Революция в физике. Луи де Бройль
Обзор кинематики и динамики. Законы Ньютона и динамика материальной точки. Электричество и электромагнитная теория. Атомная структура материи. Теория относительности. Развитие теории Бора. Основные идеи волновой механики. Квантовая механика Гейзенберга.
Рубрика | Физика и энергетика |
Вид | книга |
Язык | русский |
Дата добавления | 06.11.2009 |
Размер файла | 245,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
И наконец, вся эта динамическая картина, которая вначале была введена, все эти точечные электроны, описывающие некоторые траектории, в каждой точке которых они обладают вполне определенными значениями координат и скорости, оказались нужны лишь для вычисления энергии стационарных состояний и соответствующих спектральных термов. Причем только они могут быть сравнены с экспериментальными данными, полученными из спектроскопических измерений и опытов по ударной ионизации.
Не попытаться ли представить себе, что это описание, слишком подробное и искусственное, эти формы орбит и значения координат и скоростей электронов не соответствуют никакой физической реальности и только энергия стационарных состояний, которую в конце концов дает нам вся эта квантовая небесная механика, имеет реальный физический смысл?
Как это часто бывает, сам гениальный создатель квантовой теории атома первый заметил и подчеркнул слабости предложенной им теории. Он первый указал на искусственность планетарной модели, на своеобразие и новизну понятий стационарных состояний и переходов из одного состояния в другое и на невозможность последовательного введения этих понятий в обычных рамках пространства и времени и, наконец, на необходимость поисков новых путей, кардинально отличных от прежних. Его принцип соответствия указывал на одно из таких новых направлений. А несколько лет спустя один из учеников Бора, Вернер Гейзенберг, следуя идеям своего учителя, создал новую замечательную теорию квантов - квантовую механику.
Глава VII. Принцип соответствия
1. Трудность согласования квантовой теории и теории излучения
Электромагнитная теория, дополненная теорией электронов Лоренца, дает совершенно ясную и точную картину излучения, испускаемого системой движущихся зарядов. Если заданы структура и закон движения системы электрических зарядов, то можно точно вычислить частоты, интенсивности и поляризацию излучения. Для этого поступают следующим образом. Во-первых, в прямоугольной системе координат вычисляют компоненты вектора электрического момента системы, который в каждый момент времени определяется положением всех зарядов системы. Эти компоненты зависят от времени и по общим математическим теоремам о разложении в ряд или интеграл Фурье могут быть представлены в виде суммы (конечной или бесконечной), каждый член которой гармонически зависит от времени. Согласно электромагнитной теории система будет испускать излучение со всеми теми частотами, которые фигурируют в этом разложении Фурье. Кроме того, излучение одной из этих частот с электрическим вектором, параллельным одной из координатных осей, имеет интенсивность, которая определяется коэффициентом, соответствующим данной частоте в разложении Фурье, той компоненты электрического момента, которая параллельна рассматриваемой оси.
Этого достаточно, чтобы определить частоту, интенсивность и поляризацию излучения, испускаемого рассматриваемой системой.
Если электромагнитная теория Лоренца действительно применима к элементарным частицам электричества, то она должна позволить однозначно определить излучение, испускаемое атомом Резерфорда - Бора. Но, как мы уже видели, эта теория приводит к совершенно неправильным выводам. Действительно, поскольку атом должен все время терять энергию на излучение, электроны очень быстро упадут на ядро, а частота излучения будет непрерывно изменяться. Но тогда атом был бы нестабильным, и спектральные линии строго определенной частоты не могли бы существовать - абсурдный вывод.
Чтобы обойти эту основную трудность, Бор сделал предположение, что в стационарных состояниях атом не излучает. Это равносильно утверждению, что электромагнитную теорию излучения нельзя применять к электронам, движущимся по стабильным орбитам.
Порвав таким образом с электромагнитной теорией, квантовая теория атома оказалась совершенно не в состоянии объяснить свойства спектров излучения. Мы видели, каким образом Бору с помощью допущения, что каждый переход между квантовыми состояниями сопровождается испусканием кванта энергии излучения, удалось решить вопрос о частотах. Но это правило частот далеко не полностью описывает испускаемое излучение, оно ничего не говорит об интенсивности и поляризации. В 1916г. Бор сумел отчасти восполнить этот недостаток, следуя очень странным и даже несколько непоследовательным путем. Этот путь состоял по существу в следующем: несмотря на неприменимость электромагнитной теории к внутриатомным явлениям, надо попытаться тем не менее установить определенное соответствие между квантовыми явлениями и формулами электродинамики с тем, чтобы понять, почему классическая электромагнитная теория дает прекрасное описание явлений большого масштаба. Таким образом, Бору удалось сформулировать удивительный принцип соответствия, сыгравший важную и благотворную роль в развитии квантовой теории.
Прежде чем перейти к рассмотрению принципа соответствия, мы должны строго очертить рамки той сложной задачи, решение которой пытался получить Бор. Необходимо ясно понимать, насколько различны представления о природе излучения классической теории, с одной стороны, и квантовой теории, с другой. Согласно классической теории движущийся в атоме электрон излучает целый набор частот. Классическое излучение, таким образом, происходит непрерывно и одновременно испускается свет разных частот. В квантовой теории, наоборот, атомный электрон, находящийся на стационарной орбите, не излучает. Когда же он перескакивает из одного состояния в другое, он испускает единственный квант монохроматического излучения: различные монохроматические излучения, испущенные группой атомов одного сорта (например, различные спектральные линии, испущенные одним элементом в газообразном состоянии), соответствуют, таким образом, переходам, которые происходят в разных атомах. Иными словами согласно квантовой теории, излучение спектральных линий какого-либо элемента есть процесс дискретный, происходящий в виде отдельных элементарных актов.
Пожалуй, трудно найти два других столь отличающихся друг от друга представления, как классическое и квантовое. Поэтому прежде всего следует спросить, можно ли вообще построить между ними какое-нибудь связующее звено.
