, по его мнению, может быть достигнут лишь путём объединения знания о всех явлениях и существах, которые предлагает поверхность Земли, поскольку «в этой грандиозной последовательности причин и эффектов ничто не может быть рассмотрено в изоляции» (Humboldt, 1807, цит. по: Гиляров, 1999).
К. Рулье (1814-1858). Профессор Московского университета, практически полностью очертивший круг задач экологии, хотя и не предложивший термина для обозначения этой науки. Он, в частности, писал: «Ни одно органическое существо не живёт само по себе; каждое вызывается к жизни и живёт только постольку, поскольку находится во взаимоотношении с относительно внешним для него миром» (Рулье, 1850; цит. по: Шилов, 1998).
Ч. Дарвин (1809-1882). Вклад этого выдающегося английского естествоиспытателя в историю экологии вряд ли нуждается в доказательстве. Опираясь на идеи Мальтуса, он создал учение об естественном отборе, который исключает перенаселение в природе за счёт дифференцированного выживания и размножения особей и одновременно служит основным механизмом адаптации организмов к условиям среды. Дарвин объяснил отличие естественного отбора от искусственного отбора, который человек ведёт исходя из полезности для себя растений и животных. В итоге искусственного отбора культурные растения и животные теряют свою приспособленность к жизни в естественных условиях, оказываются обречёнными на сосуществование с человеком и, как правило, не могут вернуться в дикую природу.
Э. Геккель (1834-1919). Как уже отмечалось, Геккелю принадлежит термин «экология». Кроме того, Геккель интуитивно подошёл к понятиям экологической ниши и пищевой цепи, и, в частности, описал цепь «пальмы - насекомые - насекомоядные птицы - хищные птицы - клещи - паразитические грибы». Геккелем был предложен и термин «бентос».
В.В. Докучаев (1846-1903). Докучаев рассматривал природный феномен почв как результат взаимодействия комплекса факторов почвообразования, главными из которых являются климат, растительность и материнская порода. По существу, Докучаев подошёл к трактовке почвы как основного элемента экосистемы. С его именем связано рождение генетической классификации почв, отражающей явления широтной зональности и вертикальной поясности, вызванные изменениями климата Следует заметить, что генетическая классификация почв родилась в России в силу значительной меридиональной протяжённости евразийского материка и слабого влияния на широтную зональность океана. В США, где на явления широтной зональности и вертикальной поясности в больше мере, чем в Евразии, влияет близость океана, русский генетический подход не прижился.. Он описал зональный ряд почв от подзолов и серых лесных до чернозёмов, каштановых и бурых пустынных почв. Ученик Докучаева в.И. Вернадский назвал своего учителя «русским самородком».
Таким образом, в период предыстории экологии в XVIII -XIX вв. были заложены три основных подхода, которые получили развитие в ХХ в.:
- аутэкологический (Линней, Ламарк, Гумбольдт, Рулье, Дарвин, Геккель);
- популяционный (Мальтус, Дарвин);
- экосистемно-биосферный (Линней, Лавуазье, Ламарк, Гумбольдт, Геккель, Докучаев).
Контрольные вопросы
1. Какой вклад в экологию внёс К. Линней?
2. Чем отличаются представления о круговороте веществ А. Лавуазье и К. Линнея?
3. В чем состоит значение работ Т. Мальтуса для экологии?
4. Расскажите о А. Гумбольдте как экологе.
5. Какой вклад в экологию внёс Ч. Дарвин?
6. Назовите русских учёных, которые внесли вклад в развитие экологии?
1.2 История
В ХХ в. теоретический арсенал экологии быстро пополнялся, формировались экологический лексикон и система представлений об особенностях отношений организмов и условий среды на разных уровнях организации:
- организма;
- популяции (более или менее ограниченной в пространстве совокупности особей одного вида с числом, достаточным для самоподдержания);
- сообщества (совокупности организмов разных видов одной или нескольких систематических групп в пределах одного местообитания);
- экосистемы (совокупности организмов и условий среды, включая и самую большую экосистему Земли - биосферу) Совокупность совместно обитающих видов (без условий среды) называется биоценозом. Этот научный термин был предложен К. Мебиусом в 1877 г. После введения в научный обиход понятия «экосистема» в нем отпала необходимость, так как без условий среды биоценоз существовать не может. Совокупность видов, составляющих живое население экосистемы, можно называть биотой..
Для экологии этого периода был характерен «романтический» дедуктивно-гипотетический подход, руководствуясь которым исследователи стремились вывести общие законы отношений организмов и условий среды. В дальнейшем, особенно в новейший период истории экологии, проверка этих «законов» на различных природных объектах показала, что большинство из них не являются универсальными. Тем не менее, костяк теории современной экологии, безусловно, развивался под влиянием достижений экологии рассматриваемого периода, и её теоретические основы не претерпели каких-либо принципиальных, тем более революционных, изменений до наших дней.
