Революция в физике. Луи де Бройль

Обзор кинематики и динамики. Законы Ньютона и динамика материальной точки. Электричество и электромагнитная теория. Атомная структура материи. Теория относительности. Развитие теории Бора. Основные идеи волновой механики. Квантовая механика Гейзенберга.

Рубрика Физика и энергетика
Вид книга
Язык русский
Дата добавления 06.11.2009
Размер файла 245,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В связи с этим интересно отметить, что с точки зрения классической механики материальной точки связь частицы с волной, следующая из теории Якоби, не имеет физического смысла. Действительно, в рамках классических представлений материальная точка, имеющая в каждый момент времени вполне определенные положение и скорость, описывает в поле сил единственную, вполне определенную траекторию, вид которой определяется начальными условиями. Поэтому бесконечная совокупность траекторий, классифицированная, согласно теории Якоби, в семейства, представляет собой лишь возможные траектории, и только одна из них действительно реализуется в каждом конкретном случае. Эти семейства имеют скорее абстрактно математическое значение, поскольку они отображают совокупность возможностей, из которых осуществляется одна и только одна. Тем не менее им все же можно придать конкретный смысл, если представить себе, что имеется бесконечное число одинаковых и не взаимодействующих друг с другом, материальных точек. Тогда можно предположить, что различные материальные точки описывают различные траектории семейств, которые приобретают, таким образом, конкретное содержание. Следовательно, теорию Якоби можно рассматривать в некотором смысле как статистическую теорию, так как она одновременно рассматривает ансамбли из различных траекторий. В этом можно увидеть в зародыше вероятностное и статистическое толкование волновой механики.

Выше мы рассмотрели случай движения одной материальной точки в заданном силовом поле. При обобщении теории Якоби на случай системы взаимодействующих друг с другом материальных точек возникает одна особенность, о которой мы еще будет говорить, когда перейдем к волновой механике систем. Если система состоит из N материальных точек, то необходимо ввести в рассмотрение некоторое абстрактное пространство 3N координат N частиц, образующих систему, так называемое конфигурационное пространство. Действительно, если написать уравнение Якоби для системы, исходя из гамильтонова выражения для ее энергии, то мы получим дифференциальное уравнение в частных производных первого порядка и второй степени. Это уравнение, содержит 3N независимых переменных, являющихся координатами N материальных точек системы, и определяет некоторые семейства поверхностей в конфигурационном пространстве (а не в обычном трехмерном пространстве). Очевидно, что каждая конфигурация определяется заданием 3N координат точек, входящих в систему, и может быть геометрически представлена в виде точки в конфигурационном пространстве - с этим и связано такое название пространства. Последовательности же различных состояний системы изображается кривой в конфигурационном пространстве - траекторией, изображающей точки системы. Эти условные траектории системы зависят от 6N параметров - 6 начальных условий для каждой из N точек. Теория Якоби так же, как и в случае одной материальной точки, позволяет разделить это 6N-мерное множество траекторий на ряд семейств. Каждое из этих семейств определяется 3N-параметрами и образует семейство кривых, ортогональных семейству поверхностей, которые в свою очередь являются интегральными поверхностями уравнения Якоби. Именно этот случай 3N-мерного конфигурационного пространства находит аналогию в распространении волн. Можно предвидеть, что при трактовке вопросов динамики систем волновая механика, согласно теории Якоби, должна следовать этому пути и рассматривать распространение волн в конфигурационном пространстве. Это приводит к тому, что волны в волновой механике не только имеют вероятностный и статистический смысл, но и носят также отвлеченный и символический характер, сильно отличаясь от тех волн, с которыми имела дело классическая физика.

5. Принцип наименьшего действия

Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех движений материальной точки, которые она может совершить между теми же начальной и конечной точками за тот же самый промежуток времени t2...t1 в действительности осуществляется то движение, для которого интеграл по времени от t1 до t2 от разности кинетической и потенциальной энергий этой материальной точки принимает экстремальное, т.е. минимальное или максимальное значение. Пользуясь известными методами вариационного исчисления, легко показать, что из этого принципа вытекают классические уравнения движения.

Особенно простую форму принимает принцип стационарного действия в частном, но важном случае статических силовых полей. В этом случае он совпадает с принципом наименьшего действия Мопертюи, согласно которому для действительного пути материальной точки в консервативном (т.е. не зависящем явно от времени) силовом поле интеграл от импульса частицы, взятый по отрезку траектории между какими-либо двумя ее точками A и B, минимален по сравнению с такими же интегралами, взятыми по отрезкам других кривых, проведенных через точки A и B. Принцип Мопертюи может быть выведен из принципа Гамильтона. Его можно связать также с теорией Якоби.

Мы видели, что в случае статических полей траектории в этой теории можно рассматривать как кривые, ортогональные некоторому семейству поверхностей. Простые рассуждения показывают, что эти траектории могут быть получены из условия минимальности интеграла, совпадающего с действием по Мопертюи, т.е. криволинейного интеграла от количества движения вдоль траектории. Вывод этот весьма интересен, так как он указывает на связь, существующую между принципом наименьшего действия и принципом минимального времени Ферма.

Действительно, мы уже говорили о том, что траектории в теории Якоби можно рассматривать как аналог световых лучей в геометрической оптике. Анализ же доводов, приводимых в доказательство принципа наименьшего действия, показывает, что они полностью идентичны тем, которые в геометрической оптике приводятся для обоснования принципа минимального времени, или принципа Ферма. Вот его формулировка: в преломляющей среде, свойства которой не зависят от времени, световой луч, проходящий через точки A и B, выбирает себе такой путь, чтобы время, необходимое ему для прохождения от точки A до точки B, было минимальным, т.е. следует по кривой, которая обращает в минимум криволинейный интеграл от величины обратной фазовой скорости распространения света. Теперь сходство между принципом Мопертюи и принципом Ферма очевидно.

