Основы общей экологии
Классификация факторов среды. Основные принципы аутэкологии: экологического оптимума, индивидуальности экологии видов и лимитирующих факторов. Адаптации к абиотическим факторам. Биологическое разнообразие, его охрана, экологическая ниша, "r" и "К-отбор".
Рубрика | Экология и охрана природы |
Вид | книга |
Язык | русский |
Дата добавления | 30.01.2015 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Кроме неизбежной условности границ популяций, которые устанавливаются с учётом биологического пространства и биологического времени, изучение популяций осложняется разнообразием их внутренней природы, зависящей от биологии организмов. Например по-разному устроены популяции унитарных и модулярных организмов. У первых появлению каждого организма-генета предшествует половой процесс. У вторых из одного генета возможно появление многих десятков и тысяч генетических копий (раметов), которые получаются путём простого деления.
К модулярным организмам относятся некоторые животные (мшанки, кораллы, губки, гидроиды, колониальные асцидии) и большинство растений, у которых модулем-метамером является часть побега (стебель с листом и почкой) или целый побег (у клональных растений - злаков, осоковых и некоторых других).
Ряд существенных различий, которые нужно учитывать при популяционных исследованиях, имеют популяции растений и животных. Главное отличие заключается в том, что обладающие подвижностью животные могут более активно реагировать на складывающиеся условия внешней среды, избегая неблагоприятных стечений обстоятельств или рассредоточиваясь по территории для компенсации снижения запаса ресурса на единицу площади. Подвижность облегчает им и защиту от хищников.
Растения прикреплены («заякорены») к почве и должны реагировать на меняющиеся абиотические (засуха, засоление и т.д.) или биотические (хищники, паразиты, конкуренция с более сильным партнёром) условия за счёт морфологических и физиолого-биохимических адаптаций.
Контрольные вопросы
1. Чем отличается определение популяции генетиками от определения экологов?
2. Перечислите основные отличительные черты популяций растений и животных.
3. Какие организмы относятся к модулярным?
6.2 Конкуренция особей в популяции
В силу того, что популяции разнообразны, различаются и взаимодействия особей, входящих в их состав. Поскольку в большинстве случаев популяции обладают способностью к экспоненциальному росту плотности (см. 7.3), суммарная потребность особей, входящих в популяцию, в ресурсах, как правило, больше, чем имеется их в наличии (хотя бы в некоторые периоды жизни особей). По этой причине основным типом взаимодействия особей в популяции является конкуренция, т.е. соревнование за потребление ресурса, которого не хватает. Конкуренция может быть симметричной (конкурирующие особи оказывают одинаковое влияние друг на друга) или асимметричной (влияние особей друг на друга различается по силе).
М. Бигон и др. (1989) подчеркивают следующие особенности конкуренции особей в популяции:
1. Конкуренция снижает скорость роста особей, может замедлять их развитие, снижать плодовитость и в итоге - уменьшать вклад в следующие поколения. Количество потомков конкретной особи тем меньше, чем жёстче условия конкуренции и чем меньше досталось ей ресурсов. Добавим к этому, что конкуренция может значительно уменьшать размеры растений (особенно эксплерентов). Этот способ реагирования на загущение Дж. Харпер (1973) назвал пластичностью. Размер растений-эксплерентов в зависимости от плотности популяции может меняться в тысячи раз.
2. В большинстве случаев особи конкурируют за ресурсы: каждая особь получает то ограниченное количество ресурсов, которое не было потреблено её конкурентами. Такая конкуренция называется эксплуатационной. Реже происходит конкуренция за физическое пространство, когда особи «механически» препятствуют друг другу в получении ресурса, скажем, охрана подвижными животными своей территории. Такие отношения называются интерференцией. Поскольку интерференция всегда сопровождается эксплуатацией ресурсов, её крайне трудно отличить от эксплуатационной конкуренции. В то же время эксплуатационная конкуренция частично не сопровождается интерференцией (т.е. организмы могут потреблять общий ресурс при «мирном» сосуществовании).
3. Разные особи обладают разной конкурентной способностью. Несмотря на то, что все особи популяции потенциально равноценны (идёт постоянное выравнивание их генофонда за счёт гибридизации), в природе равноценности особей не наблюдается. Популяции гетерогенны как генетически (в их составе могут быть особи с разными признаками - экотипы), так и фенотипически (особи различаются по возрасту и виталитету). При этом животные разных экотипов в силу подвижности могут расходиться по разным местообитаниям, а растения лишены такой возможности. По этой причине генотипическая неоднородность популяций животных, как правило, ниже, чем популяций растений.
На исход конкуренции влияет «лотерея», т.е. шанс первым попасть в лучшие или худшие условия среды (микросайты - пятна, различающиеся по благоприятности среды). Особи, которые попали в лучшие условия и (или) начали развиваться раньше, также имеют конкурентные преимущества.
Генетические различия, микровариация условий среды и «лотерея» создают предпосылки для дифференциации конкурентной мощности отдельных особей, т.е. разделения их на сильных и слабых, что приводит к асимметричной конкуренции, которая с возрастом особей усиливается (сильный становится еще сильнее, а слабый - слабее, так как ресурсов для него остаётся все меньше). В итоге асимметричной конкуренции происходит снижение плотности популяции: слабые растения гибнут, а слабые животные мигрируют в местообитания с более низким уровнем конкуренции.
Контрольные вопросы
1. Приведите примеры симметричной и асимметричной конкуренции.
2. Что такое интерференция?
3. По каким причинам происходит дифференциация конкурентных способностей и особей в популяции?
6.3 Другие формы взаимоотношений особей в популяции
Кроме конкуренции возможны и другие формы отношений особей в популяциях - нейтральность (если ресурсов так много и особей так мало, что они практически не мешают друг другу) и положительные взаимоотношения.
Взаимовыгодные (или выгодные для части особей) отношения между животными общеизвестны: забота родителей о потомстве, формирование больших семейных групп, стадный образ жизни, коллективная оборона от врагов и т.д.
«Караваны» птиц, выстраивающихся в шеренги, клинья, уступы и др., позволяют крыльям отдельных особей в силу аэродинамических эффектов обретать большую подъёмную силу (в коллективе летать легче). Есть мнение, что гидродинамические преимущества получают и плывущие стаей рыбы.
