Основы общей экологии

Классификация факторов среды. Основные принципы аутэкологии: экологического оптимума, индивидуальности экологии видов и лимитирующих факторов. Адаптации к абиотическим факторам. Биологическое разнообразие, его охрана, экологическая ниша, "r" и "К-отбор".

Рубрика Экология и охрана природы
Вид книга
Язык русский
Дата добавления 30.01.2015
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Работы Клементса навсегда останутся классикой экологии и краеугольным камнем теории динамики экосистем. Тем не менее сформулированные им представления в ходе дальнейшего развития экологии претерпели существенные изменения:

1. А. Тенсли и А. Найколсон показали, что в одном районе может формироваться не один, а несколько климаксов, т.е. экосистемы, которые формируются при сукцессиях зарастания скал, озёр, песков, лессовидных суглинков и т.д., будут различными. Концепция моноклимакса, таким образом, переросла в концепцию поликлимакса. Р. Уиттекер, развивая эти представления, сформулировал концепцию «климакс-континуума». Он считал, что разные экосистемы поликлимакса связаны друг с другом плавными переходами и по этой причине в каждой точке - свой климакс.

2. Климакс - это не обязательно самая продуктивная и богатая видами экосистема. Как правило, наибольшим видовым богатством и продуктивностью отличаются как раз «предклимаксовые» серийные экосистемы.

3. Сукцессия не является жестко детерминированным, «запрограмированным» процессом, подобным онтогенезу организма, а имеет стохастический характер. Закономерности сукцессий можно выявить только при обобщении (усреднении) результатов наблюдений за несколькими конкретными сукцессиями, протекающими в одних и тех же условиях. В конкретных сукцессионных последовательностях приход видов в сукцессию и уход из неё может происходить в разной очередности. Более того, некоторые виды могут участвовать в одной конкретной сукцессии и не участвовать в другой. Мы уже говорили о том, что функциональных «ролей» в любой экосистеме всегда много меньше, чем число их возможных «исполнителей» (см. 10.8).

Контрольные вопросы
1. Расскажите о представлениях Ф. Клементса в вопросе динамики экосистем.
2. Перечислите функциональные параметры климаксовой экосистемы.
3. Виды с какими типами стратегий представлены на разных стадиях автогенной сукцессии?
4. Какие положения концепции Ф. Клементса об экологической сукцессии и климаксе были пересмотрены?

12.4 Модели автогенных сукцессий

Ф. Клементс считал, что все сукцессии развития экосистем в направлении климакса подчиняются одной модели: улучшаются условия для жизни биоты, и потому возрастают биологическая продукция и видовое богатство экосистемы. Современные экологи различают не менее трёх моделей сукцессий (Connell, Slayter, 1977):

- модель благоприятствования. Соответствует представлениям о сукцессии Клементса: продуктивность и видовое богатство в ходе сукцессии возрастают вплоть до стадии климакса. Классический пример такой сукцессии - зарастание скал, где последовательно сменяют друг друга стадии цианобактерий и водорослей, накипных лишайников, кустистых лишайников и мхов, трав, кустарников и деревьев;

- модель толерантности. В ходе сукцессии условия ухудшаются, пример - переход низинного болота в верховое, при котором происходит ухудшение условий минерального питания, и потому снижаются продуктивность и видовое богатство. Ухудшаются условия для жизни биоты и в ходе сукцессии на богатых субстратах: первым растениям-поселенцам достаётся больше ресурсов минерального питания и света, чем вторым и третьим, которые должны обеспечивать себя ресурсами в условиях возрастающей конкуренции;

- модель ингибирования. В ходе сукцессии появляется «ключевой» вид (или гильдия ключевых видов), который блокирует дальнейшие изменения. В результате происходит остановка сукцессии и она не доходит до стадии климакса. Например на лесных гарях в Шотландии кукушкин лен блокирует поселение деревьев, в пустынях Средней Азии поселению кустарников и саксаула препятствует корка, которую образуют цианобактерии, водоросли и некоторые мхи. Восстановление прерии в Северной Америке блокируется разрастанием заносных европейских злаков-однолетников, в первую очередь Bromus tectorum.

В ходе сукцессии может происходить смена модели благоприятствования моделью толерантности: на первых стадиях условия улучшаются, а по мере приближения к климаксу - ухудшаются.

Наглядный пример сукцессии со сменой модели -формирование растительности при освобождении побережья фиорда ото льда на Аляске (Chapin et al., 1994). Выделяется четыре стадии процесса:

- пионерная (до 20 лет). Поверхность субстрата покрывается «чёрной коркой» из азотфиксирующих цианобактерий, гаметофитов хвоща (Equisetum variegatum), лишайников, печёночников, на фоне которых рассеянно встречаются травы, кустарничек Dryas drummondii, отдельные экземпляры ивы, тополя (Populus trichocarpa), ели (Picea sitchensis) и ольхи (Alnus sinuata);

- стадия Dryas (между 20 и 30 годами). Вся поверхность покрыта ковром кустарника, в котором рассеяны одиночные экземпляры ив, тополей, елей и ольхи;

- стадия ольхи (между 50 и 100 годами);

- стадия ели (после 100 лет).

В ходе сукцессии формируется почва, которая обогащается органическим веществом и азотом, а смена видов растений идёт в направлении повышения их высоты и длительности жизни, что соответствует модели благоприятствования. Однако при этом возрастает уровень конкуренции за свет и почвенные ресурсы (особенно на стадии ели), ухудшаются условия для приживания всходов, повышается вероятность гибели семян, что соответствует модели толерантности. смена моделей происходит на четвертой стадии.

Смена модели благоприятствования моделью толерантности характерна и для сукцессий экосистем в теплом климате. Так при зарастании лавовых потоков на первых стадиях условия улучшаются за счёт бобовых (особенно из р. Lupinus), которые способствуют обогащению субстрата азотом, а в дальнейшем - ухудшаются, так как обостряется конкуренция.

Несмотря на то, что автогенные сукцессии протекают спонтанно по присущим им внутренним законам, человек, зная эти законы, может влиять на скорость сукцессии. Так для ускорения самозарастания отвалов пустой породы их поверхность покрывается тонким слоем торфа или почвы, в которой содержатся семена растений. Кроме того, процесс зарастания может быть ускорен посевом семян луговых трав или посадкой кустарников и деревьев.

Контрольные вопросы
1. Чем отличаются сукцессии, протекающие в соответствии с моделями благоприятствования и толернатности?
2. Приведите примеры сукцессий, протекающих по модели ингибирования.
3. Приведите примеры сукцессий со сменой моделей.