Понятия, принципы и закономерности, родившиеся в этот период, составляют теоретический фундамент экологии и подробно обсуждаются в следующих главах учебника. Поэтому здесь мы ограничимся лишь их перечислением с указанием авторов и ссылок на соответствующие разделы учебника. При этом мы отойдём от хронологической последовательности появления элементов теоретической экологии, которая, учитывая сравнительно небольшую продолжительность периода, не имеет существенного значения.
1. Принципы индивидуальности экологии видов и непрерывного изменения (континуума) состава сообществ (и экосистем) вдоль градиентов среды. Независимо сформулированы россиянином Л.Г. Раменским (1884-1953) и американцем Г. Глисоном (1882-1975). В дальнейшем эти принципы были развиты американскими экологами Дж. Кертисом (1913-1961), Р. Уиттекером (1920-1981) и Р. Макинтошем (см. 3.2).
2. Понятие экосистемы как совокупности сосуществующих видов и условий среды их обитания. Предложено А. Тенсли (1871-1955) (см. 10.1).
3. Концепции экологической сукцессии (процесса изменения состава экосистемы под влиянием жизнедеятельности составляющих её организмов) и климакса (от англ. climax) как устойчивого равновесного с климатом состояния, к которому «стремится» любая экосистема. Сформулированы Ф. Клементсом (1874-1945), в дальнейшем развиты А. Тенсли и Р. Уиттекером (см. 12).
4. Концепция экологической ниши как «профессии» вида в экосистеме, которая включает: место «работы»; ресурсы, необходимые для выполнения «работы»; график «работы»; тип выпускаемой «продукции» и характер отношений с другими «работниками», участвующими в совместном «производственном» процессе. Разработана Ч. Элтоном (1900-1991) и Дж. Хатчинсоном (1903-1991) (см. 9).
5. Логистическая (S-образная) кривая роста численности популяции при ограниченных ресурсах со сменой трёх фаз: медленного, быстрого и медленного роста. Описана Р. Перлем (1879-1940). В дальнейшем выяснилось, что эта кривая была открыта еще в 1838 г. бельгийским математиком П.Ф. Ферхюльстом (см. 7.3).
6. Математическая модель взаимоотношений «хищник - жертва». Предложена АД. Лоткой и в. Вольтеррой (1860-1940). Суть её заключается в том, что при пульсации численности популяций жертв и хищников пики численности хищников запаздывают по отношению к пикам численности их жертв (см. 8.4).
7. Математические модели конкуренции. Предложены также в.Вольтеррой и А. Лоткой, но подтверждены русским ученым Г.Ф. Гаузе (1910-1986) в экспериментах с инфузориями. Гаузе сформулировал принцип конкурентного исключения: не могут сосуществовать два вида, занимающих одну экологическую нишу (см. 8.2).
8. Концепция К- и r-отбора и соответственно К-стратегов и r-стратегов, различающихся по вкладу в репродуктивное усилие и специализированных для жизни в условиях нестабильных (с флюктуирующими ресурсами) и стабильных местообитаний. Разработана Р. Макартуром (1930-1972) и Э. Уилсоном. Как оказалось, еще в 1887 г. аналогичную систему из двух типов стратегий под названием «капиталисты» и «пролетарии» предложил Дж. Маклиод. Однако работа Маклиода оставалась незамеченной вплоть до начала 90-х гг. ХХ в. (см. 5.1).
9. Концепция С-, S- и R-стратегий, отражающих отношения организмов к благоприятности условий среды и интенсивности нарушений. Предложена Л.Г. Раменским в 1935 г., свои ценобиотические типы он назвал виолентами, патиентами и эксплерентами. Спустя 40 лет, эти типы были переоткрыты Дж. Граймом и получили приведенные буквенные обозначения. (см. 5.2)
10. Функциональный подход к экосистеме как «энергетической установке». Связан с именами Р. Линдемана (1915-1942), предложившего «правило 10%» для оценки эффективности перехода энергии с одного трофического уровня на другой, и Г.Г. Винберга (1905-1987) - автора основного метода измерения биологической продукции водных экосистем (см. 10.4).
11. Теория «островной биогеографии». Разработана Р. Макартуром и Э. Уилсоном, которые рассматривали число видов на острове как результат формирования равновесия между процессами вселения на остров новых видов и вытеснения уже прижившихся. В дальнейшем как острова стали рассматривать любые экосистемы-изоляты (массив леса среди пашни, высокогорная тундра, озеро и т.д.) (см. 10.7).