Если мы подумаем, как установить соответствие между классической картиной спектрального излучения и столь не похожей на нее картиной, вытекающей из квантовых представлений, мы сразу же заметим, что это соответствие, если оно только возможно, может быть лишь статистическим. Действительно, соответствие с классической картиной нельзя, очевидно, установить иначе, как рассматривая одновременное испускание всех спектральных линий. Между тем с квантовой точки зрения испускание каждого кванта монохроматического излучения есть индивидуальный акт, и, чтобы получить одновременное испускание всех спектральных линий, нам придется рассмотреть ансамбль очень большого числа атомов одинаковой природы, ансамбль, в котором постоянно осуществляются индивидуальные переходы всех видов, приводящие к испусканию различных спектральных линий рассматриваемого элемента. Необходимое понятие об интенсивности различных линий можно также ввести в квантовую теорию, лишь рассматривая его статистически.
Квантовый атом, в котором происходит переход, испускает только один квант, единицу монохроматического излучения. Для такого индивидуального акта бессмысленно говорить об интенсивности излучения. Чтобы определить интенсивность, необходимо снова рассмотреть ансамбль, состоящий из большого числа одинаковых атомов. В таком ансамбле в секунду происходит большое число переходов всех видов. Рассматривая все переходы определенного вида и все кванты излучения одной и той же частоты, испускаемые при этих переходах, можно определить статистическое значение интенсивности как среднюю плотность этих квантов в пространстве. Эту интенсивность можно уже сравнивать с интенсивностью, вычисленной по классической теории.
Читатель, несомненно, начинает догадываться, как можно было бы установить требуемое соответствие. Рассмотрим, с одной стороны, ансамбль фиктивных атомов, подчиняющихся законам классической электромагнитной теории, а с другой - ансамбль реальных квантовых атомов. Попытаемся установить соотношение между частотами, интенсивностями и поляризацией излучения, испущенного каждым из этих двух ансамблей, таким образом, чтобы расчет спектра излучения первой системы хорошо известным методом классической электродинамики дал некоторые сведения об излучении второй системы, т.е. об излучении реальных атомов. A priori ясно, что найти такое соотношение, конечно, нелегко. Однако необычайно проницательный ум Бора помог ему отыскать в этой труднейшей задаче, если не окончательное и вполне определенное, то по крайней мере предварительное решение, которое оказалось чрезвычайно полезным и полным глубокого физического содержания.
2. Принцип соответствия Бора
Сравним набор большого числа фиктивных атомов, которые подчиняются классическим законам, с набором такого же числа реальных квантованных атомов. Если нам известно, как движутся электроны в атомах первого типа, то мы знаем, как вычислить частоты, интенсивности и поляризацию испускаемого излучения. Теперь, воспользовавшись этими результатами, попытаемся выяснить, каковы частоты, интенсивности и поляризация излучения, испускаемого реальными атомами. Если бы мы ничего не знали об этих последних, то не существовало бы никаких средств решения этой задачи. К счастью, нам известны значения частот, излучаемых квантованными атомами. Они даются правилом Бора.
Таким образом, первое, что приходит в голову - это сравнить боровские частоты с теми, которые испускали бы фиктивные атомы согласно классической теории. Если такое сравнение проделать, то оказывается, что в общем случае между этими двумя категориями частот не существует простого соотношения. Других же путей для дальнейшего продвижения в нужном направлении мы не видим.
Именно здесь и проявилась изобретательность Бора. Он заметил, что электромагнитная теория всегда - очень хорошее приближение для описания явлений макроскопического масштаба. С квантовой же точки зрения макроскопические явления это те, в которых играют роль большие квантовые числа. Поэтому кажется вероятным, что результаты квантовой теории должны асимптотически стремиться к классическим в области больших квантовых чисел. В этой области и следует искать согласования двух рассматриваемых теорий. А так как мы знаем, как вычислять и классические, и квантовые частоты, то нужно прежде всего выяснить, совпадают ли эти частоты для случая стационарных состояний, отвечающих большим квантовым числам.
Рассмотрим теперь одну из внешних электронных траекторий квантового атома, соответствующую большому квантовому числу. Одновременно рассмотрим такую же траекторию электрона в фиктивном классическом атоме. В классическом атоме электрон непрерывно испускает целый набор частот, кратных определенным основным частотам, которые определяются движением электрона. В квантовом атоме электрон в стационарном состоянии не излучает, но он может совершать переходы, при которых произойдет излучение с частотами, определенными правилом Бора.
Оказывается, что каждой частоте, фигурирующей в классической теории фиктивного атома, соответствует определенный переход квантового атома, который приводит к испусканию излучения той же частоты. Таким образом, в области больших квантовых чисел существует хорошее согласие между частотами излучения, испускаемого по классическим законам, и частотами, которые может излучать в процессе перехода квантовый электрон. Но в то время как классический атом испускает все частоты, о которых идет речь, непрерывно и одновременно, квантовый атом может испускать при каждом отдельном акте излучения лишь одну из них. Правда, это глубокое различие механизмов испускания не мешает совпадению результатов: два мысленно сравниваемых ансамбля атомов будут испускать (в области больших квантовых чисел) одинаковые спектральные линии.
Подтвердив таким образом одинаковость предсказаний классической и квантовой теории в отношении частот при больших значениях квантовых чисел, Бор допустил, что предсказания классической теории в отношении интенсивностей и поляризации излучения ансамбля фиктивных атомов, по крайней мере в этой области, будут справедливы для ансамбля реальных атомов. В случае реальных атомов испускание спектральных линий происходит при отдельных переходах между квантованными состояниями. Интенсивность спектральной линии будет при этом зависеть от среднего числа атомов ансамбля, совершающих в единицу времени соответствующий переход, т.е. от вероятности того, что каждый квантовый атом совершит в единицу времени упомянутый переход. Если предположить, следуя Бору, интенсивность данной спектральной линии, испущенной вторым ансамблем, равной вычисленной классически интенсивности той же спектральной линии для первого ансамбля, то это позволит нам оценить с помощью формул электродинамики вероятность данного квантового перехода.
