Революция в физике. Луи де Бройль
Обзор кинематики и динамики. Законы Ньютона и динамика материальной точки. Электричество и электромагнитная теория. Атомная структура материи. Теория относительности. Развитие теории Бора. Основные идеи волновой механики. Квантовая механика Гейзенберга.
Рубрика | Физика и энергетика |
Вид | книга |
Язык | русский |
Дата добавления | 06.11.2009 |
Размер файла | 245,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Громадное число динамических процессов, разыгрывающихся между молекулами газов, позволило подойти к изучению явлений с другой стороны и, пользуясь теорией вероятности, исследовать поведение этих процессов в целом, зачастую весьма просто и с большой точностью получить соотношения для усредненных величин. Отклонения от этих закономерностей очень маловероятны из-за чрезвычайно большого числа элементарных процессов, дающих вклад в средний результат.
Кинетическая теория газов развилась к началу второй половины XIX в. благодаря открытиям Максвелла и Клаузиуса. Эта теория приобрела строгую форму в трудах Больцмана. Не будем излагать здесь даже основных положений и выводов кинетической теории - они сейчас хорошо известны всякому, кто хоть немного изучал теоретическую физику. Укажем только, что давление, оказываемое газом на стенки содержащего его сосуда, обусловлено, согласно этой теории, огромным числом соударений молекул газа со стенками сосуда. Температура газа определяется средней кинетической энергией движения молекул, уравнение состояния идеального газа выводится элементарно. Наконец, кинетическая теория позволяет в первом приближении сделать некоторые заключения о характере теплоемкости газов, диффузии, величине коэффициентов вязкости, теплопроводности и т.д.
Конечно, нельзя утверждать, что кинетическая теория разрешила все вопросы, стоящие перед теорией в этой области. Осталось много нерешенных вопросов, и теперь еще появляются работы, которые прокладывают новые пути в этом направлении. Однако в целом можно сказать, что представления кинетической теории, базирующиеся на гипотезе об атомном строении материи, хорошо отражают действительность.
Одним из успехов кинетической теории газов было толкование понятия энтропии. Исследуя роль соударений между атомами газа и процесс установления под действием этих соударений состояния равновесия, Больцман определил некоторую величину, которая непрерывно возрастает до того момента, пока не достигнет своего максимального значения, характеризующего состояние равновесия.
Эта величина должна быть отождествлена, очевидно, с энтропией. Больцман показал, что она равна логарифму вероятности данного мгновенного состояния всего газа. Это в свою очередь пролило свет на физический смысл понятия энтропии, понятия, которое Пуанкаре назвал удивительно абстрактным. Теорема Клаузиуса, согласно которой энтропия изолированной системы непрерывно возрастает, означает, таким образом, что изолированная система всегда стремится перейти в свое наиболее вероятное состояние. Это великолепное объяснение понятия энтропии явилось большим успехом сторонников атомной теории. И тогда как сторонники энергетического подхода уже склонялись к тому, что принцип энтропии - необъяснимый экспериментальный факт, кинетическая теория газов позволила легко понять его статистически, рассматривая эволюцию систем, состоящих из очень большого числа частиц, находящихся в хаотическом беспрерывном движении.
Таким образом, кинетическая теория газов привела теоретиков к новой точке зрения на вещи и к статистическому рассмотрению громадного числа не связанных между собой элементарных механических процессов. Она побудила провести их систематическое изучение, опираясь одновременно на общие законы механики, с одной стороны, и на законы теории вероятности, с другой. Такая работа была проведена вначале Больцманом, а затем Гиббсом и привела к возникновению новой науки - статистической механики. Статистическая механика позволяет не только получить все наиболее существенные результаты кинетической теории, но также установить некоторые общие положения, применяемые к системам, состоящим из атомов или молекул и не являющихся газами, например к твердым телам.
Такова, в частности, известная теорема о равнораспределении энергии по степеням свободы, согласно которой в системе, состоящей из большого числа составных частей и поддерживаемой при постоянной абсолютной температуре 7, энергия распределяется между различными степенями свободы системы таким образом, что в среднем на каждую степень свободы приходится одно и то же количество энергии, пропорциональное температуре Т.