12.5 Гетеротрофные сукцессии

Движущей силой автотрофных сукцессий является солнечная энергия, усваиваемая растениями-продуцентами и передаваемая по пищевым цепям консументам и редуцентам. Однако подобно тому, как существуют гетеротрофные экосистемы, возможны и гетеротрофные сукцессии (их называют также деградационными). Эти сукцессии происходят при разложении мёртвого органического вещества (детрита): трупа животного, «лепешки» экскрементов коровы, упавшего ствола дерева, лесной подстилки и т.д. В гетеротрофных сукцессиях происходит «эстафета» биоты, которая представлена беспозвоночными, грибами и бактериями.

Гетеротрофная сукцессия в опавшей хвое сосны продолжается около 10 лет (Бигон и др., 1989). Поскольку опавшая хвоя постоянно покрывается новыми слоями опада, то изучение лесной подстилки от её верхней границы до почвы позволяет судить об изменении биоты во времени. Сукцессия происходит постепенно, тем не менее её можно условно разделить на три стадии:

- первая. Длится около 6 месяцев, в течение которых происходит первый этап разложения хвои. Впрочем, до 50% живых сосновых хвоинок уже поражено грибом Coniosporium, который открывает эту сукцессию. После опадения хвои этот гриб быстро исчезает, и на ней поселяются Fusicoccum и Pullularia. В конце стадии массово развивается Desmazierella;

- вторая. Длится два года. В число участников сукцессии, кроме Desmazierella, включаются Sympodiella и Helicoma, к которым добавляются почвенные клещи;

- третья. Наиболее продолжительная, которая длится 7 лет. Основными деструкторами хвоинок становятся почвенные животные - ногохвостки, клещи и олигохеты-энхитреиды. Хвоя спрессовывается, после чего интенсивность разложения резко снижается и сукцессия вступает в стадию «климакса».

Другой пример - сукцессия состава насекомых-ксилофагов, участвующих в разложении древесины. Различаются пять стадий этой сукцессии (Кашкаров, 1944) со своим населением детритофагов: живой древесины, ослабленной древесины, мёртвого целого дерева, частично разложившейся древесины, полностью разложившейся древесины.

Гетеротрофную сукцессию можно продемонстрировать в эксперименте на сенном растворе, где вначале расцветает пышная культура разнообразных бактерий, которые при добавлении прудовой воды сменяются простейшими из родов Hypotricha, Amoeba, Vorticella. После того, как ресурсы исчерпываются, сукцессия останавливается, а участвовавшие в ней организмы переходят в покоящееся состояние.

Контрольные вопросы
1. Какие сукцессии называются гетеротрофными?
2. Приведите пример гетеротрофной сукцессии.
3. Каким экспериментом можно проиллюстрировать гетеротрофную сукцессию?

12.6 Вторичные автогенные (восстановительные) сукцессии

Восстановительные сукцессии по своему характеру мало отличаются от первичных, но, как отмечалось, протекают в экосистемах, которые частично или полностью нарушены внешним воздействием (как правило, деятельностью человека). Они обычно протекают быстрее, чем первичные, на их скорость влияет степень сохранности экосистемы и наличие источников диаспор для её восстановления.

Классический пример такой сукцессии - восстановление степи или леса на месте заброшенной пашни. Примерно 150 лет назад основными системами земледелия в России были залежно-переложная и Подсечно-огневая (соответственно в степной и лесной зонах). Участок земли использовался как пашня 5-10 лет, после чего забрасывался, т. к. почва истощалась и обильно развивались сорняки, представлявшие первую стадию восстановительной сукцессии уже под пологом культурного растения. Контролировать сорняки при отсутствии тракторов и пестицидов человек не умел.

Постепенно на заброшенном поле, через стадии полевых (сегетальных) сорняков, которые доминировали в первый год, и рудеральных видов, разраставшихся в последующие 3-5 лет, формировался степной травостой или вырастал лес. В ходе этой сукцессии восстанавливалось плодородие почвы, а сорные растения вытеснялись более мощными рудеральными, луговыми и лесными видами. Соответственно обогащалась и фауна.

Восстановление растительности на залежах происходило достаточно долго - не менее 25 лет. Человек научился ускорять этот процесс. Дж. Кертис (J. Curtis) в двадцатых годах прошлого столетия значительно быстрее восстанавливал прерии за счёт «искусственного семенного дождя» - смеси семян, собранных на сохранившихся участках прерии. Восстановление лугов высевом смеси семян, собранных в естественных луговых сообществах, практикуется сегодня в Англии.

Ставропольский ботаник Д. Дзыбов разработал экономичный способ ускорения восстановительной сукцессии путём рассева сена с целинного степного участка на вспаханную почву. Семена высыпаются в почву, и сукцессия восстановления степи резко ускоряется: к пятому году в такой «агростепи» есть уже до 80% видов растений целинной степи. Для ускорения восстановительных сукцессий экосистем тундры на Аляске, нарушенных при добыче нефти, применяли азотные удобрения.

Восстановительные сукцессии активно протекают не только на залежах, но и в посевах многолетних трав. Это позволяет использовать старовозрастные посевы многолетних трав для повышения биологического разнообразия сельскохозяйственных экосистем.

Само собой разумеется, что в ходе восстановительных сукцессий меняется вся гетеротрофная биота экосистемы. В литературе приводятся данные об изменениях фауны птиц, грызунов, насекомых.

Сукцессия состава населения птиц изучалась в прериях США (Одум, 1986). Количество видов гнездящихся птиц менялось от 15 до 239, причём на разных стадиях сукцессии состав птичьего населения существенно менялся:

- на первой стадии (первые три года), когда доминировали травянистые растения, число видов птиц менялось от 15 до 40 видов, причём доминировали саванный воробей и луговой трупиал;

- на второй стадии - кустарников, которая продолжалась 22 года, орнитофауна возросла до 136 видов, причём наиболее массовыми были: американская славка, овсянка, желтогрудая славка;

- на третьей стадии - соснового леса, которая представляла 35-100 годы сукцессии, орнитофауна была самой богатой и достигала 239 видов. Самыми массовыми были древесница, тонагра, тиранн, верион желтолобый;

- на заключительной стадии - дубово-гикориевого леса, которая формируется через 150-200 лет после забрасывания пашни, разнообразие птичьего население снизилось до 228 видов. К видам соснового леса добавляются американская кукушка, еще два вида древесницы и тиранн зелёный.