Однако благоприятные эффекты скопления особей неодинаково выгодны для всего «коллектива». Особенно полезны они для социально сильных животных, которые могут пробиться в центр скопления. У них всегда меньше вероятность быть съеденными хищниками, которые в первую очередь нападают на более слабые особи у периферии скопления.
Значительно менее известна роль взаимопомощи у растений. Растения, высеянные группой, развиваются лучше, так как в этом случае у них легче формируется симбиоз с грибами и бактериями микоризы и ризосферы (так называемый «эффект группы»).
Именно «эффект группы» был теоретической предпосылкой для разработки «гнездового метода» посева кукурузы и посадки дуба, который пропагандировался сторонниками Т. Лысенко. Однако в силу того, что кратковременное взаимное благоприятствование сменяется острой конкуренцией за ресурсы, при которой происходит взаимное угнетение особей и часть из них гибнет (т.е. напрасно теряются семена или посадочный материал), «гнездовой метод» не прижился на практике. При высеве семян группой со временем формируется так называемый «эффект корыта»: растения в центре группы развиваются хуже, чем расположенные у краёв гнёзд.
Описаны случаи срастания корней у деревьев, при этом часть пластических веществ переходит от более сильного растения к более слабому, возможна передача питательных веществ от одного растения другому через микоризы (см. 8.6).
Совместно произрастающие растения эффективнее опыляются насекомыми, так как повышается вероятность переноса пыльцы с цветков одного растения на другое и, кроме того, яркое цветовое пятно из нескольких цветущих и выделяющих ароматические вещества растений лучше привлекает насекомых, чем одно растение.
Возможны явления взаимопомощи растений при «коллективной обороне» от фитофагов, проявляющих чрезмерно высокую активность и способных серьёзно повредить растениям. В этом случае после начала активного поедания фитофагами в растениях происходят биохимические реакции и повышается концентрация веществ, снижающих их посещаемость (цианидов и др.). Описаны случаи, когда подвергшиеся нападению фитофагов особи выделяли в атмосферу сигнальные вещества (сигнал «меня едят»), которые вызывали повышение образования цианидов у тех особей, которые еще не повреждены.
В антропогенных экосистемах уровень конкуренции в популяциях регулирует сам человек, например подбирая нормы высева полевых культур или густоту посадки саженцев в садах и лесопосадках. При этом в большинстве случаев норма высева оказывается несколько завышенной, что позволяет за счёт более интенсивной конкуренции снизить потенциальную возможность развития в посевах сорных растений.
Подобным образом регулируется конкуренция между карпами при их промышленном разведении в садках. Во многих случаях, дабы не допустить конкуренции, животных содержат в отдельных клетках (песцы, куры, утки и т.д.).
Контрольные вопросы
1. Приведите примеры взаимопомощи в популяциях животных.
2. В каких случаях проявляется взаимопомощь в популяциях растений?
3. Приведите примеры регулирования плотности популяций человеком.
6.4 Размер популяции и её структура в пространстве
Размер популяции - это количество входящих в неё особей. Он является результирующей взаимодействия биотического потенциала вида и сопротивления среды (рис. 12).
Рис. 12. Факторы, определяющие размер популяции.
Сопротивление среды - это комплекс неблагоприятных факторов абиотической и биотической среды, которые воздействуют на организмы.
Биотический потенциал - это способность организма преодолевать сопротивление среды.
Сравнительно редко удаётся определить абсолютный размер популяции как общее число особей (т.е. её численность). Это возможно только для крупных и немногочисленных, обычно находящихся на грани исчезновения видов, обитающих на открытых пространствах саванн, пустынь, травяных болот (львов, слонов, бегемотов и т.д.). В этом случае используется прямой («поголовный») пересчёт числа особей, обычно с воздуха. Возможен прямой пересчёт особей в небольших популяциях растений (например, венерина башмачка, мамонтова дерева и др.).
В остальных случаях размер популяции определяется выборочным методом через плотность популяции - количество особей, приходящихся на единицу площади. Поскольку в разных частях пространства, занимаемого популяцией, её плотность может различаться, то определяют среднее значение из нескольких учётов. Размер и число учётов-проб, а также достоверность получаемого среднего арифметического определяется в соответствии с требованиями математической статистики. Затем при необходимости можно определить численность популяции путём умножения плотности на занимаемую популяцией площадь.
Учёт плотности популяций в зависимости от особенностей изучаемого вида проводится разными методами: подсчётом числа растений (или побегов для видов с клональным ростом), «кошением» насекомых сачком, анализом биоты в пробе почвы или воды и т.д.
Рис. 13. Типы распределения особей популяции в пространстве: а - регулярное, б - случайное, в - групповое.
Выделяют особей популяции в пространстве (рис. 13):
- случайное: местонахождение одной особи не зависит от другой. Случайно распределены особи большинства популяций, если местообитания однородны и достаточно благоприятны, а плотность популяции не очень высока;
- групповое (контагиозное): этот тип распределения характерен для популяций в мозаичных экосистемах, например в саваннах деревья распределены группами, и соответственно группами распределены обитающие в них популяции птиц и насекомых. Этот же тип распределения отмечается у животных, ведущих групповой образ жизни (сайгак, дзерен) и формирующих колонии (мышевидныех грызунов), а также у клональных растений, разрастающихся пятнами (коротконожки перистой). Групповое размещение особей жертв осложняет хищникам их поиск, может сопровождаться эффектом взаимного благоприятствования, быть средством регулирования температуры тела у животных (см. 4.4.1) и т.д. Таким образом, за наблюдаемым «групповым распределением» могут стоять совершенно разные биологические факторы;
- регулярное: расстояние между особями, составляющими популяцию, более или менее одинаковое. Типичным примером является размещение деревьев во фруктовом саду. Однако и среди многих видов птиц, которые разделяют территорию на охотничьи наделы, также возможно распределение, близкое к регулярному.
Важным параметром для характеристики популяций животных является величина индивидуального надела (для растений - площади питания). Эти показатели зависят от размера особей: естественно, что для зайца и лося или для дуба и копытня они будут не сопоставимы по размеру. Зависит индивидуальный надел и от уровня обеспеченности ресурсами. Так в национальном парке Найроби в тех районах, где много копытных, индивидуальный надел льва составляет 25-50 км , а там, где продуктивность саванны низка и соответственно мало копытных, - в 10 раз больше.