Применение этой теоремы к газам приводит к весьма интересным и неоднократно подтвержденным опытом результатам. Применение ее к твердым телам позволяет сделать вывод, что атомная теплоемкость твердых тел должна быть, как правило, равна шести (закон Дюлонга и Пти) и, во всяком случае, никогда не быть меньше трех. Это заключение также было неоднократно подтверждено фактическими измерениями. И, тем не менее если большое число следствий статистической механики блестяще подтвердилось экспериментально, то некоторые из них все же не совпадали с экспериментальными данными. Так, например, поведение теплоемкости газов (при постоянном давлении) при низких температурах не соответствовало предсказываемому теоретически, а некоторые твердые тела (алмаз) имели значение атомной теплоемкости существенно меньше трех. Это одновременно и удивляло и настораживало, поскольку чрезвычайная общность методов статистической механики, казалось бы, гарантировала ее от каких-либо ошибок. Тем не менее, наряду с блестящими победами в некоторых случаях эта теория потерпела очевидное поражение. Связано это было с существованием квантов. Открытие их и создание квантовой механики позволило выяснить причины этого несоответствия и указать пределы применимости методов классической механики и, следовательно, статистической механики Больцмана - Гиббса.
Если исходить из того, что все результаты термодинамики вытекают из статистической механики, то отсюда следует, что законы термодинамики не имеют уже характера строгой необходимости. Они носят вероятностный характер, хотя вероятность их выполнения и необычайно высока. Таким образом, например, рассчитанные методами термодинамики давление или энтропия газа, заключенного в некоторый замкнутый сосуд и поддерживаемого при постоянной температуре, представляют собой лишь наиболее вероятные значения этих величин по сравнению с другими возможными при этих условиях их значениями. Однако эти наиболее вероятные значения настолько более вероятны, чем даже очень мало отличающиеся от, них значения, что практически только они и могут наблюдаться на опыте. И, тем не менее теоретически все же возможны отклонения мгновенных значений от их наиболее вероятных значений, даваемых термодинамикой. Чаще всего эти флуктуации слишком малы или редки, чтобы их можно было заметить, однако в некоторых специальных случаях они все же проявляются. Например, флуктуации плотности газа легко могут быть обнаружены, если газ находится вблизи своей критической точки (явление критической опалесценции).
Успехи статистической механики научили физиков рассматривать некоторые законы природы как статистические. Именно потому, что в газах происходит колоссальное число механических элементарных процессов, давление или энтропия газов подчиняется простым законам. Законы термодинамики имеют характер вероятностных законов, представляющих собой статистические результаты явлений атомного масштаба, которые невозможно изучать непосредственно и анализировать детально. Строгие динамические законы, абсолютный детерминизм механических явлений ослабляются в атомном мире, где они становятся ненаблюдаемыми и где проявляются и могут наблюдаться в нашем масштабе только лишь их средние характеристики. Таким образом, физики заметили, что во многих случаях наблюдаемым законам подчиняются лишь средние значения величин. Поэтому ученые занялись изучением вероятностных законов. Волновая механика развила это направление и показала, что наблюдаемые законы, которым подчиняются элементарные частицы, также носят вероятностный характер.
3. Дискретная природа электричества. Электроны и протоны
Из только что сказанного видно, что в физике, как и в химии, гипотеза, согласно которой все тела состоят из молекул, представляющих собой в свою очередь комбинации различных атомов, оказалась чрезвычайно плодотворной и получила блестящие экспериментальные подтверждения. Перед учеными встала новая задача - узнать, из чего состоят сами атомы, и понять, чем атомы различных элементов отличаются друг от друга. Эту трудную проблему помогло разрешить дальнейшее развитие наших знаний о природе электричества.
