Теоретичні основи цивільної оборони

Захист населення від зброї масового ураження противника. Проведення рятувальних і невідкладних аварійно-відбудовних робіт у вогнищах ураження (зараження) і в районах стихійного лиха. Поражаючі фактори ядерного вибуху. Дія хімічної зброї, отруйні речовини.

Рубрика Военное дело и гражданская оборона
Вид курс лекций
Язык украинский
Дата добавления 06.10.2017
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для ознайомлення з деякими поняттями радіаційної дозиметрії, широко застосовуваними в ЦО доцільно подати короткий їх опис і одиниці вимірювання. В останні роки в науковій літературі ці одиниці даються в Міжнародній системі (СІ). Проте в науковій літературі минулих років у практиці ліквідації наслідків ядерних аварій при градуюванні шкал дозиметричних приладів застосовували як одиниці СІ, так і несистемні одиниці.

Наявність радіоактивних речовин у середовищі - ступінь забруднення - часто буває дуже малою, що практично не дає можливості визначити їх вагу. Саме тому мірою радіоактивних речовин є не вага, а активність радіоізотопів.

Активністю радіоактивного елемента є число атомних розпадів, що відбуваються в цьому елементі за 1 с. Таким чином, активність радіоактивного елемента визначається числом розпадів за одиницю часу, вона характеризує абсолютну швидкість радіоактивного розпаду радіонукліда.

Активність радіоактивної речовини пропорційна її кількості й обернено пропорційна періоду напіврозпаду. Кількість радіоактивної речовини свідчить про її активність, тобто про кількість атомів, що розпадаються за 1 с.

За одиницю активності (активність нукліда в радіоактивному джерелі) прийнята одиниця в системі СІ - беккерель (Бк, Bq) - це така кількість радіоактивної речовини, в якій проходить 1 акт розпаду за 1 с, а несистемна одиниця -кюрі (Кі, Сі) - така кількість радіоактивної речовини в якій проходить 37 млрд актів розпаду за 1 с. Співвідношення між одиницями:

1 Бк = 2,7 ? 10- , Кі = 1 розпад/с; 1 Кі = 3,7-10 , Бк = 3,7 ? 10 розпадів/с.

За одиницю радіоактивності речовини - питому вагову активність -прийнята одиниця беккерель на кілограм (Бк/кг), а несистемна - кюрі на кілограм (Кі/кг).

Одиницею радіоактивності рідкого і газоподібного середовища - питомою об'ємною активністю є одиниця в системі Сї - беккерель на літр (Бк/л), а несистемна одиниця - кюрі на літр (Кі/л).

За одиницю радіоактивності площі - питому забрудненість площі в системі СІ прийнято беккерель на квадратний кілометр (Бк/км2), несистемна одиниця - кюрі на квадратний кілометр (Кі/км2).

Іонізуючі випромінювання - це таке випромінювання, взаємодія якого із середовищем призводить до утворення електричних зарядів різних знаків (іонів). Воно має високу енергію і властивість руйнувати біологічні об'єкти.

Види іонізуючого випромінювання: 1) корпускулярне випромінювання (потік частинок, що утворюються при ядерних перетвореннях - ?- і ?-частинки, протони, нейтрони): а) альфа (?)-випромінювання - це потік позитивно заряджених частинок (ядер атомів гелію), які рухаються зі швидкістю до 20 000 км/с. Вони затримуються аркушем паперу, практично не здатні проникати через шкіряний покрив. Тому ?-частинки не несуть серйозної небезпеки доти, доки вони не потраплять всередину організму через відкриту рану або через кишково-шлунковий тракт чи дихальні шляхи разом із їжею або повітрям. Довжина пробігу ?-частинки у повітрі - до 10 см, в біологічних тканинах - до 30-40 мкм; б) бетта (?)-випромінювання - це потік електронів, що рухаються зі швидкістю близької до швидкості світла (до 250 000 км/с). Довжина пробігу ?-частинки у повітрі - до 10 м, у живій тканині - до 3 см; 2) фотонне випромінювання - потік електромагнітних коливань високих і надзвичайно високих енергій, що рухаються зі швидкістю світла (у вакуумі близько 300 000 км/с) - це ?-випромінювання, рентгенівські і ультрафіолетові промені;

а) гамма ( ? )-випромінювання виникають при збудженні ядер атомів або елемен тарних частинок. Довжина хвилі (1 - 1000) ? 10-1 м. Джерелом ?-випромінювання є ядерні вибухи, розпад ядер радіоактивних речовин, вони утворюються також при проходженні швидких заряджених частинок крізь речовину. Завдяки значній енергії, це випромінювання може іонізувати різні речовини,а також характеризується великою проникаючою здатністю - сотні і тисячі метрів у повітрі. Поширюється воно зі швидкістю світла і використовується в медицині для стерилізації приміщень, апаратури, у-випромінювання дедалі ширше застосовують у науці і техніці, зокрема в гамма-дефектоскопії та в автоматиці;

б) рентгенівське випромінювання виникає в результаті зміни стану енергії електронів, що знаходяться на внутрішніх оболонках атомів, і має довжину хвилі (1 - 1000) ? 10-12. Це випромінювання є сукупністю гальмівного та характеристичного випромінювання, енергія фотонів котрих не перевищує 1 МеВ. Характеристики іонізуючого випромінювання:

1) іонізуюча спроможність випромінювання визначається питомою іонізацією, тобто числом пар іонів, що утворюються в одиниці об'єму, одиниці маси середовища або одиниці довжини шляху (найбільша у ?-випромінювання, у ?-випромінювання - в 100 разів менша, а у ?-випромінювання - в 1000 раз менша ніж у ?-випромінювання); 2) проникаюча спроможність випромінювання визначається довжиною пробігу у середовищі, тобто шляхом, пройденим часткою в речовині до її повної зупинки (найбільша - у ?-випромінювання, найменша - у ?-випромінювання). Джерела іонізуючих випромінювань:

природні (космічні промені, радіоактивні речовини природного походження у воді, ґрунті та повітрі);

штучні (ядерні вибухи, атомні електростанції та дослідницькі ядерні реактори, прискорювачі заряджених часток, радіоактивні відходи, рентгенівські апарати, прилади апаратури засобів зв'язку високої напруги тощо). Іонізуючу властивість радіації в повітрі характеризують дозою випромінювання.

Доза випромінювання - це кількість енергії радіоактивних випромінювань поглинутих одиницею об'єму опромінюваного середовища.

Доза випромінювання (або опромінення) є мірою вражаючої дії радіоактивних випромінювань на організм людини, тварин і рослини. Вона може накопичуватися за різний час, а біологічне ураження від опромінення залежить від величини дози і від часу її накопичення.