Контрольные вопросы
1. Чем отличаются понятия «плотность популяции» и «численность популяции»?
2. Какие факторы определяют размер популяции?
3. Расскажите о типах распределения популяций в пространстве.
4. Что такое «охотничий надел»?
6.5 Гетерогенность популяций
Любая природная популяция гетерогенна, т.е. состоит из особей, различающихся по фенотипическим и (или) генотипическим признакам.
Одна из форм фенотипической гетерогенности - присутствие в популяции особей разного возраста (разных возрастных когорт). Однако даже в составе одной возрастной когорты могут быть индивидуумы, развитые лучше и хуже, т.е. обладающие разным виталитетом (Злобин, 1993, 1994). Наиболее доступным и информативным показателем виталитета у растений является их размер (вес): чем растение лучше развито, тем выше его виталитет.
Фенотипическая дифференциация животных не столь наглядно выражена, как у растений, тем не менее в их популяциях возникают «социальные структуры» - семейные группы, в которых дифференцируются процветающие, средние и слабые особи. Лидеры семейных групп всегда отличаются более мощным сложением, которое позволяет им легче отстаивать свои права на лучшие условия. Как правило, слабые особи оказываются оттеснёнными к периферии группы и становятся добычей хищников.
Фенотипическое разнообразие организмов в популяциях повышает полноту использования ресурсов (даже стадо из коров и телят полнее использует травостой пастбища, чем стадо только из коров или только из телят).
В популяциях растений часто отмечается значительная генотипическая вариация за счёт сосуществования нескольких экотипов, которые определяются как «…внутривидовые генетически предопределённые локальные соответствия между организмами и средой» (Бигон и др., 1989, т. 1, с. 49).
Удивительные примеры сосуществования экотипов клевера ползучего были выявлены Р. Теркингтоном и Дж. Харпером (Turkington, 1978; Turkington, Harper, 1979). Клевер ползучий легко размножается вегетативно, авторы клонировали особи клевера, которые произрастали рядом с разными злаками (ежой сборной, бухарником, райграсом многолетним и др.). Как оказалось, отношения соседства привели к тонкой биотической дифференциации - отбору особых экотипов клевера, которые в культуре «узнавали» своего соседа и отвечали на это усилением роста.
В последние годы большой материал о генотипическом разнообразии внутри популяций растений получен методами изоферментного анализа (изоферментных генетических маркеров). В частности, было выявлено, что в большинстве популяций древесных растений отмечается достаточно высокое генотипическое разнообразие, возрастающее в экстремальных условиях у границ экологического ареала вида.
Генотипическая вариация в популяциях некоторых видов животных, видимо, ниже, чем в популяциях растений, так как, обладая подвижностью, животные разных экотипов распределяются по популяциям или микросайтам внутри одной популяции. В то же время отмечены случаи сосуществования в одной популяции животных нескольких (чаще двух) экотипов у малоподвижных видов, таких, как улитки (Бигон и др., 1989). В популяциях саранчей есть две формы, резко отличающиеся по внешнему виду - «стационарная» (одиночная) и мигрирующая (стадная), причём соотношение этих форм меняется в зависимости от условий года.
Генотипическая гетерогенность популяций, также как и фенотипическая, повышает эффективность использования ресурсов и способствует повышению продуктивности и устойчивости. Например наличие в составе популяции растений раннецветущего и позднецветущего экотипов повышает её устойчивость к заморозкам, наличие экотипа, более активно накапливающего цианиды - устойчивость к фитофагам и т.д.
Гетерогенность природных популяций моделируется в практике сельского хозяйства: используются смеси из нескольких сортов культурных растений с разными экологическими особенностями (более засухоустойчивого и менее засухоустойчивого, высокого и низкого и т.д.). Такие смеси сортов дают более устойчивый урожай, хотя в отдельные годы, наиболее благоприятные для одного или другого сорта-экотипа, его урожай в чистом посеве может быть выше.
Наличие экотипов, устойчивых (преадаптированных) к действию гербицидов, объясняет феномен быстрого «приспособления» сорных видов к химическим мерам контроля их популяций. Подобные экотипы могут отбираться и по устойчивости к загрязнению почвы тяжёлыми металлами.
Генотипическое разнообразие внутри популяций ставит дополнительные задачи перед охраной биоразнообразия, которая должна обеспечивать сохранение не только видов, но и их экотипов.
Контрольные вопросы
1. Какую роль играет фенотипическая дифференциация особей в популяциях растений и животных?
2. Почему генотипическая дифференциация особей в популяциях растений обычно выше, чем в популяциях подвижных животных?
3. Как используется свойство гетерогенности популяций в сельском хозяйстве?
Темы докладов на семинарских занятиях
1. Конкуренция как основная форма взаимоотношений особей в популяции.
2. Положительные взамодействия особей в популяциях.
3. Гетерогенность популяций как адаптация для повышения их устойчивости.
Глава 7. Динамика популяций
Изучение изменений признаков популяций во времени - наиболее сложный раздел популяционной экологии, который включает характеристику закономерностей динамики численности и биомассы популяций. Сложность оценки этих процессов заключается в том, что их результаты интегрально отражают действие множества взаимозависимых факторов. По этой причине даже после того, как описана закономерность изменения размера популяции, далеко не всегда её можно однозначно объяснить. Главный фактор, который вызвал этот процесс, может влиять на него не только прямо, но и опосредствованно через один или несколько факторов-посредников.
При изучении динамики популяций важен учёт «биологического времени», на основании которого устанавливается минимальная длительность периода наблюдений. Так для изучения закономерностей динамики популяции тли достаточно нескольких недель, полёвки - нескольких лет, а долгожителя-слона - нужны десятки лет. Соответственно для изучения одноклеточных водорослей достаточно нескольких дней, изучение криля требует нескольких месяцев, а наблюдения за популяцией китов, как и слонов, проводятся в течение десятков лет.
7.1 Динамические характеристики популяций
Плотность популяции регулируется четырьмя параметрами:
1. рождаемостью - числом особей, родившихся за определённый промежуток времени. Этот промежуток устанавливается в соответствующем масштабе биологического времени. Для бактерий он может быть равен одному часу, для планктонных водорослей - суткам, для насекомых - неделе или месяцу, для крупных млекопитающих (включая человека) - году;
2. смертностью - числом особей, умерших за ту же единицу времени (неважно, своей смертью или погибших, например съеденных);
3. скоростью иммиграции особей - числом особей, появившихся в данной популяции, из других популяций (за ту же единицу времени);
4. скоростью эмиграции особей - числом особей, покинувших данную популяцию за единицу времени.