Таким образом, нам удалось решить, по крайней мере для больших квантовых чисел, проблему вычисления интенсивности спектральных линий. Единственное, чего недоставало в первоначальной теории Бора, чтобы проделать это вычисление, - метод оценки вероятности квантового перехода. Идея установления соответствия между каждым из этих квантовых переходов и спектральными составляющими классического излучения привела в рассматриваемом асимптотическом случае к простому и строгому правилу оценки вероятностей перехода. Естественно по аналогии предположить поляризацию реально излучаемых спектральных линий совпадающей с поляризацией, полученной на основе классической теории, чтобы полностью решить вопрос и о поляризации.
К сожалению, этот замечательный способ согласования несовместимых на первый взгляд представлений, нужных для дополнения квантовой теории, имел значение только для области больших квантовых чисел. Практически же для теории атома эта область представляет наименьший интерес, так как, за исключением некоторых очень редких случаев высокого возбуждения, электроны в атоме находятся в стационарных состояниях, соответствующих гораздо меньшим значениям квантовых чисел, и обычные спектральные линии испускаются при переходах именно между такими состояниями. Поэтому для атома в начальном состоянии до перехода или конечном состоянии после перехода между реальными квантовыми частотами и частотами, вычисленными по классической теории, нет простого соотношения. Бор тем не менее смело предположил, что для приближенного вычисления реальной интенсивности и поляризации можно пользоваться классическими оценками интенсивностей и поляризаций, экстраполируя на область малых квантовых чисел соответствие, установленное для больших квантовых чисел. Мы не можем здесь детально объяснить, как Бор пытался уточнить вид этого принципа соответствия. Заметим лишь, что он взял некие средние значения классических величин, вычисленных для группы состояний (нестационарных), промежуточных между начальным и конечным стационарными состояниями, соответствующими данной спектральной линии. Хотя сформулированный таким образом принцип соответствия и привел к интересным и, вообще говоря, точным результатам, создается впечатление, что его вывод носит несколько искусственный характер и что в рамках старой квантовой теории невозможно найти его окончательной формулировки. В рамках новой механики было получено выражение, которое оказалось более обоснованным.
Однако важность выдвинутой Бором идеи скоро подтвердилась. Мысль о том, что электромагнитная теория, оказавшаяся, строго говоря, неверной, сохраняет важную направляющую роль и, подобно нити Ариадны, ведет нас к дальнейшему пониманию истинных квантовых законов элементарных частиц, оказалась весьма плодотворной. Она послужила основой формулировки настоящего метода соответствия, и ученики Бора, полагаясь на этот метод и проникнутые, по словам Гейзенберга, духом Копенгагена, сумели продвинуться вперед по этому пути и сделать замечательные открытия.
3. Некоторые приложения принципа соответствия
Принцип соответствия позволяет, по крайней мере приближенно, вычислить интенсивности различных линий нормальных спектров, а также спектров, измененных эффектами Штарка и Зеемана. Результаты таких вычислений оказались в хорошем согласии с экспериментом.
Одним из самых важных применений этих расчетов интенсивности было исследование спектральных линий, которые существуют по правилу частот Бора, однако испускаются с нулевой интенсивностью, т.е. фактически отсутствуют в наблюдаемом спектре. Остановимся на этом подробнее. Если известны все стационарные состояния и, следовательно, все спектральные термы атома, то, попарно комбинируя согласно правилу Бора эти термы, мы получаем все линии спектра, которые может излучать этот атом. Если же сравнить полученные таким образом таблицы линий с таблицами реально наблюдаемых спектров, то оказывается, что не все вычисленные теоретически линии испускаются в действительности. Иными словами, комбинированием спектральных термов можно предсказать все частоты реального спектра. Обратное же утверждение неверно, ибо в реально наблюдаемой картине спектра не всегда представлены все комбинации спектральных термов.
Значит теория должна была бы дать правила отбора, позволяющие сказать, каким из комбинаций спектральных термов соответствуют реально испускаемые линии. Для этого предполагают, что отсутствие в реальных спектрах нескольких линий, предсказанных теорией, объясняется определенными обстоятельствами, при которых эти линии испускаются с нулевой интенсивностью.
Эта точка зрения подтверждается тем, что в исключительных условиях, например под действием особенно мощных электрических полей, атом начинает испускать линии, обычно в спектре отсутствующие. Принцип соответствия показывает, что при нормальных условиях интенсивность спектральных линий, отвечающих определенным переходам, равна нулю. Это означает, что равна нулю вероятность такого перехода в атоме.
Одно из квантовых чисел, определяющих стабильную орбиту электронов, носит название азимутального квантового числа. Принцип соответствия позволяет показать, что при обычных обстоятельствах отличную от нуля вероятность имеют лишь те переходы, в которых это азимутальное квантовое число увеличивается или уменьшается на единицу. Отсюда можно вывести следующее правило отбора: при обычных обстоятельствах все спектральные линии, соответствующие переходам, в которых азимутальное квантовое число не возрастает или не уменьшается на единицу, имеют нулевую интенсивность и фактически в спектре отсутствуют.
Это правило отбора, дополненное еще одним аналогичным правилом, нашло замечательное подтверждение при исследовании всех видимых и рентгеновских спектров и значительно облегчило классификацию еще не исследованных спектров. Принцип соответствия оказал неоценимую услугу, показав теоретическое значение этих правил отбора, которые были предложены еще раньше из совершенно других соображений (Рубинович).
Очень трудно было объяснить в квантовой теории явление дисперсии света. Коэффициент преломления данного вещества зависит от частоты света и очень сильно меняется вблизи некоторых критических частот, в точности равных частотам тех спектральных линий, которые может излучать это вещество. Прежние теории довольно хорошо объяснили эти изменения коэффициента преломления, и, таким образом, они давали явлению дисперсии удовлетворительное объяснение.