Аналогичные данные о динамике фауны при восстановлении леса получила М.Н. Керзина (1956). Так восстановление ельника (Костромская область) сопровождалось изменением фауны грызунов и насекомых. На стадии открытой лесосеки (1-2 года после вырубки) фауна грызунов была представлена видами из рода Microtus, на смену которым при восстановлении леса приходили типичные лесные виды грызунов из рода Clethrionomys, причём на средней стадии сукцессии эти виды сочетались. Сходный характер имела и динамика насекомых (табл. 12). В целом энтомофауна обеднялась за счёт резкого уменьшения числа цикад, уменьшалось количество особей других групп, исключая пауков, количество которых увеличивалось.

Таблица 12 Динамика численности основных групп насекомых при восстановлении еловых, елово-пихтовых и сосновых лесов (на 100 взмахов сачком; по М.Н. Керзиной, 1956)

Распространённым вариантом вторичной восстановительной сукцессии является постпастбищная демутация. При снижении пастбищной нагрузки начинается процесс восстановления пострадавших от выпаса высоких трав: овсяницы луговой, ежи сборной и костреца безостого - на лугах и ковылей - в степях. Патиенты-пастбищники (подорожники, одуванчик, лапчатка гусиная, клевер ползучий на лугу; полынь австрийская и типчак в степи) при отсутствии сильного выпаса теряют свои конкурентные преимущества и резко снижают обилие.

К вторичным восстановительным сукцессиям относится изменение водной экосистемы в результате деэвтрофикации после того, как поступление биогенов в экосистему со стоками прекратилось. Такие сукцессии были изучены на озере Вашингтон крупным американским экологом Т. Эдмондсоном (1998). В ходе описанной сукцессии обильно размножившиеся цианобактерии постепенно вытесняются зелёными и диатомовыми водорослями и параллельно возрастает биоразнообразие зоопланктона и нектона (рыб). Избыточные биогены, поглощённые планктонными организмами, после их смерти оседают на дно водоёма и захораниваются в сапропеле.

После снижения содержания питательных элементов водная экосистема восстанавливается. Птицы заносят семена водных растений и икру рыб.

Контрольные вопросы
1. Какие сукцессии относятся к вторичным автогенным (восстановительным)?
2. Охарактеризуйте восстановительную сукцессию растительного сообщества на конкретном примере.
3. Приведите примеры изменения гетеротрофной биоты экосистемы в ходе восстановительной сукцессии.
4. Как протекают сукцессии деэвтрофикации водных экосистем?

12.7 Аллогенные сукцессии

Аллогенные сукцессии вызываются факторами, внешними по отношению к экосистемам. Такие сукцессии чаще всего протекают в результате влияния человека, хотя возможны и природные аллогенные изменения. Их пример - изменение состава экосистемы поймы в результате меандрирования реки и углубления ею базиса эрозии русла. В итоге уровень поймы повышается, а длительность заливания и количество наилка уменьшаются. В результате этого в экосистемах пойм умеренной полосы последовательно сменяют друг друга сообщества ивняков, тополевников, вязовых и липово-дубовых лесов и полностью меняется состав травянистых видов. Меняется и состав гетеротрофной биоты, так как растительные сообщества предоставляют им соответствующую кормовую базу. Кроме того, состав растительного сообщества отражает длительность затопления в период паводка, что во многом предопределяет возможность выживания разных видов насекомых, птиц, почвенной фауны и т.д.

Наиболее распространённым примером аллогенной сукцессии является изменение экосистем злаковников (лугов и степей) под влиянием выпаса. При высоких пастбищных нагрузках снижается видовое богатство, биологическая продукция, биомасса и происходят изменения состава растительного сообщества и сопровождающей его фауны: на смену высоким и хорошо поедаемым растениям приходят низкорослые и плохо поедаемые (последние могут быть и высокорослыми, как, например, виды чертополоха - род Carduus). В степных экосистемах различаются стадии пастбищной дигрессии: ковыльная, типчаковая (с Festuca valesiaca или F. pseudovina), полынковая с господством Artemisia austriaca. На заключительных стадиях такой сукцессии происходит рудерализация и массово развиваются однолетники, которые используют для быстрого роста перерывы между циклами стравливания и условия ослабленной конкуренции с многолетниками, которые угнетены выпасом.

Сегодня чрезвычайно распространённым и нежелательным процессом изменения водных экосистем является их эвтрофикация - изменение в результате поступления большого количества элементов минерального питания, в первую очередь фосфора. Основной причиной эвтрофикации является смыв удобрений с полей, а также стоки животноводческих ферм.

В ходе сукцессии первыми гибнут диатомовые водоросли, вслед за ними - зелёные водоросли, которые вытесняются цианобактериями. Некоторые штаммы цианобактерий выделяют в воду токсичные вещества, которые вызывают гибель многих организмов. При опускании на дно они разлагаются редуцентами, что требует большого количества кислорода. В итоге в таком обедненном кислородом водоёме гибнет большинство видов рыб и макрофитов (в первую очередь таких требовательных к чистой воде, как сальвиния, водокрас лягушечий, горец земноводный). В то же время, роголистник, рогоз широколистный и ряски могут выдерживать достаточно высокий уровень загрязнения и сохраняться в такой эвтрофицированной экосистеме. Вокруг эвтрофицированного водоёма ощущается дурной запах, в мелководье скапливается бурая пена, содержащая погибший планктон.

Если количество стоков ограничено или они уже прекращены, водная экосистема сама может справиться с загрязнением - произойдёт процесс деэвтрофикации, описанный в предыдущем разделе. Успешно противостоять эвтрофикации могут макрофиты, активно усваивающие элементы питания.

Однако самоочистительная способность водных экосистем ограничена, и потому если стоки поступают длительное время и в большом количестве - они гибнут.

От эвтрофицикации следует отличать отравление водных экосистем промышленными и бытовыми стоками, которые содержат токсичные вещества, например тяжёлые металлы. Если поступление токсикантов ограничено, то экосистема может справиться и с ними: ядовитые вещества попадут в организмы её обитателей, а после их смерти будут захоронены на дне. На дне водоёмов Куйбышевского, Волгоградского и других водохранилищ накопился многометровый слой токсичных осадков, образующихся в процессе самоочищения.

Однако, если поступит значительное количество токсичных веществ и тем более если они будут поступать регулярно, водная экосистема восстановиться не сможет.