12. Концепция биосферы как «живой оболочки» планеты. Наиболее полно разработана В.И. Вернадским (1864-1945), обосновавшим геологическую роль жизни на Земле. Близкие представления сформулировал Дж. Лавлок в концепции Геи (Гея - богиня Земли) (см. 13).
Все перечисленные «краеугольные камни» фундамента теории экологии, за исключением принципа индивидуальности экологии видов, в той или иной мере тяготеют к «мифу» о высоком уровне целостности экологических явлений и наличии достаточно «жёстких» связей между особями, популяциями, экосистемами и условиями среды. Этот подход (методология) получил название органицизма, так как при таком взгляде усматривается сходство явлений надорганизменного уровня с организмами (Гиляров, 1988).
Контрольные вопросы
1. В чем заключается суть дедуктивно-гипотетического подхода в экологии?
2. Перечислите наиболее важные теоретические достижения экологии в первой половине ХХ в.
3. Что такое «органицизм» в экологии?
1.3 Современность
Периодом современной экологии считаются последние тридцать лет ХХ в. (Гиляров, 1995, 1998; Wu, Loucks, 1995; Тутубалин и др., 2000). Главные особенности этого периода хорошо выражают заголовки статей Дж. Лотона (Lawton, 1999) «Есть ли в экологии общие законы?» (с однозначным ответом: таких законов нет) и А.М. Гилярова (Ghilarov, 2001) «Изменение характера экологии ХХ столетия: от универсальных законов к универсальной методологии». Г.С. Розенберг (Розенберг и др., 1999), характеризуя смену парадигм в экологии, подчеркивает, что экология стала более субъективной, пространство и время перестали быть простыми и «экологический мир» стал динамичным. Впрочем, в последние годы появляются и более оптимистические оценки современного состояния экологии. Так П.В. Турчин (2002) считает, что законы в экологии все-таки существуют, по крайней мере, в популяционной экологии.
В этот период было показано, что большинство перечисленных в предыдущем разделе «романтических» законов экологии имеет ограниченные области экстраполяции. Исключений из этих «законов-правил» оказалось так много, что возникло сомнение в их правомочности. В этом непринятии идеи существования универсальных экологических законов, подобных законам физики, - идеология современной экологии.
Принцип экологической индивидуальности видов и их независимого распределения по градиентам среды в соответствии с симметричной колоколовидной кривой оказался не соответствующим действительности. В ряде случаев кривые распределения были асимметричными и даже полимодальными, что свидетельствовало о зависимости распределений видов друг от друга.
Как оказалось, продуктивными и богатыми видами могут быть не только климаксовые, устойчивые, но и сообщества, которые меняются в направлении климакса. Конвергенция всего разнообразия экосистем природного района в одну климаксовую экосистему просто невозможна, в каждом природном районе есть несколько климаксовых экосистем. Сукцессии, ведущие к климаксу, оказались стохастическими, а не жестко детерминированными процессами, в ходе которых виды сменяют друг друга в чёткой последовательности. В ходе сукцессии не обязательно происходит улучшение условий, повышение биологической продукции и видового разнообразия, возможно ухудшение условий среды и сооттветственно снижение биологической продукции и видового богатства.
Самой «элегантной» математической модели «хищник - жертва» отказались «подчиняться» большинство пар хищников и жертв в реальных экосистемах. Во-первых, хищники, как правило, переключаются на потребление других жертв, что не предусмотрено моделью. Во-вторых, на динамику численности популяций хищников и жертв действует множество других факторов, которые не учтены моделью (паразиты, биологические ритмы и т.д.).
«Число Линдемана» (10%) оказалось слишком приблизительным выражением эффективности перехода энергии с одного трофического уровня на другой. Если такая эффективность наблюдается в звене «растение - фитофаг», то на высших трофических уровнях она может превышать 50%.
Принцип конкурентного исключения, согласно которому в одной экологической нише не могут сосуществовать два вида, также оказался не универсальным. Во многих случаях при наличии сдерживающего фактора (нарушение, абиотический стресс, влияния конкурента и т.д.) виды могут не расходиться по разным нишам. Кроме того, несколько видов могут поочерёдно занимать одну и ту же нишу.
Далёкой от реальности оказалась и модель формирования биоразнообразия на островах. Разные виды имеют разные шансы попасть на разные острова или быть вытесненными из их экосистем.
И так далее.