Однако между ними существует и важное различие. В принципе наименьшего действия подынтегральное выражение совпадает с импульсом частицы и, таким образом, интеграл имеет размерность действия (произведения энергии на время или импульса на путь). В принципе же Ферма подынтегральное выражение, наоборот, обратно пропорционально скорости распространения. Именно по этой причине аналогия между этими двумя принципами в течение длительного времени рассматривалась как чисто формальная, не имеющая под собой никакого глубокого физического обоснования. Более того, казалось даже, что с физической точки зрения между ними имеется существенное различие, поскольку импульс прямо пропорционален скорости и, следовательно, подынтегральное выражение в принципе Мопертюи содержит скорость в числителе, тогда как в принципе Ферма она в знаменателе. Это обстоятельство сыграло важную роль в эпоху, когда волновая теория света, вызванная к жизни гением Френеля, завершала свою победу над теорией истечения. Полагали как раз, что, исходя из различной зависимости от скорости подынтегральных выражений, входящих в интегралы Мопертюи и Ферма, можно сделать вывод, что известные эксперименты Фуко и Физо, согласно которым скорость распространения света в воде меньше скорости света в пустоте, дают неопровержимые и решающие аргументы в пользу волновой теории. Однако, опираясь на это различие и объясняя опыты Фуко и Физо как подтверждение факта существования световых волн, предполагали, что вполне законно отождествлять скорость материальной точки, фигурирующую в принципе Мопертюи, со скоростью распространения волн, входящей в интеграл Ферма, Волновая механика показала, что всякой движущейся материальной точке соответствует волна, скорость распространенная которой меняется обратно пропорционально скорости частицы. Только волновая механика действительно пролила свет на природу глубокого родства между двумя фундаментальными принципами и вскрыла его физический смысл. Она показала также, что эксперимент Физо не столь решающий, как это считалось раньше. Хотя он и доказывает, что распространение света есть распространение волн и что показатель преломления необходимо определять через скорость распространения, но он совсем не исключает возможности корпускулярной структуры света при условии, конечно, соответствующей связи между волнами и частицами света. Однако это уже относится к кругу вопросов, которые мы будем обсуждать ниже.

Сравнивая движение материальной точки в поле сил, не зависящем от времени, с распространением волн в преломляющих средах, состояние которых также не зависит от времени, мы показали, что между принципами Мопертюи и Ферма существует определенная аналогия. Сравнивая движение материальной точки в переменных во времени силовых полях с распространением волн в преломляющих средах с параметрами, меняющимися во времени, замечаем, что аналогия между принципом наименьшего действия в его общем виде, предложенном Гамильтоном, и принципом Ферма, обобщенном на случай преломляющих сред, состояние которых зависит от времени, сохраняется и в этом, более общем случае. Не будем останавливаться на этом вопросе. Для нас достаточно будет лишь, что эта аналогия между двумя основными принципами механики и геометрической оптики имеет место не только в рассмотренном нами выше, хотя и очень важном, но все же частном случае постоянных полей, но и в более общем случае переменных полей.

Принцип стационарного действия справедлив и для систем материальных точек. Для его формулировки нам удобно вести конфигурационное пространство, соответствующее рассматриваемой системе. В качестве примера ограничимся случаем, когда потенциальная энергия системы не зависит явно от времени. Таков, например, случай изолированной системы, на которую не действуют внешние силы, поскольку потенциальная энергия ее при этом сводится только к энергии взаимодействия и не зависит явно от времени. В этом случае, вводя 3N-мерное конфигурационное пространство и вектор в этом пространстве, 3N компонент которого совпадает с компонентами векторов количеств движения N материальных точек системы, принцип наименьшего действия в форме Мопертюи можно сформулировать следующим образом. Траектория изображающей точки системы, проходящая через две заданные точки A и B в конфигурационном пространстве, делает минимальным криволинейный интеграл от введенного выше 3N-мерного вектора, взятый по отрезку траектории между точками A и B, по сравнению с такими же интегралами, взятыми по отрезкам других кривых в конфигурационном пространстве, проходящих через те же точки A и B. Этот принцип легко получить также из теории Якоби. Аналогия же его с принципом Ферма следует из возможности представления траекторий изображающей точки в конфигурационном пространстве в виде лучей волны, распространяющейся в этом пространстве. Итак, мы снова видим, что для систем материальных точек переход от классической механики к волновой можно осуществить лишь в рамках абстрактного конфигурационного пространства.

Глава II. Классическая физика

1. Дальнейшее развитие механики

В предыдущей главе мы не собирались давать сколько-нибудь полного обзора классической механики. Тем более мы не собираемся излагать в этой главе всю классическую физику. Мы отметим здесь лишь ее основные разделы и сделаем несколько замечаний по поводу каждого из них.

К первому разделу классической физики, развившейся на базе механики, можно отнести гидродинамику, акустику, теорию упругости. Эти области возникли раньше других, поскольку круг явлений, которые они изучают, был наиболее тесно связан с практической жизнью. С теоретической точки зрения они являются непосредственным продолжением механики, из которой они заимствовали свои основные принципы и методы, дополнив их гипотезами, подсказанными опытом. Следует, правда, сказать, что эти теории не предполагают, что твердые тела, жидкости или газы имеют дискретную структуру. Напротив, они исходят из представления о непрерывной структуре материи. При этом считается, что каждый элемент объема этой непрерывной среды взаимодействует со всеми соседними элементами согласно законам механики. Однако ничто не мешает совместить используемые при этом методы с предположением об атомной структуре вещества, если рассматривать элементы объема, хотя и достаточно малые, но все же содержащие в себе чрезвычайно большое число молекул.

Эти разделы классической физики, непосредственно продолжающие механику, хотя и основаны на принципах, вытекающих из законов классической механики, в действительности очень сложны и потребовали для своего развития немалых усилий экспериментаторов и теоретиков.