Розрізняють такі дози іонізуючого випромінювання: 1) експозиційна доза - характеризує іонізуючу спроможність випромінювання у повітрі. У системі СІ одиницею вимірювання експозиційної дози є кулон на кілограм (Кл/кг, C/kg). Це одиниця експозиційної дози випромінювання, при якому в кожному кілограмі повітря утворюються іони із загальним зарядом, що дорівнює 1 Кл. Позасистемна одиниця - рентген (Р, R). 1 рентген - це така доза рентгенівського або гамма-випромінювання, яка в 1 см3 сухого повітря при температурі 0 °С і тиску 760 мм рт. ст. створює 2 млрд. пар іонів (або точніше 2,08 ? 109). На практиці застосовують менші часткові одиниці: мілірентген (1 Р = 1000 мР; 1 мР = 10- Р) і мікро-рентген (1 Р = 1000000 мкР; 1 мкР = 10-6 Р). Експозиційна доза в рентгенах досить надійно характеризує небезпеку дії іонізуючих випромінювань при загальному і рівномірному опроміненні організму людини чи тварини. Співвідношення між одиницею експозиційної дози системи СІ і несистемною: 1 Кл/кг = 3876 Р або 1 Р = 2,58 ? 104 Кл/кг. Рентген визначає кількість енергії (дозу), яку одержує об'єкт, а не характеризує час, за який вона одержана. Рентген як одиниця вимірювання за своїм визначенням є кількісною характеристикою гамма чи рентгенівського випромінювання і нічого не говорить про кількість енергії, поглинутої об'ємом, який опромінюється. Через це для оцінювання ступеня впливу випромінювання на організм введено поняття «поглинута доза»; 2) поглинута доза (Д) характеризує енергію іонізуючого випромінювання, що поглинається одиницею маси опромінюваної речовини (це кількість енергії різних видів іонізуючих випромінювань, поглинутих одиницею маси речовини). Одиниця вимірювання поглинутої дози тканинами організму в системі СІ - джоуль на кілограм (Дж/кг, <І/к§) - це кількість енергії будь-якого виду іонізуючої речовини в 1 кг. Крім цього, одиницею вимірювання поглинутої дози є грей (Гр, Су). Ще застосовують позасистемну одиницю -рад (гай) (це скорочення від англійського radiation absordent dose ) - поглинута доза будь-якого випромінювання, за якої кількість енергії, поглинутої 1 г речовини, що опромінюється, відповідає 100 ерг, 1 рад = 0,01, Дж/кг = 100 ерг поглинутої речовини в тканинах. Співвідношення між одиницею поглинутої дози системи СІ і несистемною одиницею: 1 Дж/кг = 100 рад, 1 Гр = 100 рад, ГР = 1 Дж/кг, 1 рад = 0,01 Гр = 0,01 Дж/кг. Для визначення дози опромінення біологічних об'єктів вимірюють дозу в повітрі в Р, а потім розрахунковим шляхом знаходять поглинуту дозу в радах. Через те, що доза випромінювання 1 Р у повітрі енергетично еквівалентна 88 ерг/г, то поглинута енергія в радах для повітря становить 88/100 = 0,88рад. Таким чином, якщо доза випромінювання в повітрі дорівнює 1 Р, то поглинута доза буде 0,88 рад. Поглинута доза більш точно визначає вплив іонізуючих випромінювань на біологічні тканини організму, в яких різні атомний склад і щільність. Є окрема залежність між поглинутою дозою і радіаційним ефектом: чим більша поглинута доза, тим більший радіаційний ефект. Поглинута доза характеризує радіаційний ефект для всіх видів органічних і хімічних тіл, крім живих організмів.

Поглинута доза випромінювання - це фізична величина, яка дорівнює відношенню середньої енергії, переданої при випромінюванні речовині, в деякому елементарному об'ємі маси речовини в ньому:

Д = dE/dm

де Е - енергія (Дж), m - маса речовини (кг). Однак, поглинута доза не враховує того, що вплив однієї і тієї самої дози різних видів випромінювань на організм людини не однаковий. Наприклад, «?-випромінювання майже у 2 разів небезпечніше, ніж інші види випромінювань. Для порівняння біологічної дії різних видів випромінювань (урахування нерівномірність ураження від різних видів випромінювань) при вирішенні задач, пов'язаних із радіаційним захистом, використовують коефіцієнт якості. Коефіцієнт якості вимірювання (К) - це безмірна величина, яка характеризує залежність несприятливих біологічних наслідків опромінення людини в малих дозах від повної лінійної переданої енергії випромінювання. Знання величини поглинутої дози не досить для точного передбачення ні ступеня важкості, ні ймовірності виникнення ефектів ураження. Через це введена еквівалентна доза; 3) еквівалентна доза визначає біологічний вплив різних видів іонізуючого випромінювання на організм людини і служить для оцінки радіаційної небезпеки цих видів випромінювань. Різні види іонізуючого випромінювання під час опромінювання організму однаковими дозами приводять до різного біологічного ефекту. Це пов'язано з неоднаковою питомою щільністю іонізації, викликаної різними видами випромінювань. Так, кількість іонів, які утворюються під дією випромінювання на одиниці шляху в тканинах, тобто щільність іонізації, альфа-частинками у сотні разів вища від гамма-променів. Тому введено поняття «відносна біологічна активність», яка показує співвідношення поглинутих доз різних видів випромінювання, що викликають однаковий біологічний ефект. Якщо умовно прийняти біологічну ефективність гамма- і бета-променів за одиницю, то для альфа-частинок вона буде дорівнювати десяти, а для повільних і швидких нейтронів відповідно п'яти і двадцяти. Еквівалентна доза опромінення використовується для оцінювання дії випромінювання на живі організми, насамперед людини і тварини. Одиницею еквівалентної дози в системі СІ є зіверт (Зв, Sv). Один зіверт дорівнює поглинутій дозі в 1 Дж/кг (для рентгенівського, гамма- та бета-випромінювань). Для обліку біологічної ефективності випромінювань введена несистемна одиниця поглинутої дози - біологічний еквівалент рентгена (бер). Один бер - це доза будь-якого виду випромінювання, яка створює в організмі такий же біологічний ефект, як 1 Р рентгенівського або гамма-випромінювання. Доза в берах виражається тоді, коли необхідно оцінити загальний біологічний ефект незалежно від типу діючих випромінювань. Співвідношення між одиницею еквівалентної дози в системі СІ і несистемною одиницею: 1 Зв = 100 бер, 1 бер = 0,01 Зв (1 Зв = 1 Дж/кг, 1 Зв ? 100 Р, 1 Зв ? 1 Гр). Еквівалентна доза дорівнює добутку поглиненої дози Д на середній коефіцієнт якості іонізуючого випромінювання К у даному елементі об'єму біологічної тканини: Н = Д ? К.

Величина дози, яку отримує людина, залежить від виду випромінювання, енергії його частинок, щільності потоку й тривалості дії. Всі міжнародні й національні норми встановлені в еквівалентній дозі опромінення. Для оцінювання дії іонізуючого випромінювання за одиницю часу застосовується поняття «потужність дози».

Поглинута та експозиційна дози випромінювання, що належать до одиниці часу, визначають рівень радіації. Рівень радіації характеризує ступінь забруднення місцевості та вказує, яку дозу може дістати людина, перебуваючи на забрудненій території, за певний проміжок часу. Одиницею вимірювання рівня радіації є рентген (Р, мР, мкР), рад та бер за 1 годину.

Потужність експозиційної дози (рівень радіації) - це інтенсивність випромінювання, що утворюється за одиницю часу і характеризує швидкість накопичення дози. Одиницею потужності експозиційної дози в системі СІ є ампер на кілограм (А/кг, A/kg), а несистемною одиницею для вимірювання випромінювань у повітрі є рентген за годину (Р/год, R/h), рентген за секунду (Р/с, R/s) або часткові одиниці: мілірентген за годину (мР/год), мікро-рентген за годину (мкР/год). Співвідношення між одиницею системи СІ і несистемною одиницею потужності експозиційної дози: 1 А/кг = 1 Кл/кгхс = 3876 Р/с, 1 Р/с = 2,58 ? 10 А/кг = 2,58 ? 10-4 Кл/кгхс.