Не оправдались надежды и на математическое моделирование, которое Р. Макинтош (McIntosh, 1985) назвал «браком экологии и инженерии под дулом пистолета». Как отмечают в.Н. Тутубалин и др. (1999), построенные модели либо «… просто неадекватны и практически бесполезны для развития теоретической биологии (в том числе экологии, Б.М. и Л.Н.), либо полученные с их помощью биологические результаты в достаточной мере тривиальны и были получены и без их применения…» (с. 11). «Всемогущие» компьютеры в ряде случаев также не улучшили, а ухудшили ситуацию, так как стали, по образному выражению Р. Маргалефа (1992), причиной появления «компьютерного опиума в экологии», то есть утери экологами интуиции при оценке экологических закономерностей природы и очевидной переоценки возможностей их математического описания. Все это вело к созданию видимости «большой науки» там, где её нет.
Стало очевидным, что разнообразие биологических объектов, как популяционного, так и экосистемного уровня, столь велико, что крайне сложно отыскать всеобщие законы, которые бы объясняли происходящие процессы, пространственные закономерности и позволяли прогнозировать их. Для сужения сферы их действия (определения областей экстраполяции) экологам потребовалось ввести понятия биологического пространства и биологического времени.
Первое измерение связано с размером особей и их подвижностью (не может быть одно пространство у тли, зайца и слона), второе - с продолжительностью жизненного цикла (он также различается у планктонной зеленой водоросли, ветвистоусого рачка, плотвы и сома).
Такое многоуровневое биологическое шкалирование сделало представления экологов более реалистическими. Стало ясно, что популяция или фрагмент сообщества, стабильные в одном масштабе, могут быть нестабильными в другом масштабе (нередко стабильность в крупном масштабе является суммой нестабильностей в мелком масштабе). При этом в последние годы усиливаются подходы «макроэкологии» (Brown, Maurer, 1989), т.е. анализа экологических закономерностей в глобальном масштабе, при котором погашаются «шумы», мешающие выявлению наиболее существенных закономерностей.
Для «новых» экологов экологический мир оказался сложно организованной иерархией в осях биологического пространства и биологического времени, стохастичным, с очень «мягкими» связями между особями и популяциями, динамичным, постоянно отклоняющимся от состояния экологического равновесия.
Таким образом, к концу ХХ в. стала очевидной сложность создания системы «универсальных законов» экологии, и родилась новая «универсальная методология». Внимание исследователей переключилось на изучение более частных пространственных и временных закономерностей, «механизмов» организации популяций и экосистем. Для выполнения этих исследований имелись все необходимые предпосылки: в экологии уже сформировался развитый понятийный аппарат и был накоплен огромный массив эмпирических данных, которые можно сопоставлять с новыми материалами и вовлекать в повторную обработку часто с изменением ранее сформулированных выводов.
Экология стала «полиморфной» (McIntosh, 1980) и «гетерогенной» (Ghilarov, 2001). В ней сохраняется тот плюрализм взглядов и, соответственно, методов исследования, который сформировался к середине ХХ в.: развиваются аутэкологический, популяционный и экосистемный подходы.
«По-видимому, экологическая теория сможет охватить существующую в природе реальность, только когда перестанет трактовать громадное разнообразие ситуаций, в которых оказываются организмы, популяции, сообщества и экосистемы, как некий «шум», мешающий выявлению наиболее существенных закономерностей, и будет рассматривать его как основной предмет своего изучения и важнейший источник информации» (Гиляров, 1998 б, с. 82).
Контрольные вопросы
1. В чем заключается основное отличие представлений современных экологов от взглядов учёных периода «золотого века экологии»?
2. Расскажите о понятиях «биологическое пространство» и «биологическое время».
3. Как Вы понимаете «универсальную методологию экологии»?
Темы докладов на семинарских занятиях
1. Предтечи экологии и их вклад в развитие науки.
2. «Золотой век» теории экологии.
3. Современная экология: крушение надежд на создание точной науки.
Часть 1. Аутэкология
Аутэкология, изучающая отношения организмов к условиям среды, - наиболее старый раздел общей экологии. По существу как аутэкологию понимал экологию Э. Геккель. Аутэкологом был и Ч. Дарвин - автор теории приспособления организмов к условиям среды путём естественного отбора.
В состав этого раздела экологии входят характеристика факторов среды (факториальная экология) и способов приспособления (адаптаций) организмов к различным её условиям. В ХХ в. аутэкология пополнилась новыми разделами о функциональной роли организмов в экосистеме и их жизненных стратегиях.
Аутэкология исследует отношения организмов к условиям среды на уровне видов, что необходимо как для изучения популяций (это позволяет вынести «за скобки» те признаки, которые характерны для всех популяций одного вида), так и для изучения экосистем, элементами которых являются виды.