Другим примером аллогенной сукцессии является изменение состава экосистем под влиянием радиации. Они были изучены Р. Уиттекером и Г. Вудвелом (Whittaker, Woodwell, 1972) на радиационном полигоне о. Лонг (США). При повышении дозы радиации (использовался источник гамма-излучения) происходила сукцессия, которая была как бы зеркальным отражением сукцессии зарастания скал, описанной Ф. Клементсом: вначале гибли деревья, потом кустарники, травы, мхи, и при самых высоких дозах радиации сохранялись только почвенные водоросли. В районе Чернобыля после аварии сукцессия прошла первую стадию: в лесах, расположенных вблизи АЭС, усох древостой (однако спустя несколько лет он начал интенсивно восстанавливаться).

Как правило, аллогенные сукцессии сопровождаются снижением продуктивности и биоразнообразия, хотя на первых стадиях сукцессии эти параметры могут возрастать. Травяные сообщества при умеренном выпасе, леса при некотором влиянии отдыхающих или водные экосистемы при лёгкой эвтрофикации имеют более богатый видовой состав, чем те же сообщества, не испытывающие внешних влияний.

В некоторых случаях при аллогенной сукцессии возрастает продукция, но снижается видовое богатство. Это наблюдается при изменении лугов под влиянием минеральных удобрений: число видов в сообществах уменьшается в 2-2,5 раза. Причина тому - обострение конкуренции при повышении уровня обеспечения ресурсами. Так большой ущерб видовому составу европейских горных лугов на бедных почвах принесли мероприятия по их улучшению путём внесения минеральных удобрений. Подобным образом снижение видового богатства может сопровождаться возрастанием биологической продукции и при эвтрофикации водоёмов.

Контрольные вопросы
1. Расскажите об изменениях экосистем под влиянием интенсивного выпаса.
2. Какие изменения происходят в водных экоситемах при эвтрофикации?
3. Как влияют на экосистемы высокие дозы радиации?

12.8 Природная эволюция экосистем

Отличие эволюции экосистем от сукцессий заключается в том, что в ходе эволюции появляются новые комбинации видов и вырабатываются новые механизмы их сосуществования. Итогом природной эволюции является разнообразие экосистем, которое было рассмотрено в главе 11. В отличие от организмов экосистемы и их биоты как целостности не эволюционируют. Эволюция экосистем протекает как сеткообразный процесс, который складывается из более или менее независимой эволюции видов, входящих в их состав (Уиттекер, 1980).

Для организмов одного трофического уровня главным механизмом эволюции является диверсификация, т.е. усиление несходства видов - эволюция не «к», а «от», что позволяет видам занимать разные экологические ниши и устойчиво сосуществовать в сообществе. Принцип разделения экологических ниш смягчает конкуренцию и может дополняться уже рассмотренными механизмами взаимного (как в семейных группах животных) или одностороннего благоприятствования (как у растений-нянь и их подопечных).

Однако диверсификация - это не единственный механизм эволюции организмов одного трофического уровня. В ходе эволюции возможна и унификация экологических характеристик видов. В этом случае, обладая равными конкурентными способностями, виды могут сосуществовать в одном сообществе благодаря влиянию хищников и паразитов, которые ослабляют конкурирующие особи. Кроме того, такие виды могут занимать одну и ту же нишу в разных местах сообщества или поочерёдно в одном месте. Соотношение диверсификации и унификации, видимо, нетождественно в разных группах организмов.

У взаимодействующих организмов разных трофических уровней в ходе эволюции может формироваться широчайшая гамма коадаптаций: от различных форм мутуализма (облигатного или протокооперации), аменсализма, комменсализма до приспособлений, смягчающих антагонистические отношения (между растениями и фитофагами, хищниками и жертвами, хозяевами и паразитами).

Коадаптации отношений «растение - фитофаг» и «хищник - жертва» часто имеют диффузный (коллективный) характер: приспосабливаются друг к другу не отдельные виды (вид А- вид Б), а целые гильдии («команды»). Например в саванне приспосабливаются друг к другу «команды» трав и травоядных, древесных растений и веткоядных. Разумеется, приспособление в этом случае означает не взаимопомощь, а снижение интенсивности антагонистических отношений.

Вследствие диффузной коадаптации в основе «триплетов» из организмов трёх трофических уровней («растение - фитофаг - зоофаг», «фитофаг - хищник первого порядка - хищник второго порядка», «хищник первого порядка - хищник второго порядка - паразит») лежат не пищевые цепи, а пищевые сети, в которых виды могут замещать друг друга. В этом проявляется уже упомянутый принцип: количество функциональных ролей много меньше, чем число их потенциальных исполнителей.

В то же время сеткообразность процесса эволюции экосистем не исключает возможности возникновения прочных и однозначных связей, в первую очередь в парах «хозяин - паразит» или при мутуалистических отношениях.

Контрольные вопросы

1. Какую роль в эволюции экосистем играет диверсификация видов?

2. Расскажите о роли унификации видов для их сосуществования.

3. Что такое диффузная коадаптация?

12.9 Антропогенная эволюция экосистем

Природная эволюция экосистем протекает в масштабе тысячелетий, в настоящее время она подавлена антропогенной эволюцией, связанной с деятельностью человека. Биологическое время антропогенной эволюции имеет масштаб десятилетий и столетий.

Антропогенная эволюция экосистем разделяется на два больших класса (по типу процессов): целенаправленная и стихийная. В первом случае человек формирует новые типы искусственных экосистем. Результатом этой эволюции являются все агроэкосистемы, садово-парковые ансамбли, морские огороды бурых водорослей, фермы устриц и т.д. Однако к «плановой» эволюции всегда добавляются «неплановые» процессы - происходит внедрение спонтанных видов, например сорных видов растений и насекомых-фитофагов в агроценозы. Человек стремится подавить эти «неплановые» процессы, но это оказывается практически невозможным.

Стихийная антропогенная эволюция экосистем играет большую роль, чем целенаправленная. Она более разнообразна и, как правило, имеет регрессивный характер: ведёт к снижению биологического разнообразия, а иногда и продуктивности.

Основу стихийной антропогенной эволюции составляет появление в экосистемах видов, непреднамеренно (реже преднамеренно) занесённых человеком из других районов. Масштаб этого процесса столь велик, что принял характер «великого переселения» и «гомогенизации» биосферы под влиянием человека (Lodge, 1993). Заносные виды называются адвентивными (Kornas, 1978, 1990), а процесс внедрения (инвазии) адвентивных видов в экосистемы - адвентивизацией.

Причиной расселения адвентивных видов является антропогенное нарушение процессов саморегуляции экосистем при отсутствии видов-антагонистов (Элтон, 1960), как у североамериканской опунции в Австралии и амазонского водяного гиацинта в Африке и Азии, или, напротив, при появлении вида-патогена, к которому у местного вида, ставшего его хозяином, нет иммунитета, как в историях с гибелью Castanea dentata и нарушением африканских саванн вирусом коровьей чумы (см. 8.5).