В частности, в электронной теории считалось, что атомы содержат электрические заряды, гармонически колеблющиеся вблизи положений равновесия (электронные осцилляторы). При этом частоты колебаний различных атомных осцилляторов должны быть равны частотам испускаемых атомом спектральных линий. Изучив, каким образом монохроматическая волна, падая на атом, вызывает вынужденные колебания его осцилляторов и каким образом эти вынужденные колебания внутриатомных вибраторов влияют на распространение падающей волны, электронная теория позволила вычислить коэффициент преломления как функцию частоты, причем формула дисперсии полностью согласовывалась с результатами эксперимента. В этой формуле критические частоты дисперсии равны собственным частотам электронных осцилляторов, т.е. частотам спектральных линий данного вещества. Этот вывод совпадал с наблюдаемыми фактами. В теории Бора строгое объяснение дисперсии было гораздо более сложным. Действительно, в атоме Бора механические частоты вращения электронов на своих орбитах не находились в простой связи с оптическими частотами спектральных линий, связанных с переходами, а не с состояниями. Таким образом, теперь было трудно понять, как изменение механического состояния атома под действием падающего света может приводить к явлению дисперсии, где принципиальную роль играют не механические частоты атома, а оптические частоты спектральных линий. Бор и его последователи заметили эту трудность. Появление принципа соответствия позволило Бору найти решение на новом пути. Два ученика Бора, Крамерс и Гейзенберг, сумели получить в 1923г. квантовую формулу дисперсии, которая не совпадала полностью с классической формулой, но находилась в полном согласии с результатами экспериментов. Впрочем, соображения Крамерса и Гейзенберга не были абсолютно бесспорными. Однако они постоянно руководствовались и вдохновлялись духом принципа соответствия. Как мы уже сказали, полученная таким образом формула не совсем совпадала с классической формулой: она содержала дополнительные члены. Впоследствии Ладенбург показал экспериментально, что этим членам отвечает определенная физическая реальность.
При исследовании формулы дисперсии Гейзенберг убедился, что полезно исключать из теории Бора все не наблюдаемые непосредственно величины, оставляя в ней по мере возможности лишь наблюдаемые величины, например исключить частоты вращения электронов на орбитах, заменив их спектральными частотами, связанными с квантовыми переходами правилом Бора. Эти соображения, очевидно, повлияли на молодого ученого, направив его мысль по тому пути, который привел его несколько позже к открытию квантовой механики.
Квантовая теория дисперсии - высший успех старой квантовой теории - уже содержала в зародыше принципы, триумф которых мы видим в новых волновой и квантовой механиках.
Глава VIII. Волновая механика
1. Основные идеи волновой механики
В 1923г. стало почти ясно, что теория Бора и старая теория квантов лишь промежуточное звено между классическими представлениями и какими-то очень новыми взглядами, позволяющими глубже проникнуть в исследование квантовых явлений. В старой квантовой теории условия квантования в каком-то смысле чисто внешним образом накладывались на результаты классической теории. Существенно разрывная природа квантования, которая выражалась целыми числами, так называемыми квантовыми числами, находилась в разительном противоречии с непрерывной природой движений, описываемых старой динамикой, как ньютоновой, так и эйнштейновой. Стало совершенно очевидно, что требуется построить новую механику, где квантовые идеи войдут в самую основу построения, а не будут добавлены под конец, как в старой теории квантов.
И любопытно, что эта программа начала осуществляться почти одновременно двумя совершенно различными путями в работах ученых, наклонности которых по существу были совершенно различны. Так были созданы волновая механика, с одной стороны, и квантовая механика, с другой. На первый взгляд казалось, что обе теории совершенно противоположны и по внешнему виду и по применяемому формализму. Эти теории, такие разные по виду, следует на самом деле считать одними и теми же, потому что каждая из них есть лишь перевод другой на иной математический язык. Эти столь различные вначале попытки построить новую механику, по-настоящему насыщенную квантовыми понятиями, в конце концов слились в единое целое, в теорию, которая может быть названа новой квантовой теорией.
Рождение волновой механики (1923г.) немного опередило квантовую механику (1925г.). Кроме того, первая оказалась лучше подготовленной к применению математического аппарата.
Прежде всего хотелось бы обрисовать причины, которые привели в 1923...1924гг. к установлению основных идей волновой механики. Открытый к этому времени эффект Комптона и изучение фотоэффекта рентгеновских лучей лишний раз замечательно подтверждали представление Эйнштейна о световых квантах. Теперь уже едва ли можно было оспаривать дискретную природу излучения и существование фотонов. Следовательно, с еще большей остротой встала грозная дилемма: что такое свет - волны или частицы? Хочешь не хочешь, а для полного описания свойств излучения нужно было применять поочередно картину то волн, то частиц. Соотношение Эйнштейна между частотой и энергией, введенное им на основе его теории фотонов, ясно показало, что этот дуализм излучения неразрывно связан с самим существованием квантов. Тогда возникает законный вопрос, не связан ли этот странный дуализм волн и частиц, примером которого так замечательно и несомненно явился свет, с глубокой и скрытой природой кванта действия? Не следует ли ожидать, что двойственность такого типа обнаружится везде, где только появляется постоянная Планка. Но тогда почти сам собой возникает вопрос: поскольку свойства электрона в стационарном состоянии атома описываются с помощью кванта действия, не можем ли мы предположить, что и электрон так же двойствен, как и свет? На первый взгляд такая идея показалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законом классической динамики (улучшенным в некоторых случаях релятивистскими поправками, которые ввел Эйнштейн). Электрон никогда явно не проявлял волновых свойств, таких, скажем, какие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспериментальных доказательств, могла выглядеть как ненаучная фантазия. И тем не менее, как только возникла идея, что электрон, возможно, обладает такими свойствами, и не только электрон, но и вообще материальные частицы, так в голову начали приходить разные беспокойные соображения.