На заре изучения электрических явлений казалось вполне естественным представлять электричество в виде некоторой особой жидкости и рассматривать, например, электрический ток, протекающий по металлической проволоке, как поток электрической жидкости, текущей вдоль этой проволоки. Однако, как было известно с давних пор, существует два вида электричества: положительное и отрицательное. Следовательно, необходимо было предположить существование двух различных видов электрической жидкости: положительной и отрицательной. Можно было предположить две кардинально отличные модели этих жидкостей: либо представить ее в виде некоей непрерывной субстанции, заполняющей электрически заряженные тела, либо, наоборот, считать, что она состоит из множества мельчайших электрических частиц, каждая из которых представляет собой элементарную частицу электричества. Результат эксперимента был в пользу второй модели. Около сорока лет назад было экспериментально показано, что отрицательное электричество образовано из мельчайших одинаковых частиц, обладающих чрезвычайно малыми значениями массы и заряда. Эти частицы отрицательного электричества получили название электронов. Как известно, впервые электроны были обнаружены в свободном состоянии, вне заряженных тел, в виде так называемых катодных лучей, возникающих в разрядной трубке. Затем их удалось обнаружить в явлениях фотоэффекта и термоэмиссии сильно разогретых тел. Открытие радиоактивности позволило получить новый источник электронов, поскольку большинство радиоактивных веществ спонтанно излучают в-лучи, представляющие собой не что иное, как электроны, движущиеся с очень большими скоростями. Как следует из многочисленных экспериментов, все электроны, какого бы происхождения они ни были, несут всегда один и тот же чрезвычайно малый отрицательный электрический заряд. Изучая характер движения электрона в пустоте, можно установить, что он движется точно так же, как должна была бы двигаться, согласно законам механики, маленькая заряженная частица. Исследование характера движения электрона в электрическом и магнитном полях позволило измерить величину его заряда и массы, которые очень малы.
Труднее было получить доказательства корпускулярной структуры положительного электричества. Однако позже физики убедились в том, что положительное электричество в конечном счете тоже должно рассматриваться как состоящее из отдельных совершенно одинаковых частиц - протонов. Масса протона еще тоже очень мала, хотя она почти в две тысячи раз больше массы электрона. Это устанавливает любопытную асимметрию между положительным и отрицательным электричеством. Напротив, заряд протона по абсолютной величине равен заряду электрона, но, разумеется, противоположен ему по знаку. До самого последнего времени протон рассматривался как частица, представляющая собой элементарную единицу положительного электричества. Однако открытие положительного электрона несколько усложнило вопрос. Действительно, существует частица положительного электричества, имеющая массу, равную массе электрона, и заряд, равный по величине и противоположный по знаку заряду электрона, - положительный электрон, или позитрон. Какая же из этих двух частиц является на самом деле элементарной частицей положительного электричества - протон или позитрон? Или имеются две существенно различные элементарные частицы положительного электричества? Открытие нейтрона, предшествовавшее открытию положительного электрона, позволяло думать, что протоны - сложные образования, состоящие из нейтрона и положительного электрона. В настоящее время полагают, что протоны и нейтроны скорее два различных состояния одной и той же частицы. Но до самого последнего времени физики считали протон единицей положительного электричества. Этой точки зрения мы пока здесь и будем придерживаться.
Электроны и протоны имеют очень малую, но отнюдь не нулевую массу, так что полная масса большого числа протонов и электронов может стать вполне ощутимой. Поэтому казалось заманчивым предположить, что все материальные тела, обладающие весом и инерцией, т.е. массой, состоят в конечном счете из огромного числа протонов и электронов. С этой точки зрения атомы различных элементов, являющиеся первичным материалом, из которого образованы все материальные тела, сами должны состоять из протонов и электронов, и 92 вида атомов различных элементов должны представлять собой 92 различные комбинации из протонов и электронов.
Задача теперь заключалась в том, чтобы понять, что представляют собой эти комбинации из протонов и электронов, т.е. в том, чтобы построить модель атома. Были выдвинуты различные гипотезы. Некоторый успех имела, например, модель, предложенная Томсоном, знаменитым физиком, работы которого во многом способствовали углублению наших знаний о природе материи. По его модели атом представлял собой равномерно заряженное положительным электричеством шарообразное облако, в котором в равновесии находятся отрицательные электроны. Однако признание получила другая модель, известная ныне как модель Резерфорда - Бора, в которой атом представлялся, подобно миниатюрной солнечной системе, состоящим из центрального положительно заряженного ядра, вокруг которого движутся электроны. Выдвинутая вначале Перреном, эта модель атома нашла подтверждение в опытах по отклонению б - частиц, рассеиваемых на мишени. Эти эксперименты, проделанные Резерфордом и его сотрудниками, показали, что в соответствии с планетарной моделью положительный заряд атома сконцентрирован в чрезвычайно малой области пространства в центре атома. Таким образом, центральное ядро атома несет положительный заряд и окружено электронами, играющими роль планет и движущимися вокруг него под действием кулоновых сил. Каждый атом, находящийся в нормальном состоянии, характеризуется числом N электронов-планет. Поскольку атом в нормальном состоянии электрически нейтрален, то ядро этого атома должно иметь заряд, равный и противоположный по знаку суммарному заряду всех электронов. В атоме с одним единственным электроном-планетой ядро должно иметь заряд, равный и противоположный по знаку заряду электрона. Все другие ядра должны нести кратный ему положительный заряд. Таким образом, ядро атома, обладающего одним электроном (атома водорода), может рассматриваться как единица положительного электричества - тот самый протон, о котором мы уже говорили. Итак, атом каждого вида характеризуется целым числом N, которое получило название атомного номера и, следовательно, все 92 элемента можно расположить в один ряд с атомными номерами, возрастающими от 1 до 92. Вполне возможно, что полученная таким образом классификация совпадает с классификацией по атомному весу. Некоторые явления позволяют с уверенностью судить об атомном номере различных элементов. Например, смещение частотного спектра рентгеновских лучей различных элементов, которое, согласно экспериментально установленному Мозли закону (1913г.), пропорционально квадрату атомного номера элемента.