Глава 2. Факторы среды
Факторы среды исследуются разными науками: климат - климатологией, рельеф - геоморфологией, почвы - почвоведением, закономерности распределения вод и их качество - гидрологией и гидрохимией и т.д. Однако экология изучает факторы среды не сами по себе, а их влияние на организмы, т.е. предлагает как бы взглянуть на каждый фактор «глазами» разных организмов.
2.1 Классификация факторов среды
Факторы среды делятся на абиотические, то есть факторы неорганической, или неживой, природы, и биотические - порожденные жизнедеятельностью организмов.
Совокупность абиотических факторов в пределах однородного участка называется экотопом, вся совокупность факторов, включая биотические, - биотопом.
К абиотическим факторам относятся:
1. климатические - свет, тепло, воздух, вода (включая осадки в различных формах и влажность воздуха), ветер;
2. эдафические, или почвенно-грунтовые, - механический и химический состав почвы, её водный и температурный режим;
3. топографические - условия рельефа.
Климатические и эдафические факторы во многом определяются географическим положением экотопа - его удаленностью от экватора и от океана и высотой над уровнем моря.
Специфические абиотические факторы в водных экосистемах - глубина водной толщи, характер грунта на дне водоёма, химический состав, прозрачность и температура воды, течение (или волны).
Абиотические факторы разделяются на прямые и косвенные.
Прямые факторы непосредственно влияют на организмы. Их примеры: влажность почвы и воздуха, температура, свет, богатство почвы и воды элементами минерального питания, скорость течения воды и др.
Косвенные факторы действуют на организмы опосредствованно - через прямые факторы. Их примеры: географическая широта и удалённость от океана, рельеф (высота над уровнем моря и экспозиция склона), гранулометрический состав почвы, прозрачность воды.
По градиенту географической широты с севера на юг в силу изменения угла падения солнечного света возрастает количество энергии Солнца, поступающей на единицу поверхности Земли, при удалении от океана - падает количество осадков. Эти закономерности известны с конца XVIII столетия, а в начале ХХ столетия стали популярными схемы «идеальных материков» с координатами «расстояние от экватора/расстояние от океана» или среднегодовая температура и среднегодовое количество осадков (рис. 1). На «идеальном материке» показано распределение биомов - крупных экологических вариантов экосистем (см. 11.7). Для европейской части России была построена профильная схема изменения экологических факторов от Северного ледовитого океана до зоны пустыни (рис. 2).
Рис. 1. Схема распределения биомов на «идеальном континенте» в зависимости от основных климатических параметров (по Волобуеву, 1956).
Рис. 2. Схема изменения основных экологических факторов на профиле «тундра - пустыня» в европейской части России.
С подъёмом в горы также изменяется климат (количество осадков и температурный режим); экспозиция и крутизна склона влияют на интенсивность прогревания поверхности почвы и режим её увлажнения. В среднем с повышением высоты над уровнем моря на 100 м среднегодовая температура уменьшается на 0,5° C, однако изменения климата на этом градиенте зависят от географической широты и удалённости от океана: широтный, долготный и высотный градиенты взаимодействуют.
Так нижняя граница леса в южных районах (Кавказ, Тянь-Шань) проходит на высоте около 2000 м, а в лесной зоне средней полосы лесной пояс начинается «от нуля». Велики различия климата, связанные с экспозицией, от которой зависит интенсивность поступления на поверхность солнечной энергии. Климатические пояса и соответствующие им пояса растительности всегда «наклонены» на север. В степной зоне пояс леса на северных склонах спускается на 100-200 м ниже, чем на южных, а в зоне пустынь по южным склонам леса нет вообще.
В горах Санта-Каталина Р. Уиттекером (1980) было изучено распределение экосистем в зависимости от высоты над уровнем моря и экспозиции («градиента топографического увлажнения»). По хорошо прогреваемым южным склонам все типы экосистем поднимаются выше, чем по холодным северным (рис. 3).
Рис. 3. Распределение основных типов экосистем в зависимости от высоты над уровнем моря и экспозиции в горах Санта-Котолина (по Уиттекеру, 1980).
Гранулометрический состав почвы влияет на растения и почвенную фауну через режим увлажнения и динамику питательных элементов.
Биотические факторы являются следствием взаимоотношений организмов. Для растений - это конкуренция, влияние животных (фитофаги, паразиты, опылители, распространители плодов и семян), грибов (микоризные, паразитические), бактерий (азотфиксирующие и болезнетворные), вирусов. Для животных - это конкуренция, влияние хищников, патогенных микроорганизмов, растений (для фитофагов).