Физические явления в этих областях далеко не просты и с трудом поддаются изучению. Расчеты здесь часто требуют привлечения сложного математического аппарата. Поэтому хотя эти науки уже давно существуют, они продолжают непрерывно развиваться. Их применяют при изучении широкого круга практических вопросов, и знание этих разделов физики совершенно необходимо инженерам. Применительно к практическим требованиям, когда непосредственные приложения важнее, чем общая теория, пользуются приближенными формами этой теории, такими, как гидравлика и сопротивление материалов.

Здесь мы закончим знакомство с этими дисциплинами. Дальнейшее развитие физики, возможно, приведет к их различным модификациям, однако до сих пор кванты играли тут незначительную роль, и поэтому рассмотрение этих вопросов выходит за рамки книги.

2. Оптика

Если гидродинамика или теория упругости не представляют непосредственного интереса для изучения квантовой теории, то с оптикой дело обстоит совершенно иначе, поскольку ее прогресс тесным образом связан с развитием новейшей физики. Подобно явлениям, происходящим с твердыми и жидкими телами, световые явления также с ранних пор привлекали к себе внимание людей. Но только в XVII в. оптика начала формироваться в настоящую науку. В этот период Декарт сформулировал законы преломления и отражения света и Ферма предложил свой принцип, в котором содержится вся геометрическая оптика. В течение всего этого периода развития оптики понятие световых лучей играло в ней главную роль: изучалось прямолинейное распространение световых лучей в пустоте или в однородных средах, отражение их от зеркальных поверхностей и преломление при переходе из одной среды в другую и, наконец, искривление световых лучей при распространении света в неоднородных преломляющих средах. Тогда же Христиан Гюйгенс предложил другую интерпретацию тех же явлений, основанную на понятиях волны и волновой поверхности. Он показал, кроме того, что его метод также объясняет недавно открытое явление двойного лучепреломления в исландском шпате.

С чисто геометрической точки зрения метод, основанный на понятии световых лучей, и метод, использующий понятие волновых поверхностей, полностью эквивалентны. В рамках геометрической оптики без труда можно перейти от одного метода рассмотрения к другому и убедиться в этой эквивалентности. Лучи представляют собой кривые, ортогональные семейству волновых поверхностей, и принцип Ферма является прямым следствием этого факта.

Однако эти два формально эквивалентных метода приводят к существенно различным взглядам на физическую природу света в зависимости от того, какое из этих понятий - световой луч или волновую поверхность - принять за первичное.

Предположение о том, что понятие светового луча основное, а волновой поверхности - вспомогательное, приводит к выводу о корпускулярной природе света. Согласно этой гипотезе, свет представляет собой совокупность мельчайших частиц, движущихся вдоль определенной траектории - светового луча. Прямолинейность распространения света в однородных средах и явление отражения его от поверхности зеркал находят себе в этой теории наглядное и естественное объяснение. Исходя из этого представления, можно объяснить также, хотя и несколько сложнее, явление преломления светового луча на границе двух сред. С этой точки зрения, именно световые лучи, т.е. траектории световых частиц, имеют физический смысл. Волновые же поверхности - лишь чисто вспомогательное геометрическое понятие, позволяющее объединить лучи в некоторые семейства, подобно тому как в механике интегральные поверхности уравнения Якоби позволяют разбить совокупность различных траекторий частиц на семейства кривых, ортогональных интегральным поверхностям. Можно, однако, пойти по другому пути и считать, что первичным основным понятием является понятие волны и волновой поверхности. Этот путь приводит нас к представлению о волновой природе света. Согласно этой точке зрения, свет представляет собой волны, распространяющиеся в пространстве, лучи же оказываются чисто абстрактным понятием и определяются просто как кривые, ортогональные волновым поверхностям. Тонкий анализ Гюйгенса показал, что волновая теория объясняет явления отражения и преломления. Однако объяснение прямолинейности распространения света в однородных средах, столь очевидное в корпускулярной теории, где оно непосредственно следует из закона инерции, в волновой теории на первый взгляд отнюдь не так просто.

Эти две противоположные точки зрения - корпускулярная концепция, или теория истечения, и волновая концепция - господствовали в XVII и XVIII вв. Первая, поддерживаемая вначале Декартом, нашла себе затем чрезвычайно авторитетного защитника в лице Ньютона. Гениальный создатель небесной механики был остановлен трудностями, которые встали перед волновой теорией (особенно при попытке объяснения прямолинейности распространения света), и решительно высказался в пользу корпускулярной гипотезы. Вслед за Ньютоном в XVIII в. большинство ученых стали склоняться к корпускулярной теории, и волновая гипотеза, столь блестяще развитая в конце предыдущего века Гюйгенсом, сохранила лишь немного приверженцев (Эйлер). Казалось, что победу одержали сторонники теории, основанной на представлении о дискретной природе света.

Однако в начале XIX в. положение полностью изменилось. Причиной этого было открытие явлений интерференции и дифракции. В некоторых частных случаях эти явления были известии еще во времена Ньютона: сначала они были обнаружены Гуком и Гримальди, а затем и самим Ньютоном. В частности, явление, впервые им наблюдавшееся и носящее ныне название колец Ньютона, есть не что иное, как явление интерференции. Со свойственной ему проницательностью Ньютон отлично сознавал, что и в рамках поддерживаемой им корпускулярной теории объяснение этих явлений требует введения некоторых элементов периодичности. Поэтому он вынужден был выдвинуть гипотезу, согласно которой частицы света попеременно испытывают приступы легкого прохождения и легкого отражения. Это предположение, которое могло показаться на первый взгляд весьма странным и искусственным, явилось, тем не менее, первой попыткой объединить представления о корпускулярной и волновой природе света, попыткой, в какой-то степени предвосхитившей пути развития современной науки. Но в XVIII в. всецело господствовали представления о корпускулярной природе света и на явления интерференции не обратили должного внимания. И лишь в конце XVIII и в начале следующего века английский ученый Томас Юнг предпринял серьезное исследование интерференции и дифракции, а гениальный француз Огюстен Френель (1788...1827гг.) дал им полное и окончательное теоретическое объяснение. Опираясь на выдвинутую Гюйгенсом волновую гипотезу, Френель полностью объяснил все известные к тому времени опыты по дифракции и интерференции и показал, и это было весьма существенно, что представления о волновой природе света не противоречат факту прямолинейности распространения света в однородных средах. Критикуемый противниками волновой теории, которые указывали ему на то, что она представляет, на первый взгляд, парадоксальные результаты, Френель провел соответствующие эксперименты, и его предсказания полностью оправдались. С этого момента успех волновой теории был обеспечен, а корпускулярная теория, хотя и поддерживаемая еще некоторыми учеными (например, Био, Лапласом), стала быстро терять своих приверженцев.