Если не считать некоторых отклонений, то, действительно, расположение элементов по возрастающему атомному номеру хорошо соответствует расположению по возрастающему атомному весу. Следовательно, планетарная модель атома подтвердилась экспериментально. В 1913г. Бор в своей знаменитой работе придал ей математическую форму, позволившую предсказать оптические и рентгеновские спектры различных элементов. Но, чтобы получить эти замечательные результаты. Бору пришлось дополнить планетарную модель основными положениями квантовой теории, поскольку использование классической механики и электродинамики не позволяло получить сколько-нибудь удовлетворительные результаты. Теория Бора могла быть развита только на базе квантовых представлений.
4. Излучение
С открытием нового вида волн, отличающихся от световых только длиной волны, область приложения оптики и волновой теории значительно расширилась. Эти волны долгое время оставались неизвестными, поскольку человеческий глаз нечувствителен к ним. Однако их можно заметить по некоторым физическим явлениям, которые они вызывают, например: по нагреванию облучаемых ими тел, почернению фотопластинок и т.д. Именно так физики и обнаружили их существование. Все эти волны, имеющие ту же природу, что и световые волны и отличающиеся только длиной волны, были объединены в одно большое семейство излучений, И весь видимый свет представляет собой лишь малую часть этого семейства.
Благодаря открытиям, сделанным более пятидесяти лет назад, наши знания об излучении чрезвычайно расширились. В настоящее время известны волны с длиной от сотен километров до десятимиллиардных долей миллиметра. От сотен километров до десятой миллиметра простирается область радиоволн. От десятой миллиметра до нескольких десятитысячных долей миллиметра расположена область инфракрасных волн, или теплового излучения. Более короткие волны, соответствующие длинам волн от восьми до четырех десятитысячных миллиметра, составляют диапазон видимого света от красного до фиолетового. Диапазон от четырех десятитысячных миллиметра до одной десятитысячной занимает ультрафиолетовое излучение, оказывающее сильное воздействие на фотоэмульсию. Далее, широкая область, вплоть до длины волн порядка одной стотысячной, принадлежит рентгеновским лучам. И, наконец, область еще более коротких волн занимает сильно проникающее излучение, создаваемое радиоактивными телами, называемое г-лучами.
Мы не будем рассказывать здесь, как был открыт и изучен весь этот обширный диапазон. Единственное, что следует указать, это то, что волновая теория, которая была столь блестяще подтверждена в области видимого света, оказалась также справедливой и для волн всего диапазона. Как с волнами Герца, так и с рентгеновскими лучами и даже г-лучами могут наблюдаться типично волновые явления (преломление, интерференция, дифракция, рассеяние). И в настоящее время нет больше сомнений в том, что для всех видов излучения волновая теория применима в той же степени, что и для света. Различные виды излучения и их свойства зависят только от длины волны.
Однако нужно отметить, что волновая теория, применяемая в равной мере ко всем видам излучений, имеет, как показало развитие новейшей физики, всякий раз одинаковые границы применения. Возвращение к корпускулярным представлениям, выражаемое введением понятия фотона, оказывается в равной степени необходимым для всех видов излучений. И это последнее замечание окончательно доказывает, что все виды излучений имеют одну и ту же физическую природу.