Факторы, связанные с влиянием человека, выделяются в отдельную группу антропогенных. К наиболее существенным антропогенным факторам относятся следующие: химическое загрязнение воды, атмосферы и почвы, техногенное нарушение экосистем при разработке полезных ископаемых, выпас скота, рекреационное влияние, промысел животных (включая лов рыбы), заготовка растительного сырья. Особую роль человек играет как агент переселения видов из одного района в другой. Биологические инвазии, спровоцированные человеком, в настоящее время приняли катастрофические масштабы (см. 12.9).
В настоящее время роль антропогенных факторов резко возросла, и потому изучение последствий их влияния и разработка способов регулирования отношений человека и природы являются важнейшими проблемами прикладной экологии (инвайронменталистики).
Контрольные вопросы
1. Перечислите основные абиотические факторы среды.
2. Расскажите о косвенных экологических факторах.
3. Дайте общую характеристику антропогенным факторам.
2.2 Условия и ресурсы
Прямые абиотические факторы подразделяются на факторы-условия и факторы-ресурсы.
По М. Бигону и др. (1989), условия - это изменяющиеся во времени и пространстве факторы среды обитания, на которые организмы реагируют по-разному, но эти составляющие среды не расходуются: один организм не может сделать их более доступными или недоступными для других. К числу факторов-условий относятся температура, влажность воздуха, солёность воды и скорость её течения, реакция (рН) почвенного раствора, содержание в воде и почве загрязняющих веществ, которые не используются растениями как элементы питания.
В отличие от факторов-условий, факторы-ресурсы расходуются организмами в процессе жизнедеятельности, и потому один более сильный организм может «съесть» ресурсов больше, а другому, более слабому, их останется меньше.
2.2.1 Ресурсы
Для растений ресурсами являются свет, вода, элементы минерального питания, диоксид углерода, для насекомоопыляемых - насекомые-опылители (ветер как опылитель является фактором-условием). Для животных-фитофагов ресурсом являются растения, для зоофагов (хищников) - живые животные, для детритофагов-сапротрофов и редуцентов (бактерии, грибы) - мёртвое органическое вещество. Для большинства организмов необходимым ресурсом является кислород.
Свет. Это основной источник энергии для наземных и водных экосистем. При этом из всех щедрот солнечной энергии, поступающей на Землю, на фотосинтез расходуется сравнительно небольшая часть света. Только культуре микроскопических морских водорослей удалось достичь использования для целей фотосинтеза 4,5%. В наземных экосистемах усвоение солнечной энергии для фотосинтеза не превышает 1-3% (тропические леса) и составляет в лесах умеренных широт 0,6-1,2%, а в посевах сельскохозяйственных культур даже с наиболее плотным пологом растений он не выше 0,6%.
Все экосистемы Земли используют в процессе фотосинтеза не более 0,001% от всего потока энергии, поступающей с солнечным светом на Землю. В 30-40 раз больше растения используют тепловой энергии солнечного света на испарение (транспирацию). В результате транспирации через корни, стебли и листья растений прогоняется раствор элементов питания, необходимый для их жизнедеятельности. Кроме того, это спасает растения от перегрева.
Для фотосинтеза используется лишь часть световых волн - в диапазоне 400-700 нм. Эта часть солнечной энергии составляет около 40% поступающего на Землю света и называется фотосинтетически активной радиацией (ФАР). Наибольшее значение в составе ФАР имеют оранжево-красные и сине-фиолетовые лучи. При прохождении через большую толщу воды эти части света отфильтровываются, и до глубоких слоёв доходят в основном зелёные лучи. Однако если эти лучи плохо усваиваются зелёными растениями, то за счёт дополнительных пигментов их могут использовать красные водоросли (Rhodophyta). Бактерии-фототрофы также используют часть света, но с иным диапазоном длины волны - 800-900 нм.
Во многих случаях количество света избыточно, и потому интенсивность фотосинтеза не лимитируется поступающей солнечной энергией. Дефицит света наблюдается в затенённых местообитаниях, например под густым пологом древостоя. В таких условиях у теневыносливых растений (сциофитов) выражен специальный синдром признаков теневыносливости, позволяющий усвоить больше света (тонкие листья, высокое содержание хлорофилла). Типичные сциофиты - папоротники, обитающие в расщелинах скал, например, листовика (Phyllitis scolopendrium).
Эффективность усвоения света в сообществах растений повышается за счёт специальных приспособлений: вертикальное расположение листьев злаков, использующих свет, падающий на лист под острым углом (луга и степи); многослойная крона листьев (леса). Показателем числа слоёв листьев, через которые проходит свет, является индекс листовой поверхности (ИЛП), который определяется как отношение площади листьев к площади поверхности почвы, над которой они находятся. В разомкнутых сообществах пустынь ИЛП составляет доли единицы, в большинстве луговых сообществ - равен 4-6, а в еловом лесу - может достигать 12, то есть на 1 гектар леса приходится 12 гектаров поверхности листьев (Работнов, 1992).