Но Френель не ограничился этим. Для объяснения явлений поляризации он выдвинул идею о поперечности световых колебаний, отвечающую на вопрос, почему свойства поляризованного света зависят от угла в плоскости, перпендикулярной направлению распространения. Изучая свойства поперечных колебаний, Френель развил теорию отражения света от поверхности преломляющих тел, вывел законы двойного лучепреломления и разработал теорию распространения света в анизотропных средах. Эти работы - настоящие шедевры теоретической физики. Они вошли без каких-либо существенных изменений во все современные учебники физической оптики. Истощенный постоянным огромным умственным напряжением, Огюстен Френель был сражен болезнью и умер в 1827г. в возрасте 39 лет, но совершенный им поистине великий труд навсегда останется одной из самых прекрасных глав в истории развития физики.

После смерти Френеля волновая природа света становилась все более общепризнанной, и эксперименты Фуко и Физо принесли неоспоримые доказательства этой гипотезы. И только много позже, на рубеже нашего века, физики вновь были вынуждены обратиться к корпускулярным представлениям о природе света, не отвергая, однако, ни одного момента из волновой теории Френеля. Возникла необходимость в своеобразном синтезе или, скорее, последовательном сочетании волновых и корпускулярных представлений. И если Френель дал верную общую волновую интерпретацию известных к его времени или открытых им самим оптических явлений, то физики, принадлежащие к противной школе, по существу тоже не ошибались, предполагая существование дискретного аспекта в природе света. Ньютон и Био не зря подозревали какую-то глубокую аналогию между свойствами световых лучей и траекториями материальных точек в классической механике. И не случайно геометрическая оптика обнаруживает аналогии с динамикой, например принцип Ферма подобен принципу наименьшего действия. Замечательные теории аналитической механики, и в особенности теория Якоби, поясняют истинный смысл законов геометрической оптики, но и волновая оптика в свою очередь указывает путь обобщения классической механики, на котором мы обнаруживаем, что она, как и геометрическая оптика, оказывается лишь приближением, справедливым во многих случаях, но имеющим определенным образом ограниченную область применения.

В дальнейшем мы еще вернемся к этим вопросам. Однако чтобы подготовить почву, может быть полезно уже сейчас указать, каким образом волновая оптика включает в себя геометрическую и как, например, с точки зрения Френеля, можно было бы обосновать принцип Ферма. Распространение волн в волновой теории описывается уравнением в частных производных второго порядка, хорошо известным под названием волнового уравнения. Это уравнение содержит некоторый параметр, равный скорости распространения волны, который в наиболее общем случае неоднородных сред с переменными во времени параметрами будет некоторой определенной функцией пространственных координат и времени.

В важном частном случае неизменных во времени сред скорость распространения не зависит от времени и определяет постоянный в каждой точке пространства показатель преломления. Волновое уравнение при этом допускает решения, гармонически меняющиеся во времени и представляющие собой свет различной частоты, т.е. разных цветов, распространяющийся в рассматриваемой среде. Можно видеть, что если показатель преломления мало меняется на расстоянии порядка длины волны, то изменение фазы волны описывается приближенно некоторым уравнением в частных производных первого порядка и второй степени, которое называется уравнением геометрической оптики и в точности совпадает по форме с уравнением Якоби. Это уравнение для каждой распространяющейся монохроматической волны позволяет найти семейство так называемых волновых поверхностей, на которых фаза волны имеет постоянное назначение. Таким образом, можно найти кривые, ортогональные волновым поверхностям, и определить их как соответствующие световые лучи, распространяющиеся в среде.

Отсюда уже можно вывести принцип Ферма, теорему Малюса, построения Гюйгенса и все другие законы геометрической оптики. Итак, с точки зрения волновой теории геометрическая оптика справедлива во всех случаях, когда оказывается возможным приближенно заменить строгое волновое уравнение уравнением геометрической оптики. Условием этого, как мы видели, оказывается достаточно медленное изменение показателя преломления в пространстве. Однако этого недостаточно. Необходимо, чтобы на пути света не было никаких препятствий, мешающих его свободному распространению и приводящих к явлениям дифракции или интерференции.

Таким образом, с точки зрения волновой теории геометрическая оптика оказывается некоторым приближением, имеющим определенный смысл, но тем не менее всегда ограниченным.