Мы объяснили в первой главе, каким образом теория Якоби позволяет в классической динамике, сгруппировать возможные траектории материальных точек в заданном поле так, что траектории каждой группы напоминают лучи волн, распространяющихся по законам геометрической оптики. Этот замечательный параллелизм позволил рассматривать принцип наименьшего действия как одну из форм принципа Ферма. Несомненно, это формальное сходство между способами описания динамики и геометрической оптики не ускользнуло от такого блестящего математика, как Гамильтон. Однако, по-видимому, он не пытался придать этому физического смысла. Кроме того, этому препятствовали некоторые обстоятельства. Во-первых, и прежде всего, теория Якоби установила связь между распространением волны и группой возможных траекторий данной частицы. Однако согласно классическим представлениям частица в любом физически осуществляющемся случае описывает совершенно строго определенную траекторию. Группа же возможных траекторий - это абстракция, рассматривать которую математик, конечно, имеет полное право, физик же, казалось бы, не должен придавать ей какой-либо конкретный смысл.
Во-вторых, некоторое расхождение в математической форме, по-видимому, указывало на то, что движение частицы нельзя на деле физически сопоставить с распространением волны. Если приравнять скорость частицы и скорость волны, то мы столкнемся с неприятным фактом: эти две скорости по-разному войдут в формулировку принципов Мопертюи и Ферма соответственно. И хотя эти трудности были хорошо известны, но появление тех новых идей, о которых мы уже говорили, придавало волнующую остроту мысли о том, что в классической аналитической механике формальная аналогия между траекториями частиц и световыми лучами устанавливается через посредство понятия действия, т.е. в точности того самого понятия, которое послужило основой для введения квантов. Не подтверждает ли это в самом деле ту мысль, что квант действия служит соединительным звеном между корпускулярным и волновым представлениями о материальных частицах?
И, наконец, еще одно указание. Если правда, что электрон в макроскопических процессах всегда ведет себя как обычная частица, какие есть основания при описании поведения электрона внутри атома навязывать чуждые ему условия квантования, в которых появляются целые числа? Такой способ ограничения классической динамики, когда она применяется к электрону, ясно говорит о ее неполноте и указывает на то, что свойства электрона не всегда такие, как у простой частицы. Если вдуматься, то привлечение целых чисел для характеристики стационарных состояний атомных электронов оказывается уже весьма симптоматичным.
В самом деле, мы часто встречаемся с целыми числами в тех разделах физики, где рассматриваются волны: в теории упругости, акустике, оптике. Они появляются при описании стоячих волн, интерференции, резонанса. Поэтому вполне допустимо предположить, что интерпретация условий квантования может привести к волновой точке зрения на электроны внутри атома. Таким образом, попытаться приписать электрону или вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми и корпускулярными свойствами, связанными между собой квантом действия, - такая задача представлялась крайне необходимой и плодотворной.
2. Частица и волна, связанная с ней
В чем же в основном заключалась задача? По существу в установлении определенного соответствия между распространением некоей волны и движением частицы, причем величины, описывающие волну, должны быть связаны с динамическими характеристиками частицы соотношением, которое содержит постоянную Планка h. При том желательно установить это соответствие таким образом, чтобы общие правила, выражающие связь волны и частицы, примененные к фотону, давали хорошо известные и проверенные соотношения Эйнштейна между фотоном и световой волной.
Прежде чем приступить к решению этой задачи, было естественно рассмотреть самый простой случай: задачу о равномерном и прямолинейном движении частицы с заданными постоянными значениями энергии и импульса. Из соображений симметрии следовало сопоставить ей волну, распространяющуюся в том же направлении. Теперь оставалось только определить, как связаны между собой частота и длина этой волны с динамическими характеристиками частицы. Аргументы, основанные на общих принципах теории относительности, приводят к следующему результату: частота волны, связанной с движущейся частицей, равна энергии частицы, деленной на постоянную Планка, а длина волны - частному от деления постоянной Планка на импульс частицы. Такая связь между частицей и соответствующей ей волной обладает еще и тем большим преимуществом, что она в точности совпадает с соотношением Эйнштейна для фотона и световой волны. Так был осуществлен знаменитый синтез, ибо оказалось, что для частиц материи и для света установлен один и тот же вид дуализма.
Есть еще один, совершенно независимый путь, который ведет к такому же способу установления связи между частицей и соответствующей ей волной. Мы уже говорили, что теория Якоби очень прозрачно намекает на идею о сходстве траекторий частиц с лучом некоей волны, отождествляя интеграл действия частицы с волновым интегралом Ферма, так что принцип наименьшего действия совпадает с принципом минимального времени. Если выполнить эту операцию, то мы снова тут же находим, что, с одной стороны, энергия пропорциональна частоте, с другой стороны, импульс обратно пропорционален длине волны. Остается только положить коэффициент пропорциональности равным h (что совершенно естественно и согласуется с идеей объединения этих двух сторон дуализма посредством кванта действия), чтобы снова получить соотношение, уже установленное с помощью теории относительности. Эта новая цепочка рассуждений нигде явно не обращается к понятиям теории относительности. Поэтому она может быть целиком развита в рамках ньютоновой динамики.
Из этих основных результатов легко вывести самое важное следствие, касающееся соотношения между скоростью частицы и скоростью связанной с ней волны. В волновой теории наряду с монохроматическими волнами данной частоты рассматриваются также волновые пакеты, представляющие собой совокупность различных монохроматических волн. Среди этих пакетов интересно рассмотреть те, которые образовались наложением монохроматических волн с частотами, лежащими внутри небольшого спектрального интервала вблизи основной частоты. В действительности, монохроматические волны - это абстракция, никогда не реализующаяся на практике. То, что мы называем монохроматическими волнами, всегда представляет собой группу волн, заполняющих небольшой спектральный интервал. Если изучать распространение волнового пакета в таких условиях, когда скорость распространения монохроматических волн есть функция их частоты, то оказывается, что группа волн в целом обладает скоростью, отличной от скорости распространения отдельных волн, составляющих эту группу. Эта групповая скорость определяется средней частотой группы волн и зависит от изменения индивидуальных волновых скоростей с изменением частоты. Указанная зависимость дается формулой Рэлея - знаменитого английского физика, впервые указавшего на это свойство. Можно попытаться применить эту теорию групповой скорости к волне, связанной с частицей, а затем установить соответствие между движущейся прямолинейно и равномерно частицей, обладающей заданной энергией, и распространением в том же направлении группы волн, средняя частота которых равна этой энергии, деленной на h. Применяя формулу Рэлея, мы видим тогда, что скорость волнового пакета равна скорости, которую классическая механика приписывает рассматриваемой частице. Это замечательное совпадение знаменательно, ибо оно означает, что частица в процессе движения остается связанной со своей группой волн. Но сверх того, общая теория колебаний гласит, что групповая скорость есть не что иное, как скорость переноса энергии волнами. Поскольку в нашей дуалистической концепции энергия приписывается частице, то естественно, что групповая скорость связанных с частицей волн должна быть равна скорости частицы.