Формула изменения численности популяции выглядит следующим образом:
Если пренебречь показателями иммиграции и эмиграции особей (их, как отмечалось, почти нет у растений), то можно оценить мгновенную скорость роста популяции, т.е. баланс между рождаемостью и численностью за единицу времени. У стабильных популяций мгновенная скорость роста равна нулю, у растущих - является положительным числом, у разрушающихся - отрицательным. Впрочем, даже у стабильных популяций продолжаются процессы циклических изменений численности (см. 12.2).
Контрольные вопросы
1. Дайте определение четырём основным параметрам, определяющим динамику популяции.
2. Напишите формулу изменения численности популяции.
3. Что такое мгновенная скорость роста популяции?
7.2 Кривые выживания
Для изучения закономерностей динамики популяций составляются таблицы выживания. В этих таблицах строками отражаются классы возраста, а в столбцах показывается число особей, которые сохранились или погибли. Величина градаций классов зависит от продолжительности жизни изучаемых организмов (т.е. от биологического времени). Для человека используют интервал в 5 лет, для многих насекомых - одну неделю. Если есть возможность длительное время следить за динамикой вымирания особей в популяциях (регистрировать возраст наступления смерти всех членов одной возрастной когорты, т.е. группы особей, родившихся за короткий относительно общей продолжительности жизни организма период), то составляют динамические таблицы выживания. Однако для долгоживущих или подвижных видов получить данные для построения динамических таблиц крайне трудно. По этой причине составляют таблицы выживания на основании краткосрочных наблюдений за смертностью во всех возрастных группах. Такие таблицы называются статическими, их пример - данные о демографии женской части населения Канады (табл. 6).
Таблица 6 Статическая демографическая таблица женского населения Канады на 1980 г. (по Krebs, 1985)
Рис. 14. Три типа кривых выживания. Пояснения в тексте
На основе таблиц выживания строят кривые выживания (рис. 14). Р. Перль предложил различать три типа таких кривых.
Кривая I типа (сильно выпуклая) соответствует ситуации, когда смертность ничтожно мала в молодом и среднем возрасте, но в старом возрасте быстро увеличивается и все особи погибают за короткий срок. Перль назвал эту кривую «кривой дрозофилы». К кривой этого типа приближается кривая выживания человека в развитых странах.
Кривая II типа (диагональная) представляет ситуацию, когда во всех возрастных классах смертность особей одинакова. Такова динамика популяций многих рыб, пресмыкающихся, птиц, многолетних травянистых растений.
Кривая III типа (сильно вогнутая) выражает другой случай - массовую гибель особей в начальный период жизни, а затем низкую смертность выживших особей. Эту кривую Перль назвал «типом устрицы». Ей соответствует и возрастная динамика большинства видов деревьев: высока смертность всходов и молодых растений, однако с возрастом интенсивность самоизреживания резко снижается, и постепенно древостой достигает «конечной плотности», которая отражает особенности биологии вида и условий среды. Она тем ниже, чем благоприятнее условия (выше бонитет насаждений).
Так по А.П. Шенникову (1964), «конечная» плотность спелого древостоя в хороших условиях (бонитет I) составляет у ели - 724, у сосны - 470, у дуба - 309 деревьев на 1 га. Однако при худших условиях (бонитет IV-V классов) количество деревьев резко увеличивается и составляет соответственно 2095, 1310, 778. Лесоводы знают эту закономерность и проводят «рубки ухода» как меру по ускорению процесса самоизреживания за счёт вырубания более слабых деревьев.
Следует заметить, что феномен самоизреживания вследствие конкуренции особей внутри популяции и выживания наиболее сильных характерен только для растений. Как подчеркивают М. Бигон и др. (1989), у животных процесс самоизреживания не происходит, и уменьшение плотности популяций имеет более сложную природу.
Контрольные вопросы
1. Что такое таблица выживания?
2. Расскажите о кривых выживания. Приведите примеры популяций, соответствующих кривым выживания разного типа.
3. Как зависит конечная плотность спелого древостоя от благоприятности условий среды?
7.3 Модели роста популяций
В экологии существует несколько моделей роста популяций (т.е. закономерностей изменения численности популяции при её росте «от нуля»), главные из них - экспоненциальная и логистическая.
О тенденции быстрого неограниченного увеличения числа особей вида знал К. Линней. Однако представления об экспоненциальном росте популяций в начале прошлого столетия сформулировал Т. Мальтус: количество особей в популяции увеличивается в геометрической прогрессии. В качестве примера Мальтус привёл гипотетический рост народонаселения страны при условии естественной смертности (при отсутствии эпидемий и войн). Представления о способности любой популяции к экспоненциальному росту является краеугольным камнем популяционной экологии. П.В. Турчин (2002) считает экспоненциальный рост главным законом экологии, близким по значению к закону Ньютона в физике.
Модель экспоненциального роста описывается J-образной кривой: в условиях постоянного поступления ресурсов скорость роста популяции увеличивается и кривая взмывает вверх (рис. 15). Модель может быть описана уравнением:
Nt = N0 еrt,
в котором Nt - численность популяции через очередной промежуток времени (t),
N0 - исходная численность,
е - основание натурального логарифма,
r - коэффициент размножения (репродуктивный потенциал, разность относительной рождаемости и относительной смертности, т.е. число родившихся или умерших особей отнесённое к числу особей популяции в начале промежутка времени t).
Рис. 15. Экспоненциальная модель роста численности популяции одноклеточного организма, делящегося каждые 4 часа
Чтобы рост популяции соответствовал этой модели, величина коэффициента r должен быть постоянной, т.е. должно быть постоянным среднее количество потомков на одну особь (если r = 0, т.е. рождаемость равна смертности, то численность популяции не растёт).
В зависимости от величины r увеличение численности особей может быть быстрым и достаточно медленным. Ч. Дарвин рассчитал потенциальные возможности роста популяций разных организмов при реализации экспоненциальной модели. По его оценкам, число потомков одной пары слонов - животных, размножающихся чрезвычайно медленно, - через 750 лет достигнет 19 млн. Если же обратиться к организмам, живущим не так долго и размножающимся более быстро, то цифры будут еще более впечатляющими. У бактерий, которые делятся каждые 20 минут, из одной бактериальной клетки через 36 часов может образоваться биомасса, которая покроет весь земной шар слоем толщиной 30 см, а еще через 2 часа - слоем в 2 м.