Обратимся теперь к физическому смыслу волновой теории. Световые волны, свободно распространяющиеся в пустоте, вовсе не связаны с перемещением вещества. Что же тогда является носителем этих волн, какова среда, колебания которой представляют световые волны? Такие вопросы встали перед создателями волновой теории. Для ответа им пришлось предположить существование некоей неуловимой всепроникающей субстанции: светового эфира, распространившегося по всей Вселенной, заполнившего пустоту и пропитавшего материальные тела. Свойства этой загадочной среды и характер взаимодействия ее с материальными телами должны были объяснить особенности распространения света в пустоте и в преломляющих средах. Последователи Френеля поставили своей целью разрешить проблему эфира. Они старались уточнить его механическую природу, представить себе его структуру. Результаты этих исследований оказались весьма странными. С одной стороны, эфир, рассматриваемый как упругая среда, в которой могут распространяться только поперечные волны, должен быть во много раз более жестким, чем, скажем, сталь, а с другой стороны, эта жесткая среда, как показывает опыт, не должна оказывать никакого сопротивления движущимся в ней телам и совершенно не влияет на движение планет. Но ни одна теория, предполагающая существование среды с такими парадоксальными свойствами, какой бы совершенной она ни была, не может иметь права на существование, и все больше и больше физиков стало сомневаться в действительном существовании этой среды. Ниже мы увидим, какие изменения претерпела теория эфира сначала после появления электромагнитной теории, а затем после установления принципа относительности.

3. Электричество и электромагнитная теория

Механика и связанные с ней области, а также акустика и оптика возникли очень давно, поскольку они изучают явления, с которыми человек непрерывно сталкивается в своей повседневной жизни. Наука же об электричестве, напротив, появилась сравнительно недавно. Конечно, некоторые факты, как например, электризация тел трением или свойства природных магнитов, были известны уже и раньше. Не могли не обратить на себя внимания и такие величественные и странные явления природы, как грозы.

Однако вряд ли эти факты в достаточной степени исследовались и сопоставлялись до конца XVIII в. и вряд ли кто-либо четко представлял себе в то время, что они станут объектом изучения новой науки, составляющей одну из важнейших областей современной физики. Это стало ясно лишь в конце XVIII и начале XIX в. Интересно отметить, что в то же самое время были открыты явления интерференции и построена волновая теория. Этот замечательный период в истории развития науки, когда возникла волновая оптика и современная теория электричества, был для макроскопической физики тем же, чем были последние 50 лет для атомной физики.

Мы не будем здесь ни следовать в деталях истории развития теории электричества, ни отмечать специально вклады таких ученых, как Вольта, Кулон, Эрстед, Био, Лаплас, Гаусс, Ампер, Фарадей и многих других, живших и работавших в период становления этой новой области науки. Хотя это и было бы очень интересно, но увело бы нас слишком далеко в сторону от задач, которые мы себе поставили. Поэтому ограничимся лишь замечанием, что во второй половине XIX в. законы электрических явлений были уже настолько хорошо известны, что оказалось возможным попытаться перейти к объединению большого числа различных фактов и утверждений и к поискам единой стройной теории. Эту огромную работу проделал Джеймс Клерк Максвелл. Руководствуясь открытиями своих предшественников и своим огромным дарованием, он сумел построить полную теорию электромагнитных явлений, которая носит теперь его имя. Все разнообразие этих явлений, всю совокупность законов, которым они подчиняются, ему удалось свести в одну систему уравнений, которые называют уравнениями Максвелла. Уравнения Максвелла состоят из двух векторных уравнений, эквивалентных шести уравнениям для компонент, и двух скалярных уравнений. Эти уравнения связывают компоненты векторов электрического и магнитного полей и векторов электрической и магнитной индукции между собой и с плотностями электрического заряда и тока. Одно из векторных уравнений выражает закон индукции, открытый Фарадеем. Одно из скалярных уравнений отражает невозможность выделения магнитных зарядов или полюсов одного знака, другое формулирует электростатическую теорему Гаусса. Эти уравнения стали обобщением уже известных законов. Однако второе векторное уравнение содержит существенно новый элемент, внесенный в теорию собственно Максвеллом.

Второе векторное уравнение должно было отразить связь, существующую между магнитным полем и электрическим током, согласно закону Ампера. Согласно этому закону, ротор от вектора напряженности магнитного поля должен быть равен (с точностью до постоянной, зависящей от выбора системы единиц измерений) плотности электрического тока. Но Максвелл заметил, что если определить входящую в это уравнение плотность тока как плотность только тока, связанного с переносом заряда, то это приводит к целому ряду трудностей. Чтобы избежать их, он выдвинул блестящую идею - обобщить выражение для плотности тока, добавив к так называемому току проводимости, обусловленному переносом заряда, слагаемое, пропорциональное скорости изменения во времени вектора электрической индукции. Это слагаемое представляет собой новый вид тока, ток смещения, который в отличие от тока проводимости вовсе не обязательно связан с перемещением электрических зарядов. Так, например, в поляризуемой среде часть тока смещения связана с перемещением электрических зарядов, другая же его часть, отличная от нуля даже в пустоте, если электрическое поле переменно во времени, совершенно не связана с движением зарядов. Благодаря введению токов смещения трудности, о которых мы упоминали, исчезли. Сложный вопрос о замкнутых и незамкнутых токах, занимавший теоретиков того времени, разрешился сам собой, поскольку, если принять во внимание токи смещения, то все эти токи окажутся замкнутыми.

Но самая гениальная идея Максвелла, выдвинутая после написания общих уравнений электромагнитных явлений, состояла в том, что эти уравнения дают возможность рассматривать свет как электромагнитное возмущение. Это в свою очередь позволило объединить две казавшиеся столь различными области физики и рассматривать всю оптику как частный случай электродинамики - один из наиболее замечательных примеров синтеза, который дает нам история развития физики.

Что же помогло Максвеллу выдвинуть эту радикальную идею? Уравнения электродинамики содержат некоторую константу, равную отношению электромагнитной единицы заряда или поля к соответствующей электростатической единице. С помощью несложных преобразований основных уравнений легко показать, что распространение электромагнитного поля в пустоте описывается волновым уравнением, содержащим указанную постоянную в качестве скорости распространения.