Одиницею потужності поглинутої дози в системі СІ є грей за секунду (Гр/с, Gy/s) і джоуль на кілограм за секунду (Дж/кг/с, J/kg/s), а несистемною - рад за секунду (рад/с, rad/s); співвідношення між ними: 1 Гр/с = 1 Дж/(кг/с); 1 Гр/с = 100 рад, 1 рад = 0,01 Гр/с.

Одиницею потужності еквівалентної дози в системі СІ є зіверт за секунду (Зв/с, Sv/s), а несистемною одиницею є бер за секунду (бер/с) співвідношення між ними: 1 Зв/с = 100 бер/с, 1 бер/с = 0,01 Зв/с.

Способи опромінення людини:

зовнішній - радіоактивні речовини знаходяться поза організмом;

внутрішній - радіоактивні речовини знаходяться у повітрі, яким дихає людина, або у їжі чи воді, і потрапляють всередину організму через органи дихання, шкіру та кишково-шлунковий тракт.

2. Методи виявлення іонізуючих випромінювань

Виявлення радіоактивних речовин та іонізуючих (радіоактивних) випромінювань (нейтронів, гамма-променів, бета- і альфа-частинок), грунтується на здатності цих випромінювань іонізувати речовину середовища, в якій вони поширюються. Під час іонізації відбуваються хімічні й фізичні зміни у речовині, які можна виявити і виміряти.

Іонізація середовища призводить до: засвічування фотопластинок і фотопаперу, зміни кольору фарбування, прозорості, опору деяких хімічних розчинів, зміни електропровідності речовин (газів, рідин, твердих матеріалів), люмінесценції (світіння) деяких речовин.

В роботі дозиметричних і радіометричних приладів застосовують такі методи індикації: фотографічний, сцинтиляційний, хімічний, іонізаційний, калориметричний, неитронноактивізаційний. Крім цього, дози можна визначати за допомогою біологічного і розрахункового методів.

Фотографічний метод заснований на зміні ступеня почорніння фотоемульсії під впливом радіоактивних випромінювань. Гамма-промені, впливаючи на молекули бромистого срібла, яке знаходиться у фотоемульсії, призводять до розпаду і утворення срібла і брому. Кристали срібла спричиняють почорніння фотопластин чи фотопаперу під час проявлення. Одержану дозу випромінювання (експозиційну або поглинуту) можна визначити, порівнюючи почорніння плівки паперу з еталоном.

Сцинтиляційний метод полягає в тому, що під впливом радіоактивних випромінювань деякі речовини (сірчистий цинк, йодистий натрій) світяться. Спалахи світла, які виникають, реєструються, і фотоелектронним підсилювачем (помножувачем) перетворюються на електричний струм. Вимірюваний анодний струм і швидкість рахунку (рахунковий режим) пропорційні рівням радіації. На цьому методі базується дія індивідуального вимірювача дози 1Д-11.

Хімічний метод застосований на властивості деяких хімічних речовин під впливом радіоактивних випромінювань внаслідок окислювальних або відновних реакцій змінювати свою структуру або колір. Так, хлороформ у воді під час опромінення розкладається з утворенням соляної кислоти, яка вступає в кольорову реакцію з барвником, доданим до хлороформу. У кислому середовищі двовалентне залізо окислюється у тривалентне під впливом вільних радикалів Н02 і ОН, які утворюються у воді при її опроміненні. Тривалентне злізо з барвником дає кольорову реакцію. Інтенсивність зміни кольору індикатора залежить від кількості соляної кислоти, яка утворилася під впливом радіоактивного випромінювання, а її кількість пропорційна дозі радіоактивного випромінювання. За інтенсивністю утвореного забарвлення визначають дозу радіоактивних випромінювань шляхом порівняння з еталоном. За цим методом працюють хімічні дозиметри ДП-20, ДП-70 і ДП-70М.

Іонізаційний метод полягає в тому, що під впливом радіоактивних випромінювань в ізольованому об'ємі відбувається іонізація газу й електрично нейтральні атоми (молекули) газу розділяються на позитивні й негативні іони. Якщо в цьому об'ємі помістити два електроди і створити електричне поле, то під дією сил електричного поля електрони з від'ємним зарядом будуть переміщуватися до анода, а позитивно заряджені іони - до катода, тобто між електродами проходитиме електричний струм, названий іонізуючим струмом, величина якого буде пропорційна інтенсивності іонізаційних випромінювань. Зі збільшенням інтенсивності, а відповідно й іонізаційної здатності радіоактивних випромінювань, збільшиться і сила іонізуючого струму. За цим методом працюють дозиметри ДП-5 А (Б), ДП-3 Б, ДП-22 В, ІД-1.

Калориметричний метод базується на зміні кількості теплоти, яка виділяється в детекторі поглинання енергії іонізуючих випромінювань.

Нейтронно-активаційний метод зручний при оцінюванні доз в аварійних ситуаціях, коли можливе короткочасне опромінення великими потоками нейтронів. За цим методом вимірюють наведену активність, і в деяких випадках він є єдино можливим у реєстрації, особливо слабких нейтронних потоків, тому, що наведена ними активність мала для надійних вимірювань звичайними методами.

Біологічний метод дозиметрії ґрунтується на використанні властивостей випромінювань негативно впливати на біологічні об'єкти. Дозу оцінюють за рівнем летальності тварин, ступенем лейкопенії, кількістю хромосомних аберацій, зміною забарвлення і гіперемії шкіри, випаданню волосся, появою в сечі дезоксицитидину. Цей метод не дуже точний і менш чутливий, ніж фізичний.

Розрахунковий метод визначення дози опромінення передбачає застосування математичних розрахунків. Для визначення дози радіонуклідів, які потрапили в організм, цей метод є єдиним.

На основі іонізаційного методу розроблені прилади, які мають однакову будову і складаються із сприймаючого пристрою (іонізаційної камери або газорозрядного лічильника), підсилювача іонізуючого струму (електричної схеми), реєстраційного пристрою (мікроамперметру) і джерела живлення (сухі елементи або акумулятори). Сприймаючий пристрій призначений для перетворення енергії радіоактивних випромінювань в електричну. В основу роботи дозиметричних приладів покладено принцип іонізації газів. Як відомо, гази є провідниками електричного струму. Під впливом радіоактивних випромінювань, вони в результаті іонізації починають проводити струм. На цій властивості газів і ґрунтується робота сприймаючого пристрою дозиметричних приладів - іонізаційної камери й газорозрядного лічильника.

Іонізаційна камера має вигляд прямокутної коробки або трубки, виготовленої з алюмінію або пластмаси. В останньому випадку внутрішню поверхню стінок вкривають струмопровідним матеріалом. У середині коробки або трубки розміщується графітовий чи алюмінієвий стержень. Отже в іонізаційній камері є два електроди: до стінки камери підключається позитивна напруга від джерел живлення, яка виконує роль позитивного електрода, а до графітового чи алюмінієвого стержня, який виконує роль негативного електрода і розміщений у середині камери - негативна напруга. Простір у камері між електродами заповнений повітрям. Сухе повітря, що заповнює іонізаційну камеру, є добрим ізолятором. Ось чому у звичайних умовах електричний струм через камеру не проходить. У зоні радіоактивних забруднень у камеру проникають гамма-випромінювання і бета-частинки, які спричиняють іонізацію повітря. Іони, що утворилися під дією електричного поля, починають спрямовано рухатися, а саме: негативні іони рухаються до позитивного електрода (анода), а позитивні іони - до негативного електрода (катода). Таким чином у ланцюгу камери виникає іонізуючий струм. Проте безпосередньо виміряти силу іонізуючого струму неможливо, бо вона дуже мала. У зв'язку з цим для посилення іонізуючого струму застосовують електричні підсилювачі, після чого струм проходить через вимірювальний прилад, шкала якого проградуйована у відповідних одиницях вимірювання.