«Поскольку ни бактерии, ни слоны не покрывают землю сплошным слоем, очевидно, что на самом деле в природе экспоненциальный рост популяций организмов или не происходит вообще, или же происходит, но в течение непродолжительного времени, сменяясь затем спадом численности или выходом её на стационарный уровень» (Гиляров, 1990, с. 77).
В природе экспоненциальный рост численности популяций наблюдается в сравнительно кратковременные периоды их жизни при особо благоприятных условиях, когда постоянно пополняются ресурсы. Так в озёрах умеренных широт весной после таяния льда в приповерхностном слое воды содержится много биогенных элементов. По этой причине после прогревания воды здесь наблюдается быстрый рост численности диатомовых и зелёных водорослей. Однако он также быстро прекращается, когда эти ресурсы оказываются израсходоваными и, кроме того, зоопланктон начнёт активно выедать водоросли (т.е. за счёт регулирования плотности популяций «снизу» и «сверху»).
Пример экспоненциального роста популяции - история интродукции северного оленя на острова. Так от 25 особей (4 самца и 21 самка), завезённых в 1911 г. на остров Святого Павла (Берингово море), к 1938 г. сформировалась популяция из 2000 оленей. Однако затем последовал спад численности, и к 1950 г. сохранилось всего 8 особей. Причина краха популяции - нарушение отношений «растение - фитофаг» (см. 8.3) ввиду отсутствия в пищевой цепи третьего звена - хищника.
Логистическая модель роста популяций, описываемая S-образной кривой (медленный рост - быстрый рост - медленный рост, рис. 16), была предложена также в начале 19-го столетия бельгийским математиком П.-Ф. Ферхюльстом, а затем уже в 20-е гг. нашего столетия переоткрыта американскими учёными Р. Перлем и Л. Ридом. П.В. Турчин считает эту модель отражением закона «самоограничения роста любой популяции».
Рис. 16. Логистическая модель роста популяции. К - предельная численность
Причины замедления роста популяции могут быть самыми различными: выедание ресурсов, влияние эффекта скученности (у грызунов при этом снижается интенсивность репродуктивного процесса), отравление местообитания прижизненными выделениями, выедание популяции хищниками и т.д.
Тем не менее и эта кривая является идеализацией, так как крайне редко проявляется в природе. Очень часто после того, как рост популяции выйдет на плато (достигнет предела К, соответствующего количеству ресурсов), происходит внезапное уменьшение её численности, а потом популяция вновь быстро растёт. Таким образом, её динамика оказывается состоящей из повторяющихся логистических циклов.
Такая циклическая динамика наблюдается, например, в популяциях тундровых леммингов, которые питаются мхами и лишайниками. Они продолжают активную жизнедеятельность под снегом и выедают свою кормовую базу настолько, что прекращают размножаться, а затем начинают умирать от бескормицы. После того, как мхи отрастут, начинается новый подъем численности леммингов.
Возможны колебания численности популяции под влиянием погодных условий, паразитов и хищников.
Существует особый вариант регулирования плотности популяций, который называется «оппортунистическим», т.е. не укладывающимся в «правильные» законы, описанные экспоненциальной или логистической кривой.
У эксплерентов (r-стратегов) происходят вспышки численности в том случае, если появляются обильные ресурсы. При этом рост численности происходит либо за счёт того, что начинают развиваться особи из покоящихся диаспор (скажем, почвенного банка семян), либо за счёт массового «десанта» в стадии яиц (скажем, мух, налетевших на труп животного). Так как конкуренция в силу обилия ресурсов слаба то израсходовав их изобилие, популяция погибает целиком.
У растений-эксплерентов при повышении плотности популяции конкуренция возрастает, но самоизреживания (как у деревьев-виолентов) не происходит, а уменьшается размер особей в десятки и сотни раз. При этом растения проходят весь жизненный цикл и способны дать семена.
Дж. Харпер (Harper, 1977) назвал такой тип регуляции плотности популяций растений-однолетников «пластичностью» и противопоставил его самоизреживанию. Эти два типа регулирования плотности в популяциях растений связаны переходом: у большинства видов с вторичными стратегиями при повышении плотности популяции происходит одновременно и уменьшение размера особей, и самоизреживание.
На знании этих закономерностей построено обоснование нормы высева культурных растений. Вначале при увеличении нормы высева урожай растёт, но потом начинает снижаться (рис. 17). Выбирается та норма высева, которая обеспечивает максимальный урожай. Впрочем, иногда её несколько завышают, чтобы культурные растения могли подавлять популяции сорных растений. При усилении гербицидного контроля в этом нет необходимости.
Рис. 17. Зависимость урожая пшеницы от нормы высева при оптимальных экологических условиях.
Контрольные вопросы
1. Охарактеризуйте экспоненциальную модель роста популяции.
2. Почему модель экспоненциального роста редко наблюдается в природных популяциях?
3. Из каких фаз состоит логистическая модель роста популяции?
4. Какие причины вызывают циклическую динамику популяций?
5. Какие популяции называются оппортунистическими?
7.4 Возрастной состав популяций
Кривые выживания могут реализовываться при разном характере динамики популяций: при одновременном «старте» популяций, заселяющих свободное пространство, или при постоянном «популяционном потоке», когда часть особей вымирает, а часть - занимает освободившееся место (ситуация «вокзала», в которой число уезжающих пассажиров постоянно компенсируется вновь прибывающими). В результате в разных популяциях при единовременном учёте выявляется разный возрастной состав.
Определить абсолютный возраст особи можно не у всех видов. Это несложно сделать для деревьев, воспользовавшись специальным буром, которым извлекают столбик древесины - керн и подсчитывают на нем число годичных колец. У дерева конкретного вида в конкретных условиях (т.е. при одном бонитете) можно определить возраст с точностью до 5 лет по диаметру ствола. У хвойных возраст определяется по числу мутовок побегов на стволе. Однако у трав определение абсолютного возраста затруднительно, и потому оценивают их «возрастное состояние» (стадию).