Открытие и классификация различных видов излучений и их одинаковая природа позволили ученым около сорока лет назад разделить весь физический мир на две различные категории. С одной стороны, это материя или вещество, состоящее из атомов, которые в свою очередь представляют собой совокупность протона и электронов, т.е. элементарных частиц электричества. С другой стороны, излучение - совокупность волн, одинаковых по своей физической природе и отличающихся друг от друга лишь длиной. Вещество и излучение представляют собой две совершенно независимые друг от друга физические категории, поскольку вещество может существовать без всякого излучения, а излучение в свою очередь может распространяться в области пространства, абсолютно свободной от вещества. И тем не менее очень важно изучить взаимодействие вещества с излучением. Необходимо исследовать воздействие излучения на вещество и обратно, реакцию вещества на излучение, понять причины, приводящие к поглощению и испусканию излучения. Первой теорией в современной физике, которая попыталась детально разрешить эти вопросы, была электронная теория.
5. Электронная теория
Электромагнитная теория Максвелла содержит уравнения, выражающие связь между измеряемыми в нашем обычном масштабе электромагнитными полями, с одной стороны, и электрическими зарядами и токами, с другой. Эти уравнения электродинамики, выведенные на основе обобщения результатов макроскопических экспериментов, были, несомненно, справедливыми для этого круга явлений. Но для детального описания электрической природы вещества и электромагнитных процессов, происходящих внутри атомов, описания процессов излучения и поглощения необходимо было экстраполировать уравнения Максвелла в область микромира и придать им форму, пригодную для описания явлений, происходящих в атоме. Это и было сделано одним из величайших создателей современной теоретической физики Г.А.Лоренцем.
В качестве отправной точки Лоренц принял гипотезу о дискретной структуре электричества. Он исходил из существования элементарных частиц электричества, которым дал общее название электронов, и предположил, что все вещества состоят из различных комбинаций этих элементарных частиц. То, что мы обычно называем электрически заряженным телом, это тело, содержащее в целом большее число частиц, несущих заряд одного знака, чем частиц, обладающих зарядом противоположного знака. Электрически же нейтральное тело содержит одинаковое число частиц разного знака. Само собой разумеется, что в материальных телах, т.е. в макроскопических, число таких заряженных частиц всегда чрезвычайно велико. Согласно этой точке зрения, электрический ток, текущий по проводнику, обусловлен перемещением большого числа электронов, содержащихся в этом проводнике, а само явление проводимости объясняется некоторой свободой движения электронов в проводящем веществе и возможностью их перемещения под действием внешнего электрического поля. Изоляторы же, напротив, характеризуются отсутствием этой свободы, в них каждый электрон имеет некое положение равновесия и может смещаться из этого положения лишь на очень малые расстояния. Каждый из электронов создает свое электромагнитное поле, и наблюдаемые и измеряемые нами обычно поля не что иное, как средние статистические суммы элементарных полей, создаваемых чрезвычайно большим числом отдельных электронов, входящих в состав всех материальных тел. Как это часто бывает, среднее суммарное поле подчиняется весьма простым законам. Эти законы, записанные в математической форме, будут просто уравнениями, которые связывают непосредственно наблюдаемые макроскопические поля с электрическими зарядами и токами. Более смелая, чем теория Максвелла, теория Лоренца пыталась описать микроскопические электромагнитные явления и с их помощью в результате усреднения получить законы, которым подчиняются крупномасштабные макроскопические явления. Лоренц пытался определить электромагнитные поля, заряды и токи в каждой точке пространства, в каждый момент времени, причем не только в пространстве между зарядами, но и внутри самих электронов. Он предположил, что все микроскопические величины, такие, как поля, заряды, токи подчиняются уравнениям того же вида, что и макроскопические уравнения Максвелла, с той лишь разницей, однако, что в них уже не остается места для различия полей и соответствующих индукций, а заряды и токи оказались зависящими от самой структуры электричества. Можно показать, что, усредняя микроскопические величины, из уравнений Лоренца можно получить систему уравнений Максвелла. При этом выясняется различие между полями и индукциями. Таким образом, электромагнитная теория Максвелла оказывается теорией «крупномасштабных» электромагнитных полей, являющихся среднестатистической суммой элементарных или мелкомасштабных полей, описываемых теорией Лоренца.