Газорозрядний лічильник призначений для вимірювання малої інтенсивності у десятки тисяч разів меншій тієї, яку можна виміряти іонізаційною камерою. Через це газорозрядні лічильники застосовують у приладах для вимірювання рівня радіації на місцевості (рентгенметрах), у приладах для вимірювання ступеня забрудненості різних предметів, продуктів, урожаю, кормів альфа-, бета- і гамма-активними речовинами (радіометрах).

Газорозрядні лічильники відрізняються від іонізаційних камер як конструктивним оформленням, так і характером іонізації, що відбувається в них. Лічильник складається з тонкостінної металевої (з нержавіючої сталі) трубки довжиною 10-15 см і діаметром 1-2 см. По осі трубки протягнуто дуже тонку вольфрамову нитку. До електродів лічильника, тобто до вольфрамової нитки і стінок трубки підведена напруга від джерела живлення. Простір між стінками трубки і металевою ниткою заповнений інертним газом (неоном, аргоном або їх сумішшю) з невеликою добавкою галогенів (хлору, брому). Тиск газового наповнення в лічильнику понижений - близько 1330 Па (10 мм рт. ст.). Іонізаційна частинка, потрапляючи всередину лічильника, створює принаймні одну пару іонів: позитивний іон і електрон. Під дією електричного поля позитивний іон рухається до катода (стінки трубки), а електрон -- до анода (нитки лічильника). Рух іонів спричиняє в ланцюгу лічильника стрибок (імпульс) струму, який після посилення може бути зареєстрований вимірювальним приладом (мікроамперметром). Реєструючи кількість імпульсів струму, які виникають за одиницю часу, можна знайти інтенсивність радіоактивних випромінювань. Проходження в газовому лічильнику імпульсів напруги можна почути в головних телефонах у вигляді клацань, які при сильному зараженні поверхні переходять у шум (тріск). Підсилювач іонізуючого струму призначений для посилення слабких сигналів, які виробляються сприймаючим пристроєм, до рівня, необхідного для роботи реєстраційного (вимірювального) пристрою. Як підсилювач застосовують електрометричні лампи. Реєстраційний пристрій призначений для вимірювання сигналів, які виробляються сприймаючим пристроєм. Шкали приладів градуйовані безпосередньо в одиницях тих величин, для вимірювання яких призначений прилад (відповідної характеристики радіоактивних випромінювань). Джерело живлення забезпечує роботу приладу. Для цієї мети застосовують сухі елементи або акумулятори.

3. Прилади радіаційної розвідки та дозиметричного контролю

Прилади, призначені для виявлення і виміру характеристик іоніуючих випромінювань називаються дозиметричними. Залежно від завдань, що виконуються, дозиметричні прилади умовно поділяються на прилади радіаційної розвідки і прилади контролю опромінення людей. Прилади радіаційної розвідки призначені для виявлення ступеня зараження місцевості й об'єктів радіоактивними речовинами. Прилади контролю опромінення призначені для вимірювання доз опромінення при роботі чи перебуванні людей на зараженій місцевості або під впливом проникаючої радіації ядерного вибуху чи аварії на радіаційно небезпечному об'єкті.

Загалом виділяють такі чотири типи дозиметричних приладів за їх призначенням:

Індикатори - застосовують для виявлення радіоактивного забруднення місцевості й різних предметів. Деякі з них дають змогу також вимірювати рівні радіації ?- і ?-випромінювань. Датчиком служать газорозрядні лічильники. До цієї групи приладів належать індикатори ДП-63, ДП-63А, ДП-64. Рентгенметри - призначені для вимірювання рівнів радіації на забрудненій радіоактивними речовинами місцевості. Датчиками в цих приладах застосовують іонізаційні камери або газорозрядні лічильники. Це загальновійськовий рентгенметр ДП-2, рентгенметр «Кактус», ДП-3, ДП-ЗБ, ДП-5А, Б і В та ін.

Радіометри - використовують для вимірювання ступеня забруднення поверхонь різних предметів радіоактивними речовинами, головним чином ?- і ?-частинками. Датчиками радіометрів є газорозрядні й сцинтиляційні лічильники. Найбільш поширені прилади цієї групи ДП-12, бета-, гамма-радіометр «Луч-А», радіометр «Тисс», радіометричні установки ДП-100М, ДП-100АДМ та ін.

Дозиметри призначені для вимірювання сумарних доз опромінення, одержаних особовим складом формувань ЦО і населенням, головним чином ?-опромінення. Вони поділяються за видом вимірювальних випромінювань на ?-, ?- і ?-частинок й нейтронного потоку. Такі дозиметри індивідуального призначення мають датчиками іонізаційні камери, газорозрядні, сцинтиляційні й фотолічильники. Набір, який складається з комплекту камер і зарядно-вимірювального пристрою, називають комплектом індивідуального дозиметричного контролю. Комплектами індивідуальних дозиметрів є ДК-0,2, ДП-22В, ДП-24, ІД-1, ІД-11 та ін.

Для вирішення завдань ЦО можна застосовувати прилади, які використовуються на об'єктах атомної енергетики, в геології, медицині та інших галузях. До таких приладів належать переносний медичний рентгенметр ПМР-1, ПМР-1М, переносний медичний мікрорентгенметр МРМ-1, МРМ-2, переносний рентгенметр РП-1, гамма-рентгенметр «Карагач-2», універсальний радіометр РУП-1, РУСІ-7, аерозольний радіометр РВ-4, бета-гамма радіометр ГБР-3, перерахункові прилади ПП-16, ПП-9-2М, ПСО-2-4, переносні універсальні радіометри СРП-68-01, СРП-88-01, СРП-68-02, комплекти індивідуального дозиметричного контролю КІД-4, КІД-6, ІФКУ-1, ІКС, «Гнейс» та ін.

Останніми роками виготовляють багато побутових дозиметрів і радіометрів: дозиметри «Рось», РКС-104, ДРГ-01Т, ДСК-04 («Стриж»), радіометри «Прип'ять», «Десна», «Бриз», дозиметр-радіометр «Белла» та ін. Деякі з них без будь-яких конструктивних змін можна використовувати для вимірювання потужності експозиційної дози іонізуючих випромінювань під час ведення радіаційної розвідки, поглинутої дози опромінення людей, тварин, а також для сигналізації про наявність радіоактивних речовин.

Прилади радіаційної розвідки Прилад ДП-64 (рис. 9.1) є стаціонарним індикатором-сигналізатором радіоактивного зараження, призначений для подачі звукового та світлового сигналу при наявності гамма-випромінення. Поріг спрацьовування приладу 0,2 Р/год. Прилад включає датчик і пульт сигналізації, з'єднані кабелем довжиною 30 метрів. Пульт сигналізації включає корпус з вмонтованими в ньому елементами схеми і кришку. На лицьовій стороні корпусу у верхній частині знаходиться динамік, праворуч розміщені тумблери РОБОТА-КОНТРОЛЬ, ВКЛ-ВИКЛ і тримач запобіжника, ліворуч розміщена сигнальна лампа і коротка інструкція по роботі з приладом. Датчик встановлюється зовні приміщення на висоті 0,7-1 м від поверхні землі. Принцип дії приладу базується на іонізаційному методі реєстрації радіоактивного випромінення з використанням газорозрядного лічильника. При дії гамма-випромінення в лічильнику виникають короткочасні газові розряди, які викликають імпульси струму в його мережі. Ці імпульси з'являються з частотою, що пропорційна потужності дози опромінення.