«Экологические взрывы» вызывает занос видов, которые оказываются ключевыми. Чаще такие «взрывы» вовсе не происходят, так как адвентивный вид вообще не вытесняет аборигенные виды из сообщества или если вытесняет, то берет на себя выполнение функциональной роли вытесненного вида.

В процессе антропогенной эволюции могут усиливаться и некоторые виды местной флоры и фауны, которые оказались преадаптированными к режиму возрастающих антропогенных нагрузок. В прошлом они были связаны с местами локальных естественных нарушений - горных селей, пороев, вытаптываемых участков экосистем у водопоев, лежбищ крупных фитофагов, таких как зубры или бизоны, и т.д.

Результатом антропогенной эволюции экосистем, кроме того, является:

- уничтожение видов или снижение их генетического разнообразия (число страниц в Красных книгах во всех странах год от года увеличивается);

- смещение границ природных зон - развитие процесса опустынивания в степной зоне, вытеснение травяной растительностью лесов у южной границы их распространения;

- возникновение новых экосистем, устойчивых к влиянию человека (например экосистем сбитых пастбищ с обедненным видовым богатством);

- формирование новых сообществ на антропогенных субстратах при их естественном зарастании или рекультивации.

Однако основу антропогенной эволюции сегодня, безусловно, составляет процесс расселения заносных видов, называемый адвентивизацией. Вопрос этот столь актуален, что специально рассматривается в следующем разделе.

Контрольные вопросы
1. Чем отличаются целенаправленная и стихийная разновидности антропогенной эволюции экосистем?
2. Приведите примеры «экологических взрывов» при антропогенной эволюции экоситем.
3. К каким результатам приводит антропогенная эволюция экосистем?

12.10 Масштабы процесса адвентивизации биосферы

В числе адвентивных видов имеются представители практически всех групп органического мира, хотя наиболее изучены адвентивные виды растений.

Растения расселялись человеком при любых миграциях (кочевья, военные походы, торговые маршруты и т.д.). Однако особенно активным переселение растений с материка на материк стало после открытия Америки Колумбом. При этом поток растений из Старого света в Новый свет оказался более мощным, чем в обратном направлении. Имеют место феномены «африканизации» американских саванн (White, 1977) и «европеизации» средиземноморских сообществ Калифорнии (Noe, Zedler, 2001). Первый эпизод был связан с усилением потока диаспор из Африки с сеном, на котором в трюмах спали черные рабы, и одновременным разрушением травяного яруса саванн под воздействием крупного рогатого скота. В этих условиях получили распространение африканские злаки Hypperhenia ruta, Panicum maximum, Brachiaria mutica. В Калифорнии большая часть видов из естественных однолетних злаковников вытеснена европейскими Bromus mollis и Lolium multiflorum.

На сегодняшний день картина адвентивизации флор разных материков выглядит следующим образом (Lonsdale, 1999): Северная Америка - 19%, Австралия - 17%, Южная Америка - 13%, Европа - 9%, Африка - 7%, Азия - 7%. Максимальная доля З.в. выявлена в сельскохозяйственных и городских экосистемах - 31%, далее следуют леса умеренной полосы, во флоре которых доля З.в. достигает 22%. В биоме средиземноморских склерофитных кустарников также много З.в. - 17%. Этот показатель резко снижается у альпийской растительности (11%), в саваннах (8%) и пустынях (6%). Адвентивные виды есть в составе флоры любого резервата, кроме Антарктиды (где вообще нет растений).

К числу адвентивных относится большинство видов сорных растений, которые перевозились из района в район с культурными растениями, а также многие рудеральные растения, распространявшиеся при нарушении человеком естественных экосистем. На юго-востоке европейской части России быстро расселяются агрессивные рудеральные виды из родов амброзия и циклахена, которые образуют чистые заросли.

Особенно легко расселяются водные адвентивные виды. В последние годы во многих водоёмах тропического и субтропического поясов массово расселились водный гиацинт и сальвиния назойливая. Они наносят значительный экономический ущерб, в особенности в странах Африки, Юго-Восточной Азии и в Австралии. В оросительных каналах Европы большой вред наносит элодея канадская, а в водоёмах Канады - разросшаяся там европейская уруть колосистая. В оросительных системах США много хлопот доставляет африканское растение аллигаторова трава. В Австралии рисовые поля зарастают занесённым из Азии куриным просом.

Экосистеме Средиземного моря наносит ущерб тропическая водоросль каулерпа, выделяющая в воду сильнодействующие токсины (по-видимому, каулерпа занесена с балластными водами, хотя возможно, что виновниками её расселения были аквариумисты).

Картина распространения адвентивных видов животных менее полная. Среди них есть немало опасных видов, способных из-за отсутствия естественных врагов, контролирующих их численность, нанести значительный ущерб экосистемам. Общеизвестны последствия натурализации кролика в Австралии.

В последние годы экосистемы Чёрного, Азовского и Каспийского морей страдают от видов гребневика - беспозвоночного животного, занесённого с балластными водами судов. Гребневик поедает икру и молодь рыбы.

Экосистемы североамериканских Великих озёр изменяются под влиянием европейского окуня, отличающегося прожорливостью и уничтожающего молодь местных видов рыб. Большой ущерб этим экосистемам (а также судам и промышленным предприятиям) наносят экзотические виды моллюсков (в частности дрейссена, которая занесена из Европы). Бурно размножаясь, они забивают водопроводные трубы и облепляют днища судов.

В озере Иссыккуль недавно появился занесённый с Дальнего Востока малоценный агрессивный вид рыбы элеотрис, а по рекам и озёрам Подмосковья уже давно расселился дальневосточный ротан, поедающий молодь рыбы. В последние годы он расселяется в верхней Волге (уже зарегистрирован у г. Саратова).

В целом процесс адвентивизации экосистем особенно активизировался после 1950 г. благодаря быстрому развитию транспортных средств, а после 1970 г. вследствие развития процессов глобализации рынка и экономики. После 2030 г. прогнозируется усиление адвентивизации вследствие потепления климата (di Castri, 1990). Однако потепление климата может неодинаково сказаться на разных биомах. Экосистемы тундр, к примеру, обладают высокой буферностью, и потому при потеплении климата их инвазивный потенциал может сохраниться прежним за счёт того, что изменится соотношение между видами в сообществах: роль сосудистых растений увеличится, а споровых - уменьшится.