Эти первые удовлетворительные результаты еще не полны. Они установлены пока только для очень специального случая прямолинейного равномерного движения частицы в отсутствии внешнего поля. Однако не составляет особого труда обобщить эти результаты. Рассмотрим, например, движение частицы в постоянном поле. Теория Якоби предлагает рассматривать траектории частиц как лучи распространения некоторых волн. Отождествляя принцип наименьшего действия и принцип Ферма, снова приходим к тому же соотношению, связывающему частицу с ее волной: энергия (постоянная) частицы равна частоте волны, умноженной на h, а импульс частицы, который меняется в поле сил от точки к точке, равен постоянной h, деленной на длину соответствующей волны, подобным же образом меняющуюся в пространстве. Можно и дальше обобщить эти результаты, рассмотрев случаи, когда поля зависят от времени. В этом случае снова обнаружим, что соотношения между динамическими характеристиками частицы и частотой и длиной связанной с ней волны остаются теми же самыми.
Обобщая таким образом параллелизм между частицей и связанной с ней волной, мы идем по правильному пути. Действительно, если мы рассмотрим, как ведут себя внутри атома Бора волны, связанные с электронами, придем к пониманию внутреннего смысла условий квантования: связанная с электроном волна оказывается резонансной как раз на длине его траектории. Иными словами, волна, соответствующая стационарному состоянию атомного электрона, сама стационарна в смысле теории колебаний.
Чтобы осознать действительную важность этого результата, напомним кратко, что такое стоячая стационарная волна. Если в ограниченной среде могут распространяться волны какого угодно сорта, то в ней устанавливаются стоячие волны, т.е. такие колебания, конфигурация которых в пространстве не меняется с течением времени. Форму этих колебаний можно сразу определить из характера уравнения, описывающего распространение, волны, геометрии границ среды и условий на этих границах. Например, часто бывает, что условия на границах среды требуют, чтобы колебания на этих границах обращались в нуль (колеблющиеся струны с закрепленными концами, радиоантенны, изолированные на обоих концах и т.д.). В этом случае мы должны искать решения волнового уравнения, периодические во времени и обращающиеся в нуль на границах среды; их амплитуды везде должны быть конечными, однозначно определенными и непрерывными внутри среды. Нахождение этого решения представляет собой математическую задачу о собственных значениях уравнения в частных производных для определенной области пространства и определенных граничных условий. Всем физикам известно много простых примеров такого рода решений. Это, например, упругие стоячие волны, возникающие в колеблющейся струне с закрепленными концами, частота которых кратна основной частоте, или стоячие электромагнитные волны в антенне, изолированной на одном конце с заземленным другим; стоячие волны, длины которых равны учетверенной длине антенны, деленной на последовательные нечетные целые числа.
Применение только что рассмотренной теории колебаний к атому требует, чтобы мы считали стационарные боровские состояния соответствующими стационарным волнам, связанным с атомными электронами.
Несомненно, что такая интерпретация проливает свет на истинный смысл условий квантования и делает весьма вероятным уточнение основных идей, которые мы обрисовали выше, и того пути, по которому они привели нас к взаимосвязи волн и частиц. Однако для лучшего понимания материала последующих глав необходимо особо подчеркнуть две трудности.
Первая возникает, когда мы хотим убедиться в стационарном характере волн, связанных со стационарным состоянием атома, и пользуемся при этом формулой, сопоставляющей движение частицы распространению волны в смысле геометрической оптики. По существу, переводя на квантовый язык идеи, хорошо известные в аналитической механике, мы устанавливаем соответствие между траекториями частицы, какими их представляем себе классически, и лучами, по которым распространяются волны. Мы уже отмечали, что геометрическая оптика с точки зрения волновых представлений - лишь первое приближение, справедливое в том случае, когда волны распространяются свободно, не встречая никаких препятствий, и когда, кроме того, скорость распространения не меняется слишком быстро от точки к точке. Теперь уже легко видеть, что второе условие для волн, связанных с электроном внутри атома, конечно, не выполняется. Следовательно, путь, каким мы пришли к стационарному характеру волны, отвечающей стационарному состоянию атома, нельзя признать строгим.
Избежать этого можно, лишь получив уравнение распространения волны, связанной с электроном, и решив задачу о собственных значениях для волн внутри атома, которая при этом возникает.
Однако необходимо особо подчеркнуть главную идею, содержащуюся в предыдущем рассуждении. Эта важная идея заключается в следующем: так как геометрическая оптика есть только приближение, верное в определенных условиях, и соответствие установлено между классической динамикой и распространением волн по законам геометрической оптики, то вполне возможно, что классическая динамика тоже лишь приближение, имеющее те же пределы применимости, что и геометрическая оптика, перефразировкой которой она, в известном смысле, является.
Во всех случаях, когда волна, связанная с частицей, распространяется не по законам геометрической оптики (а мы уже видели, что это бывает как раз в случае волн, связанных с электронами в квантованных атомных системах), динамическое поведение частицы нельзя описывать, исходя из понятий и законов классической механики. Именно поэтому механику Ньютона и даже механику Эйнштейна нужно впредь называть старой механикой, и необходимо создать новую, в рамках которой эта старая будет первым приближением, справедливым в определенных условиях. Короче говоря, возникла необходимость, как мы писали в те годы, создать новую механику волнового характера, которая будет относиться к старой механике, как волновая оптика к геометрической оптике. Точно и тщательно эта идея была осуществлена в бессмертной работе Шредингера.