Рис. - Індикатор-сигналізатор ДП-64

Перед вимірюванням необхідно перевірити працездатність приладу, для цього: ввімкнути прилад - ввімкнувши тумблер ВКЛ-ВИКЛ в положення ВКЛ, тумблер РОБОТА-КОНТРОЛЬ перемикнути в положення КОНТРОЛЬ, при цьому сигнальна лампочка повинна спалахувати, а звуковий сигнал складатись з коротких гудків, частота яких вказана в паспорті приладу. Після перевірки працездатності тумблер перемикнути в положення РОБОТА, через 30 с прилад буде готовий до індикації гамма-випромінення.

Основні технічні характеристики:

Датчик працездатний в умовах відносної вологості 95-98%.

Прилад призначений для подачі звукового й світлового сигналу при досягненні потужності дози гамма-випромінення 0,2 Р/год. з енергією випромінення 0,08-1,25 МеВ.

Інертність спрацьовування не перевищує 3 с.

Електроживлення приладу здійснюється від мережі змінного струму частоти 50 Гц, напругою 127 або 220 В, а також від акумулятора з напругою 6 В.

Датчик приладу герметичний. Вага приладу не перевищує 5 кг.

Дозиметр ДКС-ДЗ із виносним детектором СДН-129 є вимірювачем потужності експозиційної дози (ПЕД) і призначений для реєстрації інтенсивного рентгенівського й гама-випромінювання в широкому діапазоні енергій і потужностей доз радіації. Прилад може використовуватись в якості надійного й зручного засобу для дистанційних безперервних вимірювань потужності дози як в режимі моніторингу, так і в період виникнення, протікання та ліквідації аварій на, АЕС або призастосуванні зброї масового ураження. Дозиметр ДКС-ДЗ (рис.) складається з логічного блоку й підстикованого до нього за допомогою кабелю виносного детектора. У комплект приладу входить штанга для закріплення детектора й вимірів у польових умовах.

Рис. - Дозиметр ДКС-ДЗ

Основні технічні дані приладу:

діапазон реєстрованих енергій від 0,05 до 20 МеВ;

межі відносної похибки ± 20%;

максимальне віддалення виносного детектора від приладу 30 м;

живлення приладу здійснюється від батареї акумуляторів Д-026 (4 шт.), які вмонтовано в дозиметр або в режимі підзарядки акумуляторів від мережі 220 В, 50 Гц від вмонтованого зарядного пристрою. Тривалість безперервної роботи на акумуляторах не менше 3 год.;

час встановлення роботи режиму 1 хв.;

габаритні розміри: логічного блоку 372 ? 125 ? 46 мм; детектора діаметром 30 ? 76 мм.

Перед початком роботи ввімкнути вмикач «ЖИВЛЕННЯ» (крайній зліва) у верхнє положення, ввімкнути вмикач «СВІТЛО» і перевірити підсвітку рідинно-кристалічного вимірювача (РКВ). Натиснути кнопку «S1» і перевірити на РКВ число в межах від 400 до 500, що відповідає заміряній напрузі вмонтованого акумулятора в межах від 4,0 до 5,0 В. відпустити кнопку, покажчики РКВ мають бути 0,00-0,03. При роботі приладу від мережі напругою 220 В потрібно підключити шнур до мережі, при цьому загоряється світлодіод «МЕРЕЖА» на корпусі приладу.

Ввімкнути вмикач «ЖИВЛЕННЯ», перевірити підсвітку РКВ, ввімкненням вимикача «СВІТЛО». Виключити живлення, підключити до роз'єму кабель виосного детектора, ввімкнути прилад, поставити перемикач діапазонів в положення Р/год. ? 1 (в нижнє положення). Поріг спрацювання приладу 10 мР/год.

Прилад ДП-ЗБ є рентгенометром і призначений для виміру потужності дози гамма-випромінення в місцях розташування виносного блоку. Прилад є бортовим і встановлюється на автомобілях, локомотивах, катерах та других рухомих об'єктах. Прилад (рис. 9.3) складається із вимірювального пульта і виносного блоку, з'єд-аних гнучким кабелем. Виносний блок виконаний герметичним і складається з корпусу й циліндричного кожуха. У виносному блоці розміщуються іонізаційна камора і формуючий каскад.

Рис. - Рентгенметр ДП-ЗБ: 1 - кабель живлення; 2 - кнопка «ПЕРЕВІРКА»; 3 - вимірювальний пульт;4 - інструкція; 5 - скоба для закріплення вимірювального пульту; 6 - лампа підсвітки шкали і покажчика піддіапазонів; 7 - покажчик піддіапазонів; 8 - лампа індикації; 9 - перемикач; 10 - запобіжник; 11 - кабель виносного блоку; 12 - скоба кріплення виносного блоку; 13 - виносний блок

Вимірювальний пульт складається із корпусу і двох кришок. Верхня кришка кожуха є одночасно передньою панеллю, на якій розміщені вимірювальний прилад із захисним склом, лампочка підсвітки шкали, покажчик піддіапазонів, лампочка світлової індикації випромінення. Під покажчиком піддіапазонів розташовані ручка перемикання піддіапазонів і коротка інструкція з користування приладом. В окремому відсіку пульту встановлені перемикачі напруги й запобіжники. Між головками утримувачів запобіжників знаходиться кнопка ПЕРЕВІРКА. У нижній частині корпусу розташовані розмикачі: один до джерела електричного струму, другий -до виносного блоку.

При підготовці приладу до роботи необхідно з'єднати виносний блок із пультом, а пульт із джерелом живлення. Потім ручку перемикача піддіапазонів перевести в положення ВКЛ (у деяких модифікаціях приладів - в положення ?1) і натиснути кнопку ПЕРЕВІРКА. Стрілка вимірювального приладу повинна встановитися на відмітках 0,4-0,8, а контрольна лампочка періодично спалахувати. Якщо прилад уже знаходиться в полі радіаційного випромінення, то такий ефект буде і при ненатиснутій кнопці ПЕРЕВІРКА.

При вимірюванні дози гамма-випромінення, перед перемиканням на під-діапазон необхідно, щоб стрілка вимірювального приладу в положенні ВКЛ при не натиснутій кнопці ПЕРЕВІРКА стала в межах зачорненої ділянки на початку шкали. Після переключення на І піддіапазон при наявності опромінення стрілка вимірювального приладу відхилиться не зразу, а після 30 с (час на приведення схеми в робочий стан). Піддіапазони вимірювання верхньої шкали: «?1» - 0,1-1 Р/год., «?10» - 1-10 Р/год., «?100» 10-100 Р/год. Покажчики шкали помножу-ються на множник піддіапазону. Четвертому піддіапазону відповідає положення ручки перемикача - «500». При вимірюванні в цьому піддіапазоні (50-500 Р/год.) покажчики знімаються з нижньої шкали.

Прилад живиться від джерела постійного струму напругою 12 або 26 В.