Анализ последствий антропогенной эволюции показывает, что человек должен быть осмотрительным при плановой интродукции вида из одного района в другой и более осторожным в случаях, когда может произойти непреднамеренный занос видов, и принимать меры к уже распространившимся заносным видам, если они пагубно влияют на естественные экосистемы.

Контрольные вопросы
1. Какое историческое событие рассматривается как начало интенсивной адвентивизации флоры и фауны?
2. Расскажите об африканизации американских саванн и европеизации злаковников Калифорнии.
3. Дайте общую картину современного уровня адвентивизации флоры в глобальном масштабе.
4. Приведите примеры пагубного влияния на экосистемы адвентивных видов животных.
5. Какие факторы будут способствовать процессу антропогенной гомогенизации биосферы в будущем?
Темы докладов на семинарских занятиях
1. Значение циклической динамики экосистем для поддержания их устойчивости.
2. Развитие взглядов Ф. Клементса на природу экологической сукцессии.
3. Возможности использования потенциала восстановительных сукцессий для сохранения экосистем.
4. Аллогенные сукцессии как фактор разрушения биосферы.
5. Природная и антропогенная ветви эволюции экосистем: сравнение и оценка вклада в изменение биосферы.
Глава 13. Биосфера
При рассмотрении экосистем мы говорили о потоках энергии и вещества. Для характеристики процесса трансформации энергии мы приводили «закон Линдемана» (правило 10%) и обсуждали отклонения от этого закона, а закономерности циклической циркуляции веществ пока не обсуждали. Это было сделано сознательно: при пространственной неопределённости (безранговости) экосистем говорить о круговоротах веществ в пределах одной экосистемы невозможно. По этой причине мы рассматриваем круговороты веществ только в самой большой экосистеме - биосфере.
Истоки представлений о биосфере уходят в работы А. Лавуазье, Ж.Б. Ламарка и А. Гумбольдта (см. 1.1), однако термин «биосфера» предложил австрийский учёный Э. Зюсс в 1875 г. Этим термином он обзначил одну из оболочек Земли - пространство, в котором есть жизнь. Целостное учение о биосфере создал русский учёный В.И. Вернадский (1926), обосновавший геологическую преобразующую роль живых организмов. Они являются основной геологической силой, которая создала биосферу и поддерживает её состояние в настоящее время. К понятию «биосфера» близко понятие “гея” (от греч. Гея - богиня Земли), которое в 70-х гг. нашего столетия предложил английский учёный Дж. Ловелок.

13.1 Биосфера как оболочка Земли

Кроме биосферы Зюсс выделил еще три оболочки - атмосферу, гидросферу и литосферу.

Атмосфера - самая наружная газообразная оболочка Земли, она простирается до высоты 100 км. Основные составляющие атмосферы - азот (78%), кислород (20,95%), аргон (0,93%), диоксид углерода (0,03%). Атмосфера является отчасти продуктом жизнедеятельности организмов, так как кислород атмосферы - это результат деятельности фотосинтезирующих организмов - цианобактерий и растений. На высоте 20-45 км расположен озоновый слой, содержание озона в нем примерно в 10 раз выше, чем в атмосфере у поверхности Земли. Этот слой защищает поверхность планеты от избытка ультрафиолетовых лучей, неблагоприятно влияющих на живые организмы.

Между атмосферой и земной поверхностью происходит постоянный обмен теплом, влагой и химическими элементами.

На состояние атмосферы влияет хозяйственная деятельность человека, благодаря которой в ней появились метан, оксиды азота и другие газы, вызывающие атмосферные процессы - парниковый эффект, разрушение озонового слоя, кислые дожди, смог.

Гидросфера оказывается не сплошной оболочкой: моря и океаны покрывают Землю только на 2/3, остальное занято сушей. На суше гидросфера представлена фрагментарно - озерами, реками, грунтовыми водами (табл. 13).

Таблица 13 Распределение водных масс в гидросфере Земли (по Львовичу, 1986)

Гидросфера на 94% представлена солёными водами океанов и морей, а вклад рек в водный бюджет планеты в 10 раз меньше, чем количество водных паров в атмосфере. Три четверти пресной воды недоступны организмам, так как законсервированы в ледниках гор и полярных шапках Арктики и Антарктиды.

Гидросфера испытывает все возрастающее влияние хозяйственной деятельности человека, которая ведёт к нарушению рассматриваемого ниже биосферного круговорота воды (ускорение процесса таяния ледников, уменьшение количества жидкой пресной воды и увеличение парообразной воды в результате испарений мелиорированных Агро экосистем.

Литосфера - это верхняя твёрдая оболочка Земли, мощность которой составляет 50-200 км. Верхний слой литосферы называется земной корой. Вещества, слагающие литосферу, частично образованы за счёт деятельности организмов, и это не только торф, каменный уголь, горючие сланцы, но и куда более распространённый карбонат кальция, образовавшийся из моллюсков и других морских животных. Совершенно особую среду представляет собой почва (см. 2.6), находящаяся на границе литосферы и атмосферы.

В настоящее время на литосферу оказывает сильнейшее техногенное влияние человек, особенно за счёт развития процессов эрозии, увеличения твердого стока, сжигания ископаемого топлива и создания инженерных сооружений. Искусственные (техногенные) грунты уже покрывают более 55% площади суши Земли, а в ряде урбанизированных районов (Европа, Япония, Гонконг и др.) они покрывают 95-100% территории и их мощность достигает нескольких десятков метров. Суммарная площадь, покрытая всеми видами инженерных сооружений (здания, дороги, водохранилища, каналы и т.п.) в 2000 г. достигла 1/6 площади суши.

Биосфера охватывает всю гидросферу, часть атмосферы и часть литосферы. Её верхняя граница расположена на высоте 6 км над уровнем моря, нижняя - на глубине 15 км в толще земной коры (на такой глубине обитают бактерии в нефтяных водах) и 11 км в океане. По сравнению с диаметром Земли (13000 км) биосфера - это тонкая плёнка на её поверхности. Однако основная жизнь в биосфере сконцентрирована в значительно более узких пределах, охватывающих всего несколько десятков метров на континентах, в атмосфере и в океане (табл. 14).

Таблица 14 Структура биомассы биосферы (сухое вещество)

В биосфере происходит круговорот всех веществ, т.е. их многократное участие в процессах синтеза и разрушения органического вещества. В круговоротах в той или иной степени участвуют практически все химические элементы, однако наиболее важными для биосферы являются круговороты воды, кислорода, углерода, азота, фосфора.