В чем же заключается вторая трудность? Прежде чем перейти к существу дела, рассмотрим в качестве простого примера систему, в которой возникают стационарные волны, - струну с закрепленными концами. В такой струне может возбуждаться бесконечное число стоячих волн. Случай, когда струна несет только одно стационарное колебание, т.е. когда она движется строго по синусоиде, исключительный. Обычно струна после нескольких начальных колебаний начинает двигаться по очень сложному закону за исключением ее концов, которые, естественно, не двигаются вообще. Однако математическая теория рядов Фурье гласит, что движение струны, каким бы сложным оно ни было, может быть представлено в виде суммы стационарных колебаний. Математически этот результат выражают следующим образом: синусоидальные функции, описывающие отдельные стационарные волны, образуют полную систему ортогональных функций. Этот результат можно обобщить на случай систем более сложных, чем струна с закрепленными концами. Можно показать, что если в какой-либо области пространства возникают стационарные колебания, то, какова бы ни была их форма, ее можно представить в виде суперпозиции некоторого числа (конечного или бесконечного) стационарных колебаний.
Применение этих общих идей к квантованным атомным системам сразу же приводит к упомянутой трудности. По первоначальным представлениям Бора атом всегда находится в том или ином стационарном состоянии. При этом предполагается дискретность, как раз и означающая квантование. Такой взгляд ни в чем не противоречит классической картине состояния атома. Однако если предположить, что стационарное состояние соответствует стационарным колебаниям, то общая теория, которую мы только что бегло описали, приводит к такому выводу: состояние атома в данный момент времени может свестись к единственному стационарному состоянию только в исключительных случаях. В общем же случае оно представляет собой наложение определенного числа стационарных состояний. Можно сказать, что с точки зрения классических представлений такое утверждение лишено всякого смысла, ибо невозможно себе представить, что атом может в один и тот же момент времени находиться в нескольких состояниях. Эта трудность показывает, что развитие новой механики претендует на глубокую перестройку основных понятий классической физики, перестройку, необходимость которой, как мы уже говорили, в зародыше содержится уже в самом существовании кванта действия. И только вероятностная интерпретация новой механики позволит нам скоро придать суперпозиции нескольких состояний физический смысл.
3. Работы Шредингера
Эрвину Шредингеру в его великолепной статье, увидевшей свет в 1926г., выпала честь первому написать в явном виде волновое уравнение волновой механики и вывести из него строгий метод решения квантовых задач. Чтобы получить уравнение для волн, связанных с частицей, можно исходить из идеи о том, что с точки зрения новой теории старая механика эквивалентна приближению геометрической оптики. В теории Якоби траектории частиц рассматриваются как световые лучи, которые соответствуют поверхности, определяемой полным интегралом уравнения первого порядка второй степени в частных производных, названного уравнением Якоби. Мы уже отмечали (см. гл.II п.2), что уравнение Якоби по форме совершенно аналогично основному уравнению геометрической оптики и что именно это обстоятельство - причина аналогии между теорией Якоби и теорией распространения волн в ее геометрическом приближении. Поэтому волновое уравнение волновой механики нужно записать таким образом, чтобы соответствующее уравнение геометрической оптики, справедливое в условиях, которые мы уже уточнили, совпадало с уравнением Якоби. Чтобы получить уравнение распространения, удовлетворяющее этому условию, Шредингер проделал следующее: прежде всего он установил соотношение, которое для данной задачи в классической механике давало бы энергию как функцию координат частицы и компонент ее импульса. Далее в этом выражении, которое носит в механике название гамильтониана, каждая компонента импульса в декартовой системе координат заменялась символом производной по соответствующей координате, умноженной на константу, пропорциональную постоянной Планка. Таким образом, гамильтониан был превращен в некий оператор, оператор Гамильтона. Теперь достаточно было применить этот оператор к волновой функции системы (которая обычно обозначается греческой буквой Ш) и приравнять полученный результат производной волновой функции по времени, умноженной на упомянутую константу.
Полученное таким образом уравнение можно принять в качестве волнового уравнения частицы, ибо в приближении геометрической оптики оно сводится к уравнению Якоби, которое можно написать для рассматриваемой задачи в классической механике.
Здесь следует сделать несколько замечаний по поводу полученного таким способом уравнения распространения связанных с частицей волн. Во-первых, это уравнение определяет волновую функцию как функцию скалярную, а не векторную. Это приводит к существенному различию между волной, связанной с частицей, и световой волной. Правда, известно, что волновая теория света также вначале исходила из того, что световые колебания описываются скалярной функцией. Такая точка зрения и сегодня может объяснить многие явления дифракции и интерференции. И только лишь при рассмотрении поляризации нужно учитывать векторный характер волновой функции. Итак, можно предположить, что в один прекрасный день скалярная волновая функция будет заменена волновой функцией нескольких компонент при соответствующем обобщении теории. Ниже мы покажем, что это предсказание подтвердилось рождением теории электрона Дирака. Как мы увидим, эта теория не одинакова для случаев электрона и фотона.
Следует сделать еще одно замечание по поводу уравнения распространения волн. Дело в том, что оно комплексно, т.е. его коэффициенты не являются действительными числами, в них фигурирует величина (корень из -1). Это обстоятельство, на первый взгляд совершенно случайное, показывает, насколько трудно придать Ш-волне волновой механики такой же физический смысл, какой приписывает волнам классическая физика. Действительно, в классической физике распространение волны связано с переносом свойств колеблющейся среды, существование которой либо совершенно очевидно, либо предполагается (последнее только в случае классической теории света). Они описывают действительные процессы и должны быть выражены действительными функциями. Если же, как это часто делают при описании оптических явлений, иногда полезно заменить указанные действительные функции комплексными величинами, действительной частью которых они являются, то это только вычислительный прием, без которого всегда можно обойтись.
