Анализ результатов вибрационного метода ферменных металлоконструкций (изменения индекса повреждения). Разработка программного модуля "СтройДиагностика" для моделирования ферменных конструкций различных конфигураций с произвольно расположенным дефектом.
- 6512. Математическая составляющая как компонент процесса фундаментализации университетского образования
Цели университетского образования гуманитария в области математики. Анализ проблем математической подготовки студентов гуманитарных специальностей. Пути её совершенствования в русле современных образовательных технологий. Принципы контекстного обучения.
Статистический анализ и построение статистического ряда полученных данных о выпускниках, поступивших в высшие учебные заведения. Определение средней арифметической взвешенной, линейного, квадратического отклонения, дисперсии и коэффициента вариации.
Категории задач математической статистики; разработка методов получения обоснованных выводов о массовых явлениях и процессах. Оценивание и статистическая проверка гипотез: выборочный метод, генеральная совокупность, интервальные оценки, вариационный ряд.
Определение выборки и генеральной совокупности, их числовые характеристики. Понятие признака, частоты признака и кумулятивной частоты. Нахождение среднего арифметического и геометрического. Определение вариации, моды и медианы, коэффициент корреляции.
Основные понятия математической статистики, ее виды и их характеристики. Анализ экономической информации с помощью однофакторного дисперсионного анализа на примере города. Вычисление статистик, гипотез или выводов по существу эмпирических данных.
Основные задачи математической статистики и ее применение в психолого-педагогических науках. Шкалирование, виды шкал. Программные продукты для обработки информации. Выявление различий в уровне исследуемого признака. Факторный и кластерный анализ.
Основные понятия, предмет и методы математической статистики. Сущность выборочного метода (математическое ожидание, медиана, дисперсия), анализ теории вероятности, свойств и взаимосвязи случайных величин, зависимость между известными и переменными.
Методы нахождения точечных оценок дисперсии. Алгоритм построения гистограммы и эмпирической функции распределения случайной величины. Проверка гипотезы о совпадении выбранного распределения с истинным законом при помощи критерия согласия Колмогорова.
Оценки математического ожидания и дисперсии случайной величины. Проверка правдоподобия гипотезы о совпадении выбранного закона распределения с истинным законом при заданном уровне значимости. Построение доверительной области для плотности распределения.
Свойства функции распределения случайного вектора. Числовые характеристики системы двух величин. Ковариация, коэффициент корреляции и его свойства. Основные задачи математической статистики. Генеральная совокупность, статистическое распределение выборки.
Понятие математической статистики, её предназначение и задачи. Распределение выборки, геометрическое представление выборки. Статистические критерии согласия. Характеристика интервального оценивания. Линейная регрессия и расчет выборочной ковариации.
Математическая статистика как наука об общих способах результатов экспериментов. Установление закономерностей, которым подчинены массовые случайные явления. Понятие систематической и случайной ошибок. Сущность выборочной и генеральной совокупностей.
Методы анализа статистических данных. Математическая статистика. Распределение вероятностей. Выборочные параметры. Выборочный энтропийный коэффициент. Имитационное моделирование. Гистограммы имитационного моделирования. Топографическая классификация.
Понятия генеральной совокупности и выборки. Группировка выборочных данных. Интервальный и дискретный вариационный ряд. Точечные и интервальные оценки параметров распределения изучаемой случайной величины. Доверительный интервал. Прямая линия регрессии.
Предмет и методы математической статистика, ее основные понятия. Методы и понятия теории вероятностей. Сущность выборочного метода. Выборочное распределение, математическое ожидание и дисперсия величины. Эмпирическая функция распределения, гистограмма.
Изучение состояния и поведения объектов, относящихся к здравоохранению. Сбор и классификация данных в медицине. Внедрение математических методов диагностики. Применение статистических методов при проведении клинических испытаний лекарственных средств.
Роль социальной статистики, позволяющей сделать заключение о главном факторе развития страны – о здоровье населения. Методы исследования массовых процессов и явлений в медицине. Группировка и сводка материалов наблюдения; методы обработки данных.
Основные задачи статистических исследований в здравоохранении. Специфика научных методов обработки медицинской информации. Оценка репрезентативности выборочных данных. Анализ деятельности лечебно-профилактических учреждений и показателей заболеваемости.
Показатели, используемые при проведении статистического исследования после группировки данных: среднее арифметическое, мода, размах. Медиана упорядоченного ряда чисел с нечётным числом членов. Анализ успеваемости учащихся по результатам II четверти.
Предмет и разделы математической статистики. История развития статистической науки. Цель и задачи статистического анализа. Этапы статистического исследования. Основные медико-демографические показатели. Графические изображения в медицинской статистике.
Изучение места математических методов в медицине — совокупности методов количественного изучения и анализа состояния и поведения объектов и систем, относящихся к медицине и здравоохранению. Исследование содержания закона распределения случайной величины.
Определение понятия математической статистики, ее задачи, функции и принципы, история ее зарождения. Описательная статистика, теория оценивания и теория проверки гипотез. Описание роли математических методов в медицине. Функции и роль биостатистики.
Рассмотрение особенностей развития математического обучения и его влияния на систему обучения теории вероятности. Перекрестный и сравнительный анализ влияния выбора направления развития теории вероятности. Рекомендации по внедрению разработок в обучение.
Возникновение, становление и современное понятие о статистике. Статистико-математическое направление статистической науки. Использование науки в античном, древнем и современном мире. Статистика как совокупность сведений о массовых явлениях и их законах.
Обоснование необходимости применения математической статистики в педагогических технологиях обучения в высшей школе. Изучение сущности выборочного метода и организации выборочных исследований. Сравнительная характеристика выборок различных типов.
Алгоритм формирования матрицы абсолютных частот. Формирование матрицы условных и безусловных вероятностей. Взаимосвязь системной меры целесообразности информации со статистикой. Получение матрицы знаний. Реализация модели в аналитической системе "Эйдос".
Сущность и содержание идеи создания математической теории конфликта – теории игр, основные этапы ее формирования и современное состояние. Понятие и базовые признаки игры. Интерпретация данной теории отечественными и зарубежными учеными, разница подходов.
Сущность теории игр, ее применение в принятии решений в условиях конфликта интересов. Оценка максимального количества чистых равновесий в биматричных играх. Понятие кривой реакции, ее применения. Оценка пакета акций и равновесие на рынке для олигополии.
Обзор математической теории массового обслуживания как раздела теории вероятностей. Различные системы массового обслуживания. Поиск оптимального варианта организации торгового обслуживания населения. Вероятностные задачи и математические модели.