Таким образом, если предположим, вслед за Максвеллом, что световые волны представляют собой электромагнитные возмущения, то отсюда следует: скорость распространения света в пустоте, обозначаемая обычно буквой c, должна быть равна по величине отношению, например, единиц заряда в электромагнитной и электростатической системах. И действительно, результаты соответствующих измерений, уже известные к тому времени, говорят о соблюдении этого равенства с точностью до 3...4%. Все же последующие измерения указывают на то, что это равенство, по видимому, выполняется с любой точностью. Этот факт явился блестящим подтверждением выдвинутой Максвеллом гипотезы об электромагнитной природе света.

Согласно теории Максвелла, плоская монохроматическая световая волна, распространяющаяся в пустоте, определяется двумя векторами; вектором электрического и вектором магнитного полей, колеблющимися с частотой волны. Они равны между собой по величине, перпендикулярны друг другу и направлению распространения и колеблются в одной фазе. Все результаты, следующие из теории Френеля, могут быть получены, если заменить колебания эфира электромагнитными колебаниями и повторить прежние рассуждения, но уже на другом языке - языке электромагнитной теории. Эта теория превосходно позволяет обойтись без эфира: для этого достаточно предположить, что свойства пустого пространства определяются в каждой точке заданием двух векторов электрического и магнитного полей. При этом теория принимает довольно абстрактный характер, что, впрочем, обычно для современных физических теорией. Она оказывается в основном математической теорией.

Этот отвлеченный характер электромагнитной теории становится особенно заметным в той форме, которую придал ей несколько позже Герц. И тем не менее многие из физиков того времени все еще испытывали потребность ввести некоторую среду - носитель электромагнитного поля - и рассматривать поле как некоторое состояние возбуждения этой среды. Многие, и в особенности лорд Кельвин, потратили много усилий, пытаясь получить механическое объяснение электромагнитных явлений, сводя их к натяжению или упругим деформациям эфира. Однако эти попытки никогда не приводили к удовлетворительным результатам, и со временем подобные теории эфира себя полностью дискредитировали. Эфир стал рассматриваться теперь как некоторая гипотетическая среда, позволяющая определять лишь системы координат, в которых справедлива обычная форма уравнений Максвелла. Но даже после того, как за эфиром была оставлена столь скромная роль, это понятие все еще приводило к ряду трудностей. В частности, электродинамика движущихся сред, базирующаяся на предположении, что эфир может служить для определения движения по отношению к абсолютному пространству, оказывалась весьма сложной и привела в конце концов к противоречию с экспериментом. И только теория относительности внесла полную ясность в этот вопрос, совершенно устранив из физических теорий понятие эфира.

Одним из наиболее блестящих подтверждений теории Максвелла было открытие Герцем электромагнитных волн, названных в его честь волнами Герца. Электромагнитная теория предсказывала, что при достаточно быстром изменении электрического тока в цепи возможно излучение и окружающее пространство электромагнитной волны, которая, согласно идеям Максвелла, должна иметь структуру, совершенно аналогичную структуре световой волны. Но волны, которые можно было бы получать с помощью соответствующего электрического контура, обладали всегда частотой, гораздо меньшей, и соответственно длиной волны, гораздо большей, чем частота и длина световых волн. Отсюда, естественно, вытекало и различие между свойствами этих волн: волны Герца не воздействуют на наши органы чувств и, что связано с большой длины волны, легко огибают непрозрачные препятствия, встречающиеся на их пути. Однако, несмотря на эти различия, имелась и большая общность между световыми волнами и волнами Герца. В частности, с последними можно было повторить ставшие классическими эксперименты по отражению, преломлению, интерференции или дифракции волн. Необходимые для этого экспериментальные установки должны в основном быть такими же, хотя, разумеется, и гораздо больших масштабов в соответствии с изменившейся длиной волны.

Это памятное открытие волн Герца и их свойств не оставило больше никаких сомнений в правильности основных идей Максвелла, касающихся электромагнитной природы света. И нет, пожалуй, нужды напоминать, что именно открытие волн Герца позволило осуществить беспроволочный телеграф, а позднее способствовало развитию других средств связи на расстоянии.

Электромагнитная теория позволяет также рассматривать распространение света в материальных средах. Она привела к знаменитому соотношению, связывающему диэлектрическую постоянную однородной среды с ее показателем преломления, и позволила изучить поглощение света в проводящих средах. Но только после того, как она была дополнена гипотезой о дискретной электрической структуре материи (гипотеза электронов), электромагнитная теория дала возможность по настоящему глубоко исследовать характер распространения света в материальных средах.

4. Термодинамика

Нельзя закончить этот краткий очерк истории развития классической физики, не сказав несколько слов о науке, которая целиком была создана учеными XIX в., о термодинамике.

В XVIII в. теплота представлялась в виде некоторой жидкости, общее количество которой остается в течение различных физических процессов неизменным. Для объяснения целого ряда явлений, и в особенности явления распространения тепла в материальных телах, эта гипотеза оказывалась вполне удовлетворительной. Изящная и классическая теория распространения тепла в пространстве, созданная Фурье, исходит из соотношения, которое выражает «закон сохранения теплоты». Но многочисленные явления, в которых теплота возникает в результате трения, с большим трудом объяснялись в рамках этой гипотезы, и мало-помалу физики от нее отказались и стали рассматривать теплоту не как некую вечную субстанцию, а просто как одну из форм энергии. Действительно, во всех происходящих вокруг нас чисто механических явлениях энергия сохраняется всегда, за исключением тех случаев, когда в результате трения происходит выделение тепла. Если рассматривать теплоту как одну из форм энергии, то можно выдвинуть некий общий принцип сохранения энергии. Мы не будем рассказывать здесь о том, как развивался этот принцип и как он был подтвержден измерениями механического эквивалента теплоты. Но, как известно, одного принципа сохранения энергии еще недостаточно для построения термодинамики. К нему необходимо добавить еще принцип Карно, или принцип возрастания энтропии. Впервые этот принцип был выдвинут в 1824 г. Сади Карно в заметках о тепловых машинах, где он указал на невозможность полного превращения тепла в работу. Эти соображения Карно легли в основу высказанного несколькими годами позже принципа, который остается справедливым и по настоящий день. Чтобы придать ему математическую форму, Клаузиус ввел понятие энтропии и показал, что энтропия изолированной системы может только возрастать.