В волновой механике все наоборот. Из-за мнимых коэффициентов в самом волновом уравнении комплексный характер Ш-функции, по-видимому, является существенным. Он приводит к тому, что все попытки рассматривать волны волновой механики как физическую реальность, соответствующую колебаниям какой-то среды, оказываются несостоятельными. В ходе развития волновой механики функцию Ш стали рассматривать как некую вспомогательную величину, значение которой позволяет вычислить другую величину. Эта последняя уже действительна, она имеет физический смысл, причем, как правило, статистического характера. Мы еще должны будем вернуться к этому пункту. Здесь же уместно было просто отметить, почему волновое уравнение волновой механики уже по своей форме вынуждает нас отказаться от идеи дать этим волнам непосредственное физическое толкование.
Мы объяснили, как Шредингер добился успеха в выводе для самого общего случая уравнения распространения связанной с частицей Ш-волны. Однако при написании этого уравнения он исходил из формул ньютоновой механики. Поэтому его уравнение распространения не удовлетворяет требованиям теории относительности и естественно ожидать, что оно справедливо лишь для частиц, обладающих очень малой скоростью, т.е. для волн не очень большой частоты. Теперь встал вопрос о том, чтобы найти уравнение распространения, имеющее релятивистский характер и содержащее уравнение Шредингера как первое приближение для низких частот. Уравнение такого типа, которое казалось естественным с точки зрения здравого смысла, было предложено почти одновременно несколькими учеными. Однако это релятивистское уравнение, будучи уравнением второго порядка по времени, приводило к ряду трудностей. Правильное релятивистское обобщение уравнения Шредингера было получено Дираком совсем другим путем.
Шредингер предложил также волновое уравнение (нерелятивистское), которое описывало систему, ансамбль взаимодействующих между собой частиц. Однако поскольку мы ввели новые понятия, требующие специального разбора, отложим изложение волновой механики систем частиц до главы XII.
Вооружившись своим волновым уравнением, Шредингер приступил к строгому решению задачи определения стационарных состояний квантовой системы, предположив в соответствии с приближенной теорией, что эти стационарные состояния соответствуют связанным с частицами стационарным волнам. Рассмотрим в качестве квантовой системы атом водорода. Мы знаем уравнение распространения волн, соответствующих этой системе. Естественно предположить, что, так как система ограничена некоторой областью пространства, Ш-функция при удалении от центра системы быстро стремится к нулю. Если мы также предположим, как это обычно делают в математической физике, что Ш-функция должна быть везде однозначна и непрерывна, то нахождение стационарных состояний сводится к отысканию монохроматических решений уравнения распространения, конечных и однозначных во всем пространстве и обращающихся в нуль на бесконечности. Шредингер, использовав известные методы анализа, блестяще решил эту задачу для нескольких типов квантовых систем. Он обнаружил, что монохроматические решения, удовлетворяющие наложенным условиям, существуют лишь для некоторых определенных значений частоты. Эти значения являются собственными значениями волнового уравнения в частных производных данной задачи с граничным условием обращения Ш в нуль на бесконечности. Собственной частоте системы в соответствии с общим соотношением между свойствами волны и характеристиками частицы сопоставляется квантованное значение энергии частицы, которое получается умножением частоты на h. Таким образом, расчеты Шредингера позволили получить квантованные значения энергии и, следовательно, значения спектральных термов. В большинстве случаев точно такой же результат был получен в старой квантовой теории. Примером может служить, скажем, атом водорода, для которого были получены в точности боровские результаты. Однако в некоторых важных случаях полученные новым методом результаты отличались от выводов старой квантовой теории, причем новые решения лучше согласовались с экспериментом, чем старые. Самым замечательным примером этого оказался линейный осциллятор. Напомним, что квантование линейного осциллятора, с которым столкнулся в своей теории излучения Планк, послужило отправной точкой всего развития квантовой теории. Старый метод квантования предполагал, что квантованные значения энергии линейного осциллятора являются целыми кратными энергии кванта, полученной умножением собственной частоты механических колебаний осциллятора на постоянную Планка h. Однако физические задачи, в которых фигурировал квантовый осциллятор (например, полосатый спектр двухатомной молекулы), по-видимому, указывали, что квантованные значения энергии осциллятора должны быть равны произведениям не целых значений кванта энергии, а полу целых, т.е. квант энергии умножается на 1/2, 3/2, 5/2... (2n + 1)/2. Новый метод квантования, отличаясь в этом пункте от старой квантовой теории, точно предсказывает именно такое квантование полу целыми долями. Итак, Шредингер вновь получил правильные результаты старой теории и уточнил другие результаты. Успех был полным.
Подобные документы
- История возникновения и формирования квантовой механики и квантово-механической теории твердого тела
Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.
доклад [473,4 K], добавлен 24.09.2019 "Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.
реферат [90,7 K], добавлен 21.11.2011Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.
реферат [44,0 K], добавлен 17.02.2010Квантовая теория в ряду других современных физических теорий. Споры и дискуссии о реальности квантово-механических состояний. Необычайность свойств квантовой механики. Основные трактовки и интерпретации квантово-механической теории различными учеными.
реферат [41,8 K], добавлен 28.03.2011Законы квантовой механики, сущность и границы её применимости. Эффект Комптона и свойства света в период формирования новой физики. Волновая теория Бройля и ряд его крупнейших технических достижений. Теория теплового излучения и электромагнетизм.
реферат [36,5 K], добавлен 26.02.2012История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.
реферат [37,0 K], добавлен 25.10.2010Механика и элементы специальной теории относительности. Кинематика и динамика поступательного и вращательного движений материальной точки. Работа и механическая энергия, законы сохранения в механике. Молекулярная физика и термодинамика, теплоемкость.
курс лекций [692,1 K], добавлен 23.09.2009Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.
презентация [39,7 M], добавлен 13.02.2016Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.
реферат [16,0 K], добавлен 29.03.2003Электромагнитная теория механики, связь материи с зарядом, массы с энергией, квантовая природа элементарных явлений и их революционное влияние на все основные понятия физики. Противоречия между картиной движущегося электрона и квантовыми постулатами.
реферат [31,4 K], добавлен 20.09.2009