Прилад ДП-5А є польовим радіометром-рентгенометром і призначений для виявлення і виміру радіоактивного забруднення поверхні різних предметів, а також для виміру потужності гамма-випромінення.

Основні технічні дані приладу:

Діапазон вимірювань від 0,05 мР/год. до 200 Р/год.

Прилад забезпечує вимірювання також при занурюванні зонда у воду на глибину до 50 см і має звукову сигналізацію на всіх режимах.

Живлення приладу здійснюється від двох елементів типу КБ-1, третій елемент - для підсвітки. Комплект живлення забезпечує безперервну роботу приладу у нормальних умовах протягом не менше 40 годин. Прилад також має перехідні пристрої для підключення приладу до джерел постійного струму напругою 3,6 та 12 В.

Прилад має 6 піддіапазонів вимірювання (табл. 9.2). Відлік покажчиків здійснюється по шкалі вимірювального приладу.

Прилад ДП-5А (Б) (рис. 9.4) складається із пульта і зонда, з'єднаного з пультом гнучким кабелем. У комплект приладу також входять: футляр з ременем і випромінювачем, головні телефони, подовжувальна штанга, 10 поліетиленових чохлів для зонда, акумуляторна колодка для підключення радіометра до зовнішнього джерела електроенергії, упаковувальний ящик.

Таблиця

Піддіапазони

Положення перемикача

Шкала приладу

Од. виміру

Піддіапазони вимірювання

1

200

0-200

Р/од.

5-200

П

?1000

0-5

мР/год.

500-5000

Ш

?100

0-5

мР/год.

50-500

?10

0-5

мР/год.

5-50

У

?1

0-5

мР/год.

0,5-5

У1

?0,1

0-5

мР/год.

0,05-0,5

Рис. - Радіометр-рентгенметр ДП-5А: 1 - випромінювач для перевірки працездатності приладу; 2 - інструкція; 3 - кришка футляра; 4 - футляр; 5 - електровимірювальний прилад; 6 - вмикач підсвітки шкали; 7 - перемикач режимів; 8 - з'єднувальний кабель; 9 - потенціометр регулювання режимів роботи; 10 - кнопка вмикання покажчиків; 11 - гніздо підключення головних телефонів; 12 - передня панель приладу; 13 - рукоятка зонда; 14 - зонд; 15 - поворотний екран

На передній панелі корпусу вимірювального пульту розташовані: електро-вимірювальний прилад, перемикач піддіапазонів, потенціометр регулювання режимів роботи, кнопка вимкнення покажчиків, тумблер підсвітки шкали, гніздо підключення телефонів. На верхній панелі зліва кріпиться кабель підключення зонда. У корпусі знизу є відсік для розташування джерел живлення. На внутрішній стороні кришки футляру розташований випромінювач для перевірки працездатності при-ладу. Зонд має поворотну гільзу з віконцем для переведення приладу в режим ви-мірювання бета-випромінення, положення «Б» і гамма-випромінення, положення «Г». При підготовці приладу до роботи необхідно: встановити коректором механічний «0» приладу, включити прилад, перевівши перемикач в положення РЕЖИМ, ручкою РЕЖИМ встановити стрілку приладу на відмітку v, при необхідності ввімкнути підсвітку шкали, перевірити працездатність приладу на всіх піддіапазонах (окрім піддіапазону 200) за допомогою випромінювача, закріпленого на кришці футляра, для цього: 1) відкрити випромінювач, повертаючи захисну пластину навколо осі; повернути екран зонда в положення Б; 2) встановити зонд опорним виступом на кришку футляра так, щоб випромінювач знаходився навпроти вікна на зонді (положення Б); 3) підключити головні телефони; 4) послідовно ставити перемикач в положення «х0,1», «х1», «х10», «х100», «х1000».

Працездатність приладу перевіряють за наявністю короткочасних звукових сигналів у телефонах та за відхиленням стрілки. У положенні приладу «х10» покажчик приладу слід звірити з паспортними даними. На піддіапазонах від «х0,1» до «х1000» в положенні «Г» екрана зонда прилад реєструє потужність гамма-випромінення в місці розташування зонда. Покажчики знімають по верхній шкали і помножують на відповідний коефіцієнт. На піддіапазоні 200 реєструють потужність гамма-випромінення в місці знаходження пульту (як правило, на грудях оператора). Покажчики знімають по шкалі 0-200. У положенні екрана зонда «Б» вимірюють потужність дози сумарного бета-випромінення. При вимірах потуж-ності дози понад 4000 мР/год. покажчики приладу на піддіапазоні «х1000» потрібно перепровірити на піддіапазоні 200.

ДКС-01 «СЕЛВІС» - професійний дозиметр-радіометр гамма-, бета-випромінювань призначений для вимірювання еквівалентної дози (ЕД) й потужності еквівалентної дози (ПЕД) гамма- і рентгенівського випромінення, часу накопичення ЕД, а також поверхневої щільності потоку бета-частинок. Прилад застосовують для дозиметричного і радіометричного контролю на промислових підприємствах, АЕС, в науково-дослідних організаціях, в місцях проживання, праці й відпочинку населення, контролю радіаційної чистоти приміщень, будівель і споруд, предметів побуту, одягу, території, техніки.

Рис. - Дозиметр-радіометр гама-бета-випромінювань ДКС-01

Таблиця

Відносна похибка вимірювання % не більш 20

Час безперервної роботи при живленні від свіжо-зарядженої акумуляторної батареї (5 акумуля-торів типу «Д-0.125», підзаряджуються від фото-електричної батареї, вмонтованої у прилад) при освітленні фотоелектричної батареї прямим со-нячним світлом протягом світлової доби

год.

не менше 48

Час безперервної роботи без освітлення фото-електричної батареї прямим сонячним світлом протягом світлової доби

год.

не менше 24

Габаритні розміри без виносного блоку | мм | 170 ? 48 ? 48

Габаритні розміри виносного блоку

мм

Циліндр 48 ? 38

Маса дозиметра без виносного блоку

кг

0,4

Маса виносного блоку

кг

0,35

Прилад подає звукові сигнали при попаданні гамма-кванта в блок детектування при перевищенні ЕД порогового значення 1 мкЗв (100 мкР).

Покажчики ПЕД, ЕД і часу її накопичення виводяться на чотирирозрядний цифровий рідинно кристалічний індикатор.

Дозиметр (рис. 9.5) складається з блоку обробки інформації, в який вмонтовано блок детектування гамма-випромінення і виносного блоку детектування бета-частинок.

Блоки детектування перетворюють випромінювання в послідовність імпульсів напруги, число яких пропорційне або функціонально зв'язане з певними параметрами випромінювання. Принцип їх функціонування базується на перетворенні в напівпровідниковому кристалі іонізуючих випромінювань в імпульси напруги.

Блок обробки інформації складається із корпусу, який утворюють верхня і нижня кришки. У верхній частині приладу розміщена фотоелектрична батарея, яка служить для підзарядки акумуляторної батареї. Ще нижче розміщена панель з органами керування дозиметром: перемикачами РО\\/ЕК/МСЮЕ; КАУ8; 1>ПЕКЛ?АЬ; КАКО і кнопками РІМСТЮК; 8 ТАКТ; КЕ8ЕТ.