На основе этих двух фундаментальных принципов была построена термодинамика - наука, позволившая объяснить и предсказать большое число явлений и играющая существенную роль в настоящее время, особенно в теории газов. Это абстрактная наука, оперирующая основном понятиями энергии, заключенной в телах, количествами совершаемой ими работы и тепла, которым они обмениваются. Она не пытается вникать в детальное описание элементарных процессов, а интересуется лишь общими характеристиками систем. Термодинамика оставляет чрезвычайно большую свободу для различных описаний элементарных процессов и устанавливает лишь общие закономерности, которым должны удовлетворять эти описания. Таким образом, не только классическая атомная физика, не учитывающая существования квантов, но и квантовая физика, базирующаяся на принципиально отличных концепциях, строятся в соответствии с законами термодинамики. С точки зрения конструктивного развития современных теорий термодинамика может в каком-то смысле играть направляющую роль, ограничивая число приемлемых гипотез, но не указывая, конечно, тот или иной определенный путь развития. Точнее, поскольку термодинамика рассматривает лишь общие свойства систем, не вдаваясь в детали отдельных процессов, она не рискует впасть в ошибки, что часто угрожает более «смелым» теориям, претендующим на детальное описание процесса. И сорок лет назад, по мнению многих физиков, считалось предпочтительным использовать термодинамические методы, не вводя более детальных и более смелых концепций. Этот осторожный метод был назван энергетическим. Но если осторожность - мать безопасности, то судьба улыбается лишь отважным. И тогда как приверженцы энергетического метода топтались на одном месте, хотя и на твердой почве, сторонники более детального описания элементарных явлений, развивая атомистические и корпускулярные концепции, открывали новые неизведанные области.

Эти концепции получили столь многочисленные экспериментальные подтверждения и привели к открытию такого большого числа новых соотношений, о существовании которых «энергетика» не могла даже подозревать, что в Настоящее время старая «энергетическая» тактика уже давно оставлена.

Чтобы проследить путь развития классической физики, необходимо рассмотреть новый мир атомов и частиц.

Глава III. Атомы и частицы

1. Атомная структура материи

Хорошо известно, что древние мыслители неоднократно высказывали предположение о дискретной природе материи. Они пришли к этому, исходя из философской идеи о том, что невозможно осознать бесконечную делимость материи и при рассмотрении все более мелких количеств необходимо где-то остановиться. Для них атом был последней неделимой частью материи, после которой уже нечего было искать. Современная физика также исходит из представления об атомной структуре материи, но с ее точки зрения атом представляет собой нечто совершенно отличное от того, что понимали под этим словом древние мыслители. По современным представлениям, атом, будучи составной частью вещества, имеет весьма сложную структуру. Действительными же атомами в смысле древних являются, с точки зрения новейшей физики, так называемые элементарные частицы, например электроны, которые рассматриваются сегодня (может быть, временно) как последние неделимые составляющие атомов и, следовательно, материи.

Понятие атома было введено в современную науку, как известно, химиками. Изучение химических свойств различных тел привело ученых-химиков к мысли, что все вещества подразделяются на два класса: к одному из них относятся сложные или составные вещества, которые путем соответствующих операций могут быть разложены на более простые вещества, к другому - более простые вещества, которые уже невозможно разложить на составные части. Эти простые вещества часто называют также элементами. Изучение количественных законов образования сложных веществ из простых постепенно привело химиков последнего столетия к созданию теории, согласно которой все простейшие вещества, или элементы, состоят из мельчайших совершенно одинаковых частиц, называемых атомами соответствующего элемента, а сложные вещества образованы из молекул, представляющих собой соединение атомов различных элементов. В соответствии с этой теорией разложение сложных веществ на составляющие их элементы состоит в разрушении связей, объединяющих различные атомы в молекулы, и разделении веществ на составные части. Все элементы, включая и недавно открытые, теперь хорошо известны. Число их составляет в настоящее время 89. Однако, как мы скоро увидим, список этих элементов может быть дополнен, по крайней мере, до 92 (в настоящее время известно 104 элемента. - Прим. ред.). Таким образом, все материальные тела состоят из атомов, по крайней мере, 92 различных видов.

Атомная гипотеза оказалась очень плодотворной не только для объяснения основных химических явлений, но и для построения новых физических теорий. В самом деле, если все вещества действительно состоят из атомов, то многие их физические свойства, можно предсказать, исходя из представления об их атомной структуре. Например, хорошо известные свойства газа следовало бы объяснять, представляя газ как совокупность чрезвычайно большого числа атомов или молекул, находящихся в состоянии быстрого непрерывного движения. Давление газа на стенки содержащего его сосуда должно быть вызвано ударами атомов или молекул о стенки, температура его должна быть связана со средней скоростью движения частиц, которая возрастает с увеличением температуры газа. Основанная на подобных представлениях теория, получившая название кинетической теории газов, позволила вывести теоретически основные законы, которым подчиняются газы и которые уже были получены ранее экспериментальным путем. Более того, если предположение об атомном строении веществ соответствует действительности, то из этого следует, что для объяснения свойств твердых тел и жидкостей необходимо допустить, что в этих физических состояниях атомы или молекулы, из которых состоит вещество, должны находиться на гораздо меньших расстояниях друг от друга и быть гораздо сильнее связанными между собой, чем в газообразном состоянии. Большая величина сил взаимодействия между чрезвычайно близко расположенными атомами или молекулами, которую необходимо допустить, должна объяснить упругость, не сжимаемость и некоторые другие свойства, характеризующие твердые и жидкие тела. Возникшие и разработанные на этой основе теории встретили на своем пути целый ряд трудностей (большая часть которых была устранена с возникновением квантовой теории). Однако полученные в этой теории результаты были достаточно удовлетворительными, чтобы считать, что она развивается по правильному пути.