Экологическое значение имеют и невидимые лучи, т.е. не воспринимаемые глазом человека. Так самые короткие ультрафиолетовые лучи при высокой интенсивности ослабляют иммунную систему животных, в особенности человека, при умеренной интенсивности они способствуют образованию витамина D в животных организмах. Инфракрасные (тепловые) лучи влияют на температурный режим теплокровных животных, при повышении их интенсивности снижается активность окислительных процессов.
Свет является неисчерпаемым ресурсом, который постоянно поступает на Землю в результате солнечной радиации.
Вода. Необходимым фактором жизни любого организма является его обводнение, так как именно вода является средой, в которой протекают все основные метаболические процессы. Ни один организм не обладает надежной системой сохранения воды, содержащейся в его клетках, и потому этот ресурс нуждается в постоянном пополнении. Вода - важнейший ресурс, участвующий в фотосинтезе, хотя основная её часть, которая всасывается корнями растений, расходуется на испарение, что связано во многом с процессом поглощения через устьица диоксида углерода для фотосинтеза (мембран, которые способны «впускать» углекислый газ и «не выпускать» воду, нет).
Специальные приспособления характерны для растений, обитающих в условиях дефицита влаги (см. 4.4.3), и растений избыточно увлажнённых местообитаний (у водных растений проводящая система замещена воздухоносной тканью - аэренхимой).
Нет необходимости говорить о различиях водных и наземных животных. Среди наземных животных существуют виды с разной потребностью в воде. Так животные пустыни, где постоянно ощущается дефицит воды, значительное количество воды получают при разложении жиров, которые выступают запасниками потенциальной влаги. «Депо» жиров у тушканчиков, песчанок находится в хвосте, у верблюда - в горбе.
Степень доступности воды накладывает ограничения на распространение многих видов животных и на потребление ими других ресурсов. Не только домашний скот, но и дикие копытные животные могут разрушить травостой в результате пере выпаса только близ водопоев, хотя радиусы пастьбы у них значительно больше, чем у коров или овец. По этой причине отдалённые от воды участки злаковника или саванны оказываются лучше сохранившимися.
Круговорот воды в биосфере делает её неисчерпаемым (возобновимым) ресурсом, однако под влиянием человека этот круговорот изменился (см. 13.2.2). Кроме того, во многих районах вода сильно загрязнена, что ограничивает возможность использования её организмами многих видов, включая человека.
Диоксид углерода. Этот ресурс необходим для фотосинтеза, но его содержание в атмосфере столь велико, что в естественных условиях он не лимитирует процесс синтеза органического вещества. Аналогично не лимитирует интенсивность фотосинтеза водных растений содержание диоксида углерода в воде.
Диоксид углерода является не только прямым фактором-ресурсом, но и косвенным фактором, влияющим на климат. В результате сжигания больших количеств топлива, содержащего углерод, концентрация диоксида углерода в атмосфере повышается. В итоге происходит потепление климата (см. 13.2.1).
Элементы питания. Элементы, необходимые для жизни организмов, называются биогенными. Из 54 элементов периодической таблицы, которые встречаются в природе, около половины их важны либо для животных, либо для растений. Основные биогены называются макроэлементами, шесть из них нужны всем живым существам и в больших количествах. Чтобы запомнить их, экологи составили из латинских букв, соответствующих химическим символам, смешное слово CHNOPS («ЧНОПС»: С - углерод, Н - водород, N - азот, О - кислород, Р - фосфор, S - сера).
Из других макроэлементов важны: кальций, калий, магний, причём кальций в больших количествах необходим позвоночным и моллюскам для построения скелета или раковин, а магний - растениям, так как он входит в состав молекулы хлорофилла.
Остальные элементы нужны организмам в меньших количествах и называются микроэлементами. Растениям необходимы 10 микроэлементов, в том числе для фотосинтеза - марганец, железо, хлор, цинк, ванадий; для азотного обмена - молибден, бор, кобальт, железо; для прочих метаболических реакций - марганец, бор, кобальт, медь, кремний. Все эти элементы, кроме бора, нужны и животным. Кроме того, животным необходимы селен, хром, никель, йод, фтор, олово, мышьяк.
У разных растений отмечаются свои «пристрастия» к микроэлементам. Так некоторым папоротникам для нормального развития необходим алюминий, диатомовым водорослям - кремний, а некоторым зелёным водорослям - селен. Для успешного симбиоза азотфиксирующих бактерий и бобовых (см. 8.6) необходим кобальт.