У высших споровых растений (папоротники, хвощи, плауны) выделяются стадии спор, заростков-гаметофитов, молодых спорофитов и взрослых спорофитов.
Большой опыт выделения возрастных состояний растений накоплен ботаниками-демографами (Л.Б. Заугольновой, О.В. Смирновой, Л.И. Жуковой и др., табл. 7).
Таблица 7 Периодизация онтогенеза цветковых растений (по Жуковой, 1987)
По информативности оценка «возрастного состояния» во многом уступает оценке абсолютного возраста, так как в плохих условиях молодое растение может «выглядеть старым», и, наоборот, при хороших условиях за растение среднего возраста можно принять молодую особь. Соответственно возможны ошибки и при определении возрастного состава популяций и в оценке тенденций их динамики.
Т.А. Работнов (1992) по соотношению растений разных возрастных групп предложил различать популяции инвазионные (состоят в основном из молодых особей), нормальные (более или менее равномерно представлены все когорты) и регрессивные (преобладают когорты сенильных особей).
По возрастному составу популяций растений прогнозируется динамика сообществ и оценивается риск гибели популяций, что особенно важно для редких видов. Исследователи лесов по возрастному составу популяций деревьев (и соответственно отнесению их к инвазионным, нормальным или регрессивным) определяют тенденции «смены пород» в древостое. Если, к примеру, в пойменном тополевом лесу отсутствует возобновление тополя и массово представлены молодые особи вяза, то очевидно, что произойдёт смена этого леса вязовым.
У организмов с метаморфозом группа особей одинакового «физиологического» возраста представляет одну стадию развития. Так в популяциях насекомых различают стадии яиц, личинок, куколок, взрослых особей.
Возрастной состав популяций графически изображается в виде возрастных пирамид. Чаще всего возрастные пирамиды строят для того, чтобы показать демографическую ситуацию в разных популяциях человека. На рис. 18 показаны две пирамиды. Первая характеризует население демографически неблагополучных стран с высокой детской смертностью и низкой продолжительностью жизни (кривая выживания II типа), а вторая - население демографически благополучной страны с низкой рождаемостью, низкой смертностью и высокой продолжительностью жизни (кривая выживания I типа).
Рис. 18. Возрастные пирамиды населения демографически наблагопоучных (а) и демографически благополучны (б) стран, 1985 г. и 2025 г.(прогноз).
Контрольные вопросы
1. Как строятся пирамиды возрастного состава популяции?
2. Чем отличаются понятия «возраст» и «возрастное состояние»?
3. Приведите примеры возрастных стадий в популяциях растений и насекомых.
4. Расскажите о классификации популяций растений по возрастному составу (по ТА. Работнову).
Темы докладов на семинарских занятиях
1. Различия динамики популяций животных и растений.
2. Факторы, влияющие на демографические параметры населения страны.
3. Успехи и проблемы изучения возрастного состава популяций растений.
Глава 8. Взаимоотношения популяций
Взаимодействие популяций (и видов, которые они представляют) - это вопрос, который с равным успехом может рассматриваться в рамках популяционной экологии и при изучении экосистем. С одной стороны, взаимоотношения являются биотическим фактором, влияющим на организм (это и есть влияние «друзей» и «врагов», по определению Э.Геккеля). С другой стороны, взаимодействия организмов - это ячейки системы связей, формирующих экосистему, определяющих распределение ресурсов между организмами одного трофического уровня и закономерности передачи вещества и энергии с одного трофического уровня на другой.
8.1 Классификация взаимоотношений
Взаимоотношения организмов разнообразны (табл. 8). Они разделяются на горизонтальные - между организмами одного трофического уровня (как внутри вида, так и между видами) и ветрикальные - между организмами разных трофических уровней. Взаимоотношения первого рода, как правило, носят характер конкуренции, но могут на некоторых этапах жизни организмов быть мутуализмом (т.е. взаимопомощью). Взаимоотношения второго рода более разнообразны: «растение - фитофаг», «хищник - жертва» (иногда эти два типа взаимоотношений объединяют, так как растения по существу тоже жертвы), «паразит - хозяин», мутуализм, комменсализм, аменсализм.
Таблица 8 Типы взаимоотношений видов в экосистеме
Примечание. Использованы следующие обозначения: 0 - отсутствие взаимоотношений, плюс - положительное влияние, минус - отрицательное влияние.
Кроме материальных взаимоотношений (конкуренции за ресурсы или передачи вещества и энергии при хищничестве или паразитизме), возможны сигнальные (информационные) взаимоотношения. Однако эти сигнальные взаимоотношения тесно переплетены с материальными и лишь корректируют распределение ресурсов между особями или передачу вещества и энергии с одного трофического уровня на другой.
Разделение взаимоотношений в естественных экосистемах по «полезности» и «вредности» некорректно: любые взаимоотношения помогают поддерживать экологическое равновесие и в конечном итоге являются «полезными» для всех видов, которые входят в состав экосистемы. О полезности и вредности отношений между организмами можно говорить только в том случае, если в эти отношения вмешивается человек.
Понятие «экологическое равновесие» подвергается жёсткой критике некоторых экологов, которые считают, что этот феномен не существует в природе, а само понятие уходит корнями в представления Карла Линнея о божественной гармонии природы (см. 1.1). Оппоненты понятия «экологическое равновесие» считают, что любые взаимоотношения организмов и любая экосистема как сумма этих взаимоотношений всегда динамичны, так как испытывают влияние множества факторов.
Однако мы полагаем, что понятие экологического равновесия, если оно не абсолютизируется, а рассматривается как некоторая условность (подобная «идеальному газу» или «ускорению» под действием силы земного притяжения), полезно. Системы «хищник - жертва», «паразит - хозяин» и более сложные элементы экосистемы, такие, как пищевые цепи, в состоянии экологического равновесия характеризуются соотношением численности и биомассы взаимодействующих организмов, которые колеблются вокруг некоторой средней величины, соответствующей «экологическому равновесию». Это понятие необходимо при разработке системы рационального использования и охраны природы. Возможно, что более точно этот феномен отражают термины «динамическое равновесие» или «подвижное равновесие».
Контрольные вопросы
1. Назовите основные типы вертикальных и горизонтальных отношений между видами.
2. Почему некорректно разделять взаимоотношения популяций в природе на «полезные» и «вредные»?