Зверху робоча панель з індикатором і органами керування закривається захисною відкидною кришкою. Блок детектування гамма-випромінення конструктивно виконаний у вигляді металевого прямокутного паралелепіпеда, що виконує роль корпусу й екрана, всередині якого розміщені плата зарядочутливого підсилювача з встановленим на ній напівпровідниковим детектором і плата вихідного підсилювача. Виносний блок детектування бета-частинок конструктивно виконаний у вигляді циліндричного корпусу з кришкою і отвором для детектора. Всередині корпусу вмонтовані кремнієвий детектор і плата із зарядочутливим підсилювачем. Для з'єднання з приладом блок обладнаний роз'ємом і з'єднувальним кабелем.

Ввімкнення живлення дозиметра здійснюється за допомогою перемикача РО\УЕК/МСЮЕ в одне з положень - «АЦТ» або «МКЬ». Вимкнення живлення здійснюється встановленням перемикача в положення «ОРЕ».

Перед початком роботи необхідно підзарядити батарею, для чого прилад розташувати під електричною лампою потужністю 100 Вт на відстані 20-30 см (при первинній зарядці на 15 годин), або під пряме сонячне світло, щоб промені світла падали на поверхню фотоелектронної батареї, по можливості під прямим кутом (при первинній зарядці на 10 годин). Під'єднують виносний блок детектування бета-частинок до дозиметра за допомогою з'єднувального кабелю через роз'єм у верхній торцевій частині приладу.

Робота дозиметра складається з таких операцій:

вибір режиму роботи;

вимірювання ЕД фотонного іонізуючого випромінювання;

вимірювання ПЕД фотонного іонізуючого випромінювання;

вимірювання щільності потоку бета-частинок.

Для початку процесу вимірювання відкрити прозору кришку над органами керування і ввімкнути дозиметр, встановивши перемикач РО\?ЕКМСЮЕ в положення «ММ.». При цьому на цифровому дисплеї дозиметра висвітяться нулі. Встановити тип іонізуючого випромінювання за допомогою перемикача КАУ8.

Режим індикації виміряного значення ЕД фотонного іонізуючого випромінювання вмикається відразу з вмиканням дозиметра.

Режим індикації виміряного значення ПЕД фотонного іонізуючого випромінювання чи щільності потоку бета-частинок (залежно від положення перемикача КАУ8) вмикається за допомогою послідовного короткочасного натискування кнопки БТЖЛТОК Для вимірювання значення ПЕД дозиметр розмістити верхньою торцевою стороною у напрямку об'єкта, який потрібно обстежити. Натиснути кнопку 8ТАР.Т і після закінчення інтервалу вимірювання зняти покажчики дозиметра. Для роботи дозиметра в автоматичному режимі при вимірювання ПЕД необхідно перемикач КЖЕК/МСЮЕ встановити в положення «ЛОТ». При цьому запуск лічильного режиму здійснюється автоматично, а після закінчення інтервалу вимірювання результат вимірювання буде зафіксований на дисплеї протягом 3-4 секунд.

Режим індикації виміряного значення часу накопичення ЕД вмикається за допомогою послідовного короткочасного натискування кнопки РШСТІОК

Вимірювання ЕД фотонного іонізуючого випромінювання здійснюється автоматично і починається відразу з вмиканням дозиметра. Обнуління результату вимірювання здійснюється за допомогою кнопки КЕ8ЕТ або при вимиканні дозиметра.

Вимірювання часу накопичення ЕД здійснюється автоматично і починається відразу з вмиканням дозиметра. Обнуління результату вимірювання здійснюється за допомогою кнопки КЕ8ЕТ або при вимиканні дозиметра.

Для вимірювання ПЕД фотонного іонізуючого випромінювання ввімкнути дозиметр, для чого перемикач РО\?ЕК/МСЮЕ встановити в положення «ММЬ». Встановити перемикач КАУ8 в положення «у». Ввімкнути режим індикації вимірювання ПЕД. Встановити перемикачі ПЧТЕКУАЬ і КАЖШ залежно від інтенсивності іонізуючого випромінювання в положення згідно з табл. (в мР/год.).

Таблиця

УАЬІЖ

ШТЕКУАЬ

КА1ЧСЕ

0,010-0,500

100 S

1

0,500-5,000

10 S

1

5,000-9,999

1 S

1

9,999-99,99

1 S

0,1

99,99-999,9

1 S

0,01

Для вимірювання щільності потоку бета-частинок треба під'єднати виносний блок детектування бета-частинок до дозиметра, перемикач RAYS встановити в положення «?». Виміряти власний фон бета-детектора, для чого: встановити перемикачі: RAYS - в положення «?», INTERVAL - в положення «AUT». Закрити спеціальною планкою-фільтром (з комплекту блока) вікно бета-детектора. Зняти три покажчики значень фону, виміряних дозиметром, і обчислити середнє арифметичне. Розташувати бета-детектор із закритим планкою вікном таким чином, щоб його вікно знаходилось паралельно і на мінімальній відстані до поверхні, яку необхідно обстежити. Здійснити три виміри гамма-фону обстежуваної поверхні і обчислити середнє арифметичне значення.

Сцинтиляційний прилад геологорозвідувальний СРП-88Н призначений для вимірювань радіоактивності гірських порід і руд по гамма-випроміненню при радіометричній зйомці місцевості.

Модифікація приладу СРП-88Н1 застосовується для виміру радіоактивності при каротажі свердловин і шпурів глибиною до 1000 м. Прилад виготовлено вібростійким і герметичним. Він складається з пульту УИК-01Н (габаритні розміри 210 ? 100 ? 85 мм) та блоку детектування (габаритні розміри для СРП-88Н - 50 ? 191 ? 430 мм, для СРП-88Н1 - 28 ? 1275 мм), підстикованого до пульту кабелем довжиною 1,5 м для СРП-88Н и 1000 м для СРП-88Н1 (рис. 9.6). В якості детекторів у приладі використані кристали йодистого натрію.

Живлення приладу СРП-88Н здійснюється від чотирьох 343-х елементів, час роботи 100 годин, приладу СРП-88Н1 - від зовнішнього джерела живлення напругою від 11 до 15 В.

При роботі з приладом в режимі пошуку зміни інтенсивності гамма-випромінення треба фіксувати по стрілочному індикатору, для чого перемикач ДІАПАЗОН встановити в положення, при якому стрілка індикатора знаходиться в межах від однієї третини до кінця шкали, більш точні покажчики знімають з цифрового табло.

Рис. - Сцинтиляційній прилад геологорозвідувальний СРП-88Н: 1 - блок детектування; 2 - ручка блоку детектування; 3 - з'єднувальний кабель; 4 блок УИН 01Н; 5 - перемикачі; 6 - шкали приладу

Експозиція в положеннях перемикача ДІАПАЗОН «0,1» і «0,3» дорівнює 10 с, а в положеннях від «1» до «30» - 1 с. При вимірюванні фіксують не менше трьох покажчиків і вираховують середнє арифметичне. Необхідний поріг звукової сигналізації для піддіапазонів встановлюється перемикачем ПОРІГ.

Радіометр «ПРИПЯТЬ» призначений для контролю радіаційної обстановки в місцях мешкання, перебування та роботи населення. За допомогою радіометра можна вимірювати: 1) величину зовнішнього гамма-фону; 2) забруднення радіоактивними речовинами житлових і виробничих приміщень, будівель, споруд, одягу, території, поверхні грунту, транспортних засобів; 3) вміст радіоактивних речовин в ЕД продуктах харчування. Діапазон вимірювання потужності експозиційної дози (ЕД) гамма-випромінювання від 0,01 до 20,00 мР/год.; потужності еквівалентної дози (ПЕД) гама-випромінювання від 0,1 до 200,0 мкЗв/год.; питомої активності від 1 ? 10-7 до 2 ? 10-5. Час встановлення робочого режиму - не більше 5 с. Час встановлення покажчиків при вимірах: 1) ЕД, ПЕД і щільності потоку - 20 або 200 с; 2) питомої активності - 10 або 100 хв.