Кислород. Этот элемент необходим для дыхания подавляющему большинству организмов, однако его дефицит наблюдается только в водных экосистемах и переувлажнённых почвах, что связано с низкой растворимостью кислорода в воде. Если в 1 л воздуха содержится 210 см 3 кислорода, то в воде его содержание не превышает 10 см 3 л, причём растворимость кислорода снижается при повышении температуры и солёности. Это делает кислород фактором, ограничивающим возможности жизни многих обитателей водоёмов. Они гибнут летом при повышении температуры и зимой при заморозке, когда вода изолирована от атмосферы слоем льда и весь кислород израсходован организмами.
Пополнение запаса кислорода в воде происходит за счёт его поступления из воздуха, причём этот медленный процесс может ускорить сильный ветер. Кислород выделяют водные растения, в первую очередь фитопланктон, в процессе фотосинтеза. По этой причине содержание кислорода связано с количеством света, который проникает в водную толщу, что в свою очередь зависит от прозрачности воды. Поэтому, чем вода прозрачнее, тем выше в ней содержание кислорода. Все это объясняет сложную динамику содержания кислорода в воде в зависимости от типа водоёма, времени суток и времени года.
В подтапливаемых почвах, т.е. с близким уровнем грунтовых вод, корни древесных растений избегают глубоких пересыщенных водой горизонтов. В зоне дефицита кислорода они практически не всасывают воду и растворенные в ней элементы минерального питания.
Пространство. Физическое пространство является ресурсом, потому что любые факторы-ресурсы, которые потребляются организмами, занимают определённую территорию. Растения, чтобы проходить нормальный жизненный цикл, должны получить определённую площадь «под солнцем» и некоторый объем почвы для потребления воды и элементов минерального питания (площадь питания). Животным-фитофагам нужен «участок пастбища» (для тли это будет часть листа, для косяка лошадей - десятки гектаров степи, для стада слонов - десятки квадратных километров), плотоядным животным - охотничьи наделы.
Сравнительно редко физическое пространство может быть ресурсом само по себе вне зависимости от того, какие «съедобные» ресурсы с ним связаны. Такое возможно лишь в тех случаях, когда возникает острый дефицит жизненного пространства. Например, при нехватке места одни луковицы крокусов выталкивают другие из земли. В поселениях мидий раковины так плотно прижаты друг к другу, что между ними не могут втиснуться новые претенденты поселиться на том же камне.
Подобные документы
Стенобионты и эврибионты: понятие и примеры. Потенциальная (фундаментальная) экологическая ниша. Положение вида, которое занимает в общей системе биоценоза в зависимости от его требований к абиотическим факторам. Правило экологической индивидуальности.
презентация [1,1 M], добавлен 09.10.2014Среды обитания как все, что окружает живой организм и с чем он непосредственно взаимодействует, их разновидности и закономерности функционирования. Закон оптимума. Потенциальная и реализованная экологическая ниша. Действие различных факторов на организм.
презентация [1,1 M], добавлен 11.04.2014Объекты организменного (уровня особей), популяционно-видового, биоценотического, биосферного уровней организации как предмет изучения экологии. Главные задачи экологии, основные принципы изучения. Специфика экологических факторов, классификация на группы.
реферат [27,8 K], добавлен 17.02.2010Экологическое образование и культура в современном обществе. Понятие лимитирующих факторов среды (бочка Либиха), которые угнетают жизнедеятельность организмов, ограничивают их рост и развитие. Формы и источники загрязнений окружающей среды радионуклидами.
контрольная работа [278,2 K], добавлен 27.01.2011Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.
курсовая работа [40,5 K], добавлен 19.07.2010Структура современной экологии как науки. Понятие среды обитания и экологических факторов. Экологическое значение пожаров. Биосфера как одна из геосфер Земли. Сущность законов экологии Коммонера. Опасность загрязнителей (поллютантов) и их разновидности.
контрольная работа [2,7 M], добавлен 22.06.2012Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.
методичка [66,2 K], добавлен 07.01.2012Экологическая политика как часть мировой политики. Гуманизм и природа. Экологическая угроза современному миру. Пути выхода из экологического кризиса. Влияние деятельности человека на отдельные компоненты и природу в целом. Значение антропогенных факторов.
реферат [33,2 K], добавлен 10.02.2013История развития экологии. Основные цели и задачи экологии. Влияние человека на природу и взаимодействие с ней. Природопользование, охрана окружающей среды и экологическая безопасность. Экологические проблемы Санкт-Петербурга и Ленинградской области.
реферат [136,7 K], добавлен 23.08.2013Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.
реферат [20,9 K], добавлен 06.07.2010