Контрольные вопросы
1. С именами каких учёных связано рождение и развитие представления о биосфере?
2. Назовите оболочки Земли, которые выделил Э. Зюсс.
3. Расскажите о составе атмосферы.
4. Какова структура гидросферы?
5. Охарактеризуйте масштаб техногенных нарушений литосферы человеком.
6. Назовите верхнюю и нижнюю границы биосферы.

13.2 Основные круговороты веществ в биосфере

Важнейшей характеристикой биосферы являются протекающие в ней круговороты веществ, которые обусловлены биогенными и абиогенными причинами. В настоящее время они нарушаются хозяйственной деятельностью человека, что ведёт к нарушению биосферы и может иметь тяжёлые последствия для будущих поколений землян. Рассмотрим круговороты наиболее важных биогенов - углерода, кислорода, азота, воды.

13.2.1 Круговорот углерода
Это один из самых важных биосферных круговоротов, поскольку углерод составляет основу органических веществ. В круговороте особенно велика роль диоксида углерода (рис. 23).
Рис. 23. Круговорот углерода в биосфере
Запасы «живого» углерода в составе организмов суши и океана составляют, по разным данным, 550-750 Гт (1 Гт равна 1 млрд т), причём 99,5% этого количества сосредоточено на суше, остальное - в океане. Кроме того, в океане содержится до 700 Гт в составе растворенного органического вещества.
Запасы неорганического углерода значительно больше. Над каждым квадратным метром суши и океана находится 1 кг углерода атмосферы, и под каждым квадратным метром океана при глубине 4 км - 100 кг углерода в форме карбонатов и бикарбонатов. Еще больше запасы углерода в осадочных породах - в известняках содержатся карбонаты, в сланцах - керогены и т.д.
Примерно 1/3 «живого» углерода (около 200 Гт) циркулирует, т.е. ежегодно усваивается организмами в процессе фотосинтеза и возвращается обратно в атмосферу, причём вклад океана и суши в этот процесс примерно сходный. Несмотря на то, что биомасса океана много меньше биомассы суши, его биологическая продукция создаётся множеством поколений краткоживущих водорослей (соотношение биомассы и биологической продукции в океане примерно такое же, как в пресноводной экосистеме, см. 11.1).
До 50% (по некоторым данным - до 90%) углерода в форме диоксида возвращают в атмосферу микроорганизмы-редуценты почвы. В этот процесс равный вклад вносят бактерии и грибы. Возврат диоксида углерода при дыхании всех прочих организмов, таким образом, меньше, чем при деятельности редуцентов.
Некоторые бактерии, кроме диоксида углерода, образуют метан. Выделение метана из почвы возрастает при переувлажнении, когда создаются анаэробные условия, благоприятные для деятельности метанообразующих бактерий. По этой причине резко увеличивается выделение метана лесной почвой, если древостой вырублен и вследствие уменьшения транспирации происходит её заболачивание. Много метана выделяют рисовые поля и домашний скот.
В настоящее время отмечается нарушение круговорота углерода в связи со сжиганием значительного количества ископаемых углеродистых энергоносителей, а также при дегумификации пахотных почв и осушении болот. В целом содержание диоксида углерода в атмосфере ежегодно возрастает на 0,6%. Еще быстрее возрастает содержание метана - на 1-2%. Эти газы являются главными виновниками усиления парникового эффекта, который на 50% зависит от диоксида углерода и на 33% - от метана.
Последствия усиления парникового эффекта для биосферы неясны, наиболее вероятный прогноз - потепление климата. Однако поскольку «машинами» климата являются морские течения, то вследствие их изменения при таянии ледников в ряде районов возможно существенное похолодание (в том числе в Европе в результате изменения течения Гольфстрим). Под влиянием изменения концентрации диоксида углерода значительно учащаются крупные стихийные бедствия (наводнения, засухи и т.д.)
Приведенные данные характеризуют биогенный круговорот углерода. В круговороте участвуют и геохимические процессы, при которых происходит обмен атмосферного углерода и углерода, содержащегося в горных породах. Однако данных о скорости этих процессов нет. Полагают лишь, что их интенсивность менялась в истории планеты и парниковый эффект, который наблюдается сегодня, многократно проявлялся в прошлом при усилении геохимических процессов с выделением диоксида углерода и при ослаблении процессов, которые “оттягивали” его из атмосферы.
Для того, чтобы вернуть круговороту углерода равновесие, необходимо увеличить площадь лесов и сократить выброс газов при сжигании углеродистых энергоносителей.
Контрольные вопросы
1. Каково соотношение количества «живого» углерода на суше и в океане?
2. Каково соотношение количества «мёртвого» углерода в атмосфере и в океане?
3. Какая доля «живого» углерода ежегодно вовлекается в круговорот?
4. Какая доля углерода возвращается в атмосферу редуцентами наземных экосистем?
5. Перечислите факторы, нарушающие круговорот углерода.
6. Какие последствия может иметь усиление парникового эффекта?
13.2.2 Круговорот воды
Вода испаряется не только с поверхности водоёмов и почв, но и живых организмов, ткани которых на 70 % состоят из воды (рис. 24). Большое количество воды (около 1/3 всей воды осадков) испаряется растениями, особенно деревьями: на созидание 1 кг органического вещества в разных районах они расходуют от 200 до 700 л воды.
Рис. 24. Круговорот воды в биосфере
Различные фракции воды гидросферы участвуют в круговороте по-разному и с разной скоростью. Так полное обновление воды в составе ледников происходит за 8 тыс. лет, подземных вод - за 5 тыс. лет, океана - за 3 тыс. лет, почвы - за 1 год. Пары атмосферы и речные воды полностью обновляются за 10-12 суток.
До развития цивилизации круговорот воды был равновесным, однако в последние десятилетия вмешательство человека нарушает этот цикл. В частности уменьшается испарение воды лесами ввиду сокращения их площади и, напротив, увеличивается испарение с поверхности почвы при орошении сельскохозяйственных культур. Испарение воды с поверхности океана уменьшается вследствие появления на её значительной части плёнки нефти. Влияет на круговорот воды потепление климата, вызываемое парниковым эффектом. При усилении этих тенденций могут произойти существенные изменения круговорота, опасные для биосферы.
Важную роль в годовом водном балансе биосферы играет океан (табл. 15). Испарение с его поверхности примерно в два раза больше, чем с поверхности суши.
Таблица 15 Годовой водный баланс Земли (по Львовичу, 1986)
Контрольные вопросы
1. Какой вклад в испарение воды вносит океан?
2. Какой вклад в испарение воды вносят растения?
3. С какой скоростью осуществляется круговорот разных фракций воды?
4. Расскажите о причинах нарушения круговорота воды.
13.2.3 Круговорот азота
Циркуляция азота в биосфере протекает по следующей схеме (рис. 25):
- перевод инертного азота атмосферы в доступные для растений формы (биологическая азотфиксация, образование аммиака при грозовых разрядах, производство азотных удобрений на заводах),
- усвоение азота растениями,
- переход части азота из растений в ткани животных,
- накопление азота в детрите,
- разложение детрита микроорганизмами-редуцентами вплоть до восстановления молекулярного азота, который возвращается в атмосферу
Рис. 25. Круговорот азота в биосфере
В морских экосистемах азотфиксаторами являются цианобактерии, связывающие азот в аммиак, который усваивается фитопланктоном.
В настоящее время вследствие уменьшения доли естественных экосистем, биологическая азотфиксация стала меньше промышленной фиксации азота (соответственно 90-130 и 140 миллионов тонн в год), причём к 2020 г. ожидается увеличение промышленной азотфиксации на 60%. До половины азота, вносимого на поля, вымывается в грунтовые воды, озера, реки и вызывает эвтрофикацию водоёмов.
Значительное количество азота в форме оксидов азота поступает в атмосферу, а затем в почву и водоёмы в результате её загрязнения промышленностью и транспортом (кислотные дожди). Этот азот был изъят из атмосферы экосистемами геологического прошлого и длительное время находился «на депоненте» в угле, газе, нефти, при сжигании которых он возвращается в круговорот. Например в США с атмосферными осадками выпадает 20-50 кг/га в год азота, а в отдельных районах эмиссия достигает 115 кг/га.
Экологически безопасной считается величина эмиссии азота 10-30 кг/га в год. При более высоких нагрузках происходят значительные изменения в экосистемах: почвы подкисляются, происходит выщелачивание питательных элементов в глубокие горизонты, возможно усыхание древостоев и массовое развитие заносных видов-нитрофилов. Кроме того, высокое содержание азота в растениях, выросших на загрязнённых азотом почвах, повышает их посещаемость, что может привести к выпадению из растительных сообществ даже доминантных видов. Так в некоторых пустошах Западной Европы после того, как в вереске повысилось содержание азота, массово размножился вересковый жук (его количество достигало 2000 экземпляров на 1 м 2 ). Жук практически полностью выел этот кустарник из сообществ. Те же изменения в составе загрязняемых промышленным азотом сообществ отмечены и в Калифорнии.
Однако не всегда кислотные дожди оказывают пагубное влияние на экосистемы. Экосистемы степной зоны, где почвы имеют слабощелочную реакцию, от выпадения кислотных дождей не только не страдают, но даже увеличивают свою продуктивность за счёт дополнительного азота.
Восстановление естественного круговорота азота возможно за счёт уменьшения производства азотных удобрений, резкого сокращения промышленных выбросов оксидов азота в атмосферу и расширения площади посевов бобовых, которые симбиотически связаны с бактериями-азотфиксаторами.
Контрольные вопросы
1. Перечислите основные этапы круговорота азота.
2. Через какие каналы атмосферный азот попадает в экосистемы?
3. Какой вклад в круговорот вносит техногенный азот?
4. Расскажите о вкладе в круговорот азота сжигания азотсодержащих энергоносителей.
5. Что нужно сделать для нормализации круговорота азота?
13.2.4 Круговорот кислорода
Кислород атмосферы имеет биогенное происхождение и его циркуляция в биосфере осуществляется путём пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании организмов и сжигании топлива в хозяйстве человека (рис. 26). Кроме того, некоторое количество кислорода образуется в верхних слоях атмосферы при диссоциации воды и разрушении озона под действием ультрафиолетового излучения, и часть кислорода расходуется на окислительные процессы в земной коре, при вулканических извержениях и др.
Рис. 26. Круговорот кислорода в биосфере
Этот круговорот очень сложный, так как кислород вступает в разнообразные реакции и входит в состав очень большого числа органических и неорганических соединений, и замедленный. Для полного обновления всего кислорода атмосферы требуется около 2 тысяч лет (для сравнения: ежегодно обновляется около 1/3 диоксида углерода атмосферы).