3. Что понимается под экологическим равновесием?
8.2 Конкуренция
Конкуренция - это соревнование организмов одного трофического уровня (между растениями, между фитофагами, между хищниками и т.д.) за потребление ресурса, имеющегося в ограниченном количестве. Д.Тилман (Tilman, 1982, 1983) подчеркивает, что особую роль играет конкуренция за потребление ресурсов в критические периоды их дефицита (например между растениями за воду в период засухи или хищниками за жертвы в неблагоприятный год). Конкуренция играет большую роль в определении видового состава экосистем.
Принципиальных различий у межвидовой и внутривидовой (внутрипопуляционной) конкуренции нет. Возможны как случаи, когда внутривидовая конкуренция является более острой, чем межвидовая, так и наоборот. При этом интенсивность конкуренции внутри популяции и между популяциями может меняться в различных условиях. Если условия неблагоприятны для одного из видов, то конкуренция между его особями может усиливаться. В этом случае он может быть вытеснен (или чаще - потеснён) видом, для которого эти условия оказались более подходящими.
Однако в многовидовых сообществах пар «дуэлянтов» чаще всего не образуется, и конкуренция носит характер диффузной: много видов одновременно конкурируют за один или несколько факторов среды. «Дуэлянтами» могут быть лишь массовые виды растений, которые делят один и тот же ресурс (например, деревья - липа и дуб, сосна и ель и т.д.).
У растений возможна конкуренция за свет, за ресурсы почвы и за опылителей. На почвах, богатых ресурсами минерального питания и влагой, формируются густые сомкнутые растительные сообщества, где лимитирующим фактором, за который конкурируют растения, является свет. При дефиците в почве влаги или элементов минерального питания полог растений бывает разомкнутым и они не конкурируют за свет, а соревнуются за потребление почвенных ресурсов (рис. 19).
Рис. 19. Основной комплексный градиент конкуренции растений (по Tilman, 1988)
При конкуренции за опылителей побеждает тот вид, который более привлекателен для насекомого. Так одним из факторов быстрого распространения в Европе гималайского заносного вида недотрога железконосная (Impatiens glandulifera) является то, что он продуцирует больше нектара, чем его конкуренты в тех же влажных местообитаниях - чистец болотный, дербенник иволистный. Кроме того, нектар недотроги слаще (Chittka, Schurkens, 2001).
У животных конкуренция происходит за ресурсы пищи, например травоядные конкурируют за фитомассу. При этом конкурентами крупных копытных могут быть насекомые, подобные саранче, или мышевидные грызуны, способные в годы массового размножения уничтожить большую часть травостоя. Хищники конкурируют за жертвы.
Поскольку количество пищи зависит не только от экологических условий, но и от площади, где воспроизводится ресурс, конкуренция за пищу может перерастать в конкуренцию за занимаемое пространство, т.е. быть не только эксплуатационной, но и интерференционной (см. 8.2). Снижение конкуренции в этом случае возможно при разделении территории на «охотничьи наделы» или на «загоны для выпаса». К примеру, косяки - семейные группы башкирской лошади, в поведении которых сохранились черты их диких предков, рассредоточиваются по «загонам для выпаса», что снижает конкуренцию за фитомассу и способствует равномерному использованию травостоев.
По этой причине лошади - это идеальные фитофаги для особо охраняемых территорий в степной зоне.
Большую роль в разделе территории играют сигнальные взаимоотношения (см. 8.8).
Как и в отношениях между особями одной популяции, конкуренция между видами (их популяциями) может быть симметричной или асимметричной. При этом ситуация, когда условия среды одинаково благоприятны для конкурирующих видов, встречается довольно редко, и потому отношения асимметричной конкуренции возникают чаще, чем симметричной.
При флюктуирующих ресурсах, что обычно в природе (увлажнение или элементы минерального питания для растений, первичная биологическая продукция для разных видов фитофагов, плотность популяций жертв для хищников), поочерёдно получают преимущества разные конкурирующие виды. Это также ведёт не к конкурентному исключению более слабого, а к сосуществованию видов, которые поочерёдно попадают в более выгодную и менее выгодную ситуацию. При этом ухудшение условий среды виды могут переживать при снижении уровня метаболизма или даже перехода в состояние покоя.
Кроме того, на исход конкуренции часто влияет то, какой из видов первым начал заселять экотоп (принцип лотереи, см. 12.8). Это особенно характерно для маловидовых сообществ водных растений, где более слабый вид может удерживать занятое место, если ему повезло и он его занял первым. Впрочем, лотерея может влиять и на состав сообществ с большим числом претендентов на свободное место. В тропическом лесу на одном гектаре может быть до 150 видов деревьев, и потому занять место выпавшей особи могут представители разных видов.
Влияет на исход конкуренции и то, что победить в конкурентной борьбе больше шансов имеет популяция, в составе которой больше особей и которая, соответственно, будет более активно воспроизводить «свою армию» (так называемый масс-эффект).
Наконец, конкуренция между видами протекает на фоне отношений с организмами других трофических уровней (хищниками и паразитами). Это также влияет на исход конкуренции, так как более привлекательный как пищевой ресурс вид имеет меньше шансов победить в конкуренции. В итоге в естественных экосистемах виды сосуществуют даже при наличии асимметричной конкуренции, которая должна была бы привести к вытеснению одного из видов. Конкурентное исключение чаще всего наблюдается только в искусственных условиях «микрокосма», когда два конкурирующих вида изолированы и помещены в условия стабильной среды (например в смешанном посеве двух культурных растений с разными конкурентными возможностями).
В естественных экосистемах существуют и специальные механизмы, которые снижают конкуренцию. Главный механизм - дифференциация экологических ниш (см. 9), при которой разные организмы используют разные ресурсы.
Контрольные вопросы
1. Дайте определение конкуренции.
2. Имеются ли принципиальные отличия внутривидовой конкуренции от межвидовой?
3. Какая конкуренция называется асимметричной?
4. Что такое диффузная конкуренция?
5. Приведите примеры конкуренции животных за разные ресурсы?
6. За какие ресурсы среды конкурируют растения?
7. Чем отличаются эксплуатационная и интерференционная виды конкуренции?
8. Как влияет на конкуренцию «принцип лотереи»?
9. Как влияет на конкуренцию «масс-эффект»?
10. Какое значение для конкуренции имеют флюктуации количества ресурсов?