Джерело живлення - батарея типу «КОРУНД» або зовнішнє джерело напругою 4,7 або 12 В. Радіометр (рис. 9.7) виконаний у вигляді портативного цифрового приладу в прямокутному пластмасовому корпусі, розміром 146 ? 73 ? 37 мм, вагою 0,3 кг.

В якості детектора бета- і гамма-випромінювання в радіометрі використовується лічильник типу СБМ-20, в якому при появі іонізуючих випромінювань або гамма-квантів виникає електричний розряд, який формує імпульси напруги, що перетворюються в цифрову інформацію і відображаються на рідинно-кристалічному індикаторі.

На передній і нижній торцевих стінках приладу розміщені органи керування: вмикач живлення; кнопка контролю напруги (КП); перемикач виміру гама-і бета-випромінювання (?-?), перемикач виду вимірюваної ПЕД (Н-X); перемикач виду вимірюваної величини щільності потоку або питомої активності (?-Ат); перемикач меж виміру; перемикач часу встановлення покажчиків; вимикач звукового сигналу; роз'єм для підключення зовнішнього джерела живлення. На задній стінці розміщені кришка-фільтр і кришка відсіку для батареї.

Рис. - Радіометр «ПРИПЯТЬ»

Перед початком роботи з радіометром треба встановити батарею (або підключити прилад до зовнішнього джерела живлення). Включити радіометр перемикачем «Живлення». Для контролю величини напруги натиснути на кнопку КП і прочитати цифрові покажчики напруги на індикаторі.

Потужність дози гамма-випромінювання при встановленій кришці фільтру ?. Перед виміром потужності ЕД перемикачі на передній панелі встановлюють в положення: РЕЖИМ - ?, Н-X-X; ПРЕДЕЛ - нижнє положення; ВРЕМЯ - 20 с (нижнє положення); включити радіометр, через 20 с прочитати покажчики приладу в мР/год. При вимірюванні ПЕД перевести перемикач Н-Х в положення Н і прочитати покажчики приладу в мкЗв/год.

Для оперативного пошуку на місцевості дільниць рекомендується використовувати звуковий сигнал, частота якого пропорційна потужності дози.

При вимірюванні радіоактивного забруднення бета-частинками необхідно спочатку провести заміри із закритою кришкою-фільтром на відстані 1-2 см від поверхні, яка перевіряється, а потім повторити виміри із знятою кришкою на тій же відстані.

Перемикачі на передній панелі встановити: РЕЖИМ - ?; Н-Х -аби яке; ПРЕДЕЛ - нижнє положення; ВРЕМЯ - 20 с (нижнє положення); ?-Ам -Ам. Для отримання величини радіоактивного забруднення поверхні необхідно від покажчиків приладу зі знятою кришкою відняти покажчики приладу із закритою кришкою. Питому активність бета-випромінювальних нуклідів у продуктах харчу-вання і других пробах зовнішнього середовища вимірюють в пластмасовій кюветі при знятій кришці-фільтрі. Одиниця виміру - кюрі на кг (Кі/кг).

Продукти харчування, що досліджуються, готують в тому вигляді, в якому будуть вживатися (ретельно вичищені, вимиті, зварені і т.п.). Пробу треба пропустити через м'ясорубку, нарізати або нашинкувати.

Перемикачі на передній панелі втановити: РЕЖИМ - ?; ?-Ам - Ам; ПРЕ-ДЕЛ - нижнє положення; ВРЕМЯ - 100 хв. (верхнє положення); Н-Х - аби яке. Встановити радіометр зі знятою кришкою-фільтром на підготовлену чисту кювету, включити його і зробити через 100 хв. зчитування трьох послідовних покажчиків фону й визначити середній покажчик.

Помістити в кювету підготовлену пробу (нижче країв кювети на 3 см) і через 100 хв. Зняти три послідовні покажчики й вирахувати середній.


Подобные документы

  • Підготовка об'єктів народного господарства до усталеної роботи в умовах воєнного часу. Заходи щодо підвищення стійкості роботи підприємства в умовах НС. Проведення рятувальних аварійно-відбудовних робіт у вогнищах ураження і в районах стихійного лиха.

    реферат [20,7 K], добавлен 10.12.2010

  • Методи захисту від зброї масового ураження, а також забезпечення радіаційного, хімічного, біологічного захисту військ, їх основне призначення та зміст вказівок командиру. Оцінка місцевої дії вибуху. Вихідні дані для прогнозування втрат особового складу.

    методичка [38,5 K], добавлен 15.08.2009

  • Фінансування заходів цивільної оборони та витрат, пов'язаних із захистом населення від наслідків надзвичайних ситуацій. Захист і дії людей під час пожежі. Аварії на пожеженебезпечних об’єктах. Види зброї масового ураження. Біологічна зброя, її види.

    контрольная работа [749,7 K], добавлен 24.11.2010

  • Біологічна зброя як спеціальні боєприпаси і бойові прилади для масового ураження. Аерозольний шлях - один з основних способів зараження. Бактерії, віруси, рикетсії, грибки – біологічні засоби ураження. Осередки біологічного і комбінованого ураження.

    реферат [40,1 K], добавлен 11.12.2010

  • Характеристика радіаційної та хімічної обстановки. Особливості основних способів захисту населення від сучасних засобів ураження. Аналіз оцінки радіаційної та хімічної обстановки після ядерного вибуху. Знайомство з засобами колективного захисту населення.

    курсовая работа [494,5 K], добавлен 19.04.2012

  • Уражаючі фактори ядерного вибуху, їх характеристика. Заходи захисту особового складу та військової техніки від їх впливу. Аварії на хімічно небезпечних об`єктах, на ядерних енергетичних установках. Засоби індивідуального захисту шкіри та органів дихання.

    методичка [108,0 K], добавлен 15.08.2009

  • Поняття хімічної зброї і історія її застосування. Шляхи проникнення бойових токсичних хімічних речовин в організм людини. Шкірнонаривні, задушливі, психотропні та подразнюючі отруйні речовини. Основне призначення токсинів. Сильнодіючі ядучі речовини.

    контрольная работа [36,1 K], добавлен 11.12.2010

  • Історичні події, пов'язані з випробуванням ядерної зброї. Елементи ядерних боєприпасів, їх потужність. Види та вражаючі фактори ядерних вибухів. Договір про скорочення і обмеження стратегічних наступальних озброєнь. Отруйні речовини та захист від них.

    презентация [964,0 K], добавлен 20.12.2013

  • З історії створення ядерної зброї. Поражаючи фактори ядерного вибуху, основні параметри ударної хвилі. Розрахунок одиниці надлишкового тиску. Зона поширення проникаючої радіації. Бомбардування Хіросіми й Нагасакі. Характеристика вогнища ядерного ураження.

    реферат [2,9 M], добавлен 10.12.2010

  • Зброя, дія якої заснована на використанні енергії, яка вивільнюється під час ядерних реакцій. Засоби керування ядерними зарядами, засоби їх доставки до цілі. Фактори ураження. Речовини, здатні до розщеплення ядра. Перше випробовування ядерної зброї.

    презентация [1,0 M], добавлен 20.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.