Несмотря на то, что гипотеза об атомном строении вещества для некоторых физических теорий оказалась весьма плодотворной, для окончательного ее подтверждения было необходимо произвести более или менее прямой эксперимент, подтверждающий атомную структуру материи. И эта большая экспериментальная работа, занявшая около тридцати лет, была проделана физиками, из которых в первую очередь надо отметить Перрена и его опыты, ставшие классическими.

Невозможно непосредственно заметить движение атомов или молекул. Но то, что оно существует, установить возможно. Выражается это в перемещении под действием непрерывных соударений некоторой частицы макроскопических размеров, взвешенной в газе или жидкости. Изучение перемещения такой частицы сравнительно больших размеров, известного под названием броуновского движения, позволило Перрену оценить число молекул, содержащихся в одной грамм-молекуле какого-либо газа, находящегося при нормальной температуре и давлении. По классическому закону Авогадро известно, что это число одинаково для всех газов. Оно носит название числа Авогадро. Эксперименты Перрена показали, что его значение заключено в пределах 6·1023...7·1023. Все последующие опыты блестяще подтвердили эту оценку. Большое число других, более косвенных опытов также позволяет определить значение числа Авогадро. Эти методы основаны на изучении самых различных явлений: спектрального распределения энергии излучения при термодинамическом равновесии, диффузии света в газах, излучения радиоактивных веществ. Полученные разными путями значения числа Авогадро, а также вычисляемые с его помощью значения некоторых атомных констант (например, массы атома водорода) находятся в столь блестящем соответствии между собой, что не позволяют сомневаться в справедливости гипотезы об атомном строении материи.

Итак, существование атомов, принимаемое химиками, было экспериментально доказано физиками. Остается посмотреть, как этот факт был использован теоретиками.

2. Кинетическая теория газов. Статистическая механика

Если все материальные тела состоят из атомов, то естественно допустить, что в телах, находящихся в газообразном состоянии, частицы в среднем находятся достаточно далеко друг от друга и большую часть времени двигаются вне области влияния сил взаимодействия. Иногда атом на короткий промежуток времени подходит к какому-либо другому атому или к стенке сосуда, в котором заключен газ, настолько близко, что силы взаимодействия возрастают и начинают оказывать существенное влияние на его движение. При этом говорят, что происходит соударение атома с другим атомом либо со стенкой. Между двумя последовательными соударениями атом движется свободно, не испытывая какого-либо воздействия со стороны других атомов или стенок сосуда. Очевидно, что для всех газов, находящихся в обычных условиях, полное время всех соударений какого-либо одного атома с остальными (и стенками), происходящих, скажем, за одну секунду, будет бесконечно мало по сравнению со временем его свободного движения за то же время, хотя само число столкновений за одну секунду может быть и огромно. Если предположить далее, что движение атомов происходит по законам классической механики, то приходим к выводу, что в промежутке между двумя последовательными соударениями частицы движутся практически прямолинейно и равномерно, а соударения (единственная причина неравномерности движения) изменяют характер движения в соответствии с законами сохранения импульса и энергии. Если атомы можно представить в виде жестких абсолютно упругих шариков, чтобы иметь возможность учесть влияние соударений, то поведение газа может быть, в принципе полностью определено решением системы уравнений классической механики. Однако если представление о газе как о совокупности жестких абсолютно упругих шариков и является вполне разумным и позволяет в принципе точно решить задачу о поведении газа в тех или иных случаях, то практически подобная задача настолько сложна, что лежит за пределами всяких реальных возможностей. Это станет совершенно очевидно, если заметить, что в обычных условиях один кубический сантиметр газа содержит около 1019 атомов, каждый из которых испытывает приблизительно 1010 соударений в секунду. Таким образом, задача может показаться неразрешимой. А, тем не менее законы, которым подчиняются газы, чрезвычайно просты, во всяком случае если ограничиться первым приближением (законы идеальных газов). И казалось совершенно парадоксальным, что столь простые законы можно вывести, исходя из такой сложной модели газа, как атомарно-кинетическая модель. Но, в конечном счете именно чрезвычайная сложность этой модели и позволила построить стройную теорию, из которой следуют эти простые законы.


Подобные документы

  • Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.

    доклад [473,4 K], добавлен 24.09.2019

  • "Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.

    реферат [90,7 K], добавлен 21.11.2011

  • Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.

    реферат [44,0 K], добавлен 17.02.2010

  • Квантовая теория в ряду других современных физических теорий. Споры и дискуссии о реальности квантово-механических состояний. Необычайность свойств квантовой механики. Основные трактовки и интерпретации квантово-механической теории различными учеными.

    реферат [41,8 K], добавлен 28.03.2011

  • Законы квантовой механики, сущность и границы её применимости. Эффект Комптона и свойства света в период формирования новой физики. Волновая теория Бройля и ряд его крупнейших технических достижений. Теория теплового излучения и электромагнетизм.

    реферат [36,5 K], добавлен 26.02.2012

  • История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.

    реферат [37,0 K], добавлен 25.10.2010

  • Механика и элементы специальной теории относительности. Кинематика и динамика поступательного и вращательного движений материальной точки. Работа и механическая энергия, законы сохранения в механике. Молекулярная физика и термодинамика, теплоемкость.

    курс лекций [692,1 K], добавлен 23.09.2009

  • Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.

    презентация [39,7 M], добавлен 13.02.2016

  • Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.

    реферат [16,0 K], добавлен 29.03.2003

  • Электромагнитная теория механики, связь материи с зарядом, массы с энергией, квантовая природа элементарных явлений и их революционное влияние на все основные понятия физики. Противоречия между картиной движущегося электрона и квантовыми постулатами.

    реферат [31,4 K], добавлен 20.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.