8.3 Взаимоотношения «фитофаг - растение»
Взаимоотношения «фитофаг - растение» - это первое звено пищевой цепи, в котором вещество и энергия, накопленные продуцентами, передаются консументам.
Для растений в равной мере «невыгодно», чтобы их съели до конца или не съели вовсе. По этой причине в естественных экосистемах проявляется тенденция формирования экологического равновесия между растениями и поедающими их фитофагами. Для этого растения:
- защищаются от фитофагов колючками, образуют розеточные формы с прижатыми к земле листьями, малодоступными для пасущихся животных;
- защищаются от полного выедания биохимическим путём, продуцируя при усилении поедания токсичные вещества, которые делают их менее привлекательными для фитофагов (это особенно характерно для медленно растущих патиентов). У многих видов при их поедании образование «невкусных» веществ усиливается;
- выделяют запахи, отпугивающие фитофагов.
Защита от фитофагов требует значительных затрат энергии, и потому во взаимоотношениях «фитофаг - растение» прослеживается трейдофф: чем растение быстрее растёт (и соответственно, чем лучше условия для его роста), тем оно лучше поедается, и наоборот, чем растение медленнее растёт, тем оно менее привлекательно для фитофагов. Интенсивное отрастание позволяет растениям с высокой поедаемостью сохраняться и даже доминировать в сообществах.
В то же время эти средства защиты не обеспечивают полную сохранность растений от фитофагов, так как это повлекло бы за собой ряд нежелательных последствий для самих растений:
- несъеденная степная трава превращается в ветошь - войлок, который ухудшает условия жизни растений. Появление обильного войлока ведёт к накоплению снега, задержке начала развития растений весной и как итог - к разрушению степной экосистемы. Вместо степных растений (ковылей, типчака) обильно развиваются луговые виды и кустарники. У северной границы степи после этой луговой стадии вообще может восстановиться лес;
- «лишние» листья многих видов трав и кустарников делают крону чрезмерно густой, что ухудшает условия для фотосинтеза (затененные листья «паразитируют», т.е. тратят на дыхание больше органического вещества, чем производят его в процессе фотосинтеза). Этот феномен, который исследовал А.А. Любищев, объясняет благоприятное влияние на урожайность посевов присутствия некоторого количества «вредителей»-фитофагов, которые осветляют полог растений. Поедание некоторого количества листьев побегов как бы запрограммировано у культурных растений в «память» о своём диком прошлом;
- в саванне уменьшение потребления побегов деревьев веткоядными животными (антилопами, жирафами и др.) приводит к тому, что их кроны смыкаются. В итоге учащаются пожары и деревья не успевают восстанавливаться, саванна перерождается в заросли кустарников.
Кроме того, при недостаточном потреблении растений фитофагами не освобождается место для поселения новых поколений растений.
Подобным образом регулируется равновесие между популяциями видов фитопланктона и зоопланктона. Активно поедаемые водоросли быстро размножаются. Некоторые водоросли, напротив, защищаются от выедания специальными выростами на твёрдых панцирях (как диатомовые) или объединением в большие колонии, которые не могут быть отфильтрованы рачками. Колониальными формами представлено большинство видов цианобактерий. Защите водорослей от выедания помогает их способность образовывать покоящиеся стадии, играющие ту же роль, что и банки семян у растений. Наконец, некоторые водоросли заглатываются планктонными животными-фитофагами, но не перевариваются и выделяются с экскрементами живыми.
«Несовершенство» отношений «фитофаг - растение» приводит к тому, что достаточно часто случаются кратковременные вспышки плотности популяций фитофагов и временное угнетение популяций растений, вслед за которыми следует и снижение плотности популяций фитофагов. Например в степях Монголии один раз в 5-7 лет наблюдаются вспышки численности популяций полёвки Брандта, которая полностью выедает надземные части степных растений и разрывает дернину. В итоге угнетаются популяции ковылей, а корневищные злаки быстро разрастаются за счёт банка вегетативных зачатков (почек на корневищах). Вслед за вспышкой численности наступает депрессия популяций грызунов из-за массового заболевания, а популяции ковылей восстанавливаются.
Подобные документы
Стенобионты и эврибионты: понятие и примеры. Потенциальная (фундаментальная) экологическая ниша. Положение вида, которое занимает в общей системе биоценоза в зависимости от его требований к абиотическим факторам. Правило экологической индивидуальности.
презентация [1,1 M], добавлен 09.10.2014Среды обитания как все, что окружает живой организм и с чем он непосредственно взаимодействует, их разновидности и закономерности функционирования. Закон оптимума. Потенциальная и реализованная экологическая ниша. Действие различных факторов на организм.
презентация [1,1 M], добавлен 11.04.2014Объекты организменного (уровня особей), популяционно-видового, биоценотического, биосферного уровней организации как предмет изучения экологии. Главные задачи экологии, основные принципы изучения. Специфика экологических факторов, классификация на группы.
реферат [27,8 K], добавлен 17.02.2010Экологическое образование и культура в современном обществе. Понятие лимитирующих факторов среды (бочка Либиха), которые угнетают жизнедеятельность организмов, ограничивают их рост и развитие. Формы и источники загрязнений окружающей среды радионуклидами.
контрольная работа [278,2 K], добавлен 27.01.2011Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.
курсовая работа [40,5 K], добавлен 19.07.2010Структура современной экологии как науки. Понятие среды обитания и экологических факторов. Экологическое значение пожаров. Биосфера как одна из геосфер Земли. Сущность законов экологии Коммонера. Опасность загрязнителей (поллютантов) и их разновидности.
контрольная работа [2,7 M], добавлен 22.06.2012Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.
методичка [66,2 K], добавлен 07.01.2012Экологическая политика как часть мировой политики. Гуманизм и природа. Экологическая угроза современному миру. Пути выхода из экологического кризиса. Влияние деятельности человека на отдельные компоненты и природу в целом. Значение антропогенных факторов.
реферат [33,2 K], добавлен 10.02.2013История развития экологии. Основные цели и задачи экологии. Влияние человека на природу и взаимодействие с ней. Природопользование, охрана окружающей среды и экологическая безопасность. Экологические проблемы Санкт-Петербурга и Ленинградской области.
реферат [136,7 K], добавлен 23.08.2013Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.
реферат [20,9 K], добавлен 06.07.2010