Подобные документы

  • Стенобионты и эврибионты: понятие и примеры. Потенциальная (фундаментальная) экологическая ниша. Положение вида, которое занимает в общей системе биоценоза в зависимости от его требований к абиотическим факторам. Правило экологической индивидуальности.

    презентация [1,1 M], добавлен 09.10.2014

  • Среды обитания как все, что окружает живой организм и с чем он непосредственно взаимодействует, их разновидности и закономерности функционирования. Закон оптимума. Потенциальная и реализованная экологическая ниша. Действие различных факторов на организм.

    презентация [1,1 M], добавлен 11.04.2014

  • Объекты организменного (уровня особей), популяционно-видового, биоценотического, биосферного уровней организации как предмет изучения экологии. Главные задачи экологии, основные принципы изучения. Специфика экологических факторов, классификация на группы.

    реферат [27,8 K], добавлен 17.02.2010

  • Экологическое образование и культура в современном обществе. Понятие лимитирующих факторов среды (бочка Либиха), которые угнетают жизнедеятельность организмов, ограничивают их рост и развитие. Формы и источники загрязнений окружающей среды радионуклидами.

    контрольная работа [278,2 K], добавлен 27.01.2011

  • Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.

    курсовая работа [40,5 K], добавлен 19.07.2010

  • Структура современной экологии как науки. Понятие среды обитания и экологических факторов. Экологическое значение пожаров. Биосфера как одна из геосфер Земли. Сущность законов экологии Коммонера. Опасность загрязнителей (поллютантов) и их разновидности.

    контрольная работа [2,7 M], добавлен 22.06.2012

  • Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.

    методичка [66,2 K], добавлен 07.01.2012

  • Экологическая политика как часть мировой политики. Гуманизм и природа. Экологическая угроза современному миру. Пути выхода из экологического кризиса. Влияние деятельности человека на отдельные компоненты и природу в целом. Значение антропогенных факторов.

    реферат [33,2 K], добавлен 10.02.2013

  • История развития экологии. Основные цели и задачи экологии. Влияние человека на природу и взаимодействие с ней. Природопользование, охрана окружающей среды и экологическая безопасность. Экологические проблемы Санкт-Петербурга и Ленинградской области.

    реферат [136,7 K], добавлен 23.08.2013

  • Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.

    реферат [20,9 K], добавлен 06.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.