Электронная теория, основные моменты которой мы только что кратко изложили, привела к серьезным успехам и позволила предсказать и объяснить большое число новых явлений. Она раскрыла физический смысл законов дисперсии, уже полученных к тому времени с помощью других теорий. Кроме того, и это несомненно было одним из крупных ее успехов, она позволила точно предсказать нормальный эффект Зеемана, т.е. расщепление спектральных линий атомов под действием магнитного поля.
Экспериментальное подтверждение этого явления изменения частоты испускаемого атомами света под действием внешнего магнитного поля явилось замечательным подтверждением электронной теории. Стало понятно, что частицы, с движением которых связано излучение, есть не что иное, как отрицательные электроны, и, таким образом, было доказано существование их внутри вещества. Это было крупным успехом теории Лоренца. В общем, можно сказать, что электронная теория удовлетворительно объяснила все явления, в которых электрические и магнитные поля так или иначе влияют на условия излучения, распространения и поглощения света. К ним относится, например, явление вращения плоскости поляризации в магнитном поле (эффект Фарадея), которое в свете теории Лоренца можно рассматривать просто как обратный эффект Зеемана, а также явления двойного лучепреломления, вызванного электрическим или магнитным полем. Во всех этих областях, составляющих электро- и магнитооптику, теория Лоренца сыграла большую роль.
Электронная теория, казалось, ответила также на важный вопрос, что является источником излучения, испускаемого веществом. Согласно уравнениям Лоренца, электрон, движущийся прямолинейно и равномерно, полностью переносит с собой свое электромагнитное поле. Следовательно, в этом случае излучения энергии в окружающее пространство не происходит. Но если электрон движется с ускорением, то он излучает электромагнитные волны, и энергия, теряемая им в результате излучения, пропорциональна квадрату ускорения.
Излучение электромагнитных волн переменным током легко объяснить с точки зрения электронной теории, если учесть, что ток представляет собой громадное число периодически колеблющихся электронов. Сразу становится ясно, почему ток может излучать энергию. Понятным становится также излучение волн Герца токами в открытых контурах, такими, например, как ток, текущий в передающей антенне радиовещательных станций. Таким образом, мы возвращаемся к теории излучения волн Герца, основанной на уравнениях Максвелла.
Рассматривая излучение отдельных ускоренно движущихся электронов, теория Лоренца позволяет узнать первопричину излучения, понять, где находится источник излучения, испускаемого веществом. Следовательно, эта теория должна была бы в принципе объяснить возникновение электромагнитных волн в масштабе атома и показать, например, каким образом атомные спектры связаны с движением внутриатомных электронов. Электронная теория столкнулась с большими трудностями при попытке объяснить возникновение атомных спектров. Но вначале казалось, что эта теория ускорительных волн позволяет дать полное и исчерпывающее объяснение процессам испускания излучения веществом. И известное явление, заключающееся в возникновении рентгеновских лучей при резком торможении электронов на антикатоде, служило неопровержимым доказательством справедливости этой теории.
Несмотря на первые блестящие успехи, электронная теория оказалась не в состоянии объяснить явления в масштабе атома. При попытке рассмотреть вопрос о термодинамическом равновесии вещества и излучения на основании уравнений Лоренца возникают трудности, которых можно избежать лишь вводя совершенно новые представления квантовой теории. С другой стороны, для объяснения излучения атомов с точки зрения электронной теории приходится предположить, что в нормальном состоянии внутриатомные электроны неподвижны. В противном случае, двигаясь под действием кулоновских сил внутри чрезвычайно малой области пространства, они обладали бы отличным от нуля ускорением и должны были бы непрерывно терять энергию в виде электромагнитного излучения, что противоречит основному положению об устойчивости атома. Развитие наших знаний об атоме привело нас, как мы видели, к планетарной модели, исходящей из предположения о непрерывном движении электронов-планет. И тут возникло явное противоречие между теорией ускорительных волн и идеей стабильного атома. Разрешение этого противоречия может быть получено только с помощью введения новых, квантовых представлений (теория Бора).
На этих нескольких примерах, которые при желании можно было бы умножить, видно, что электромагнитная теория, дополненная и развитая Лоренцом, который учел дискретную структуру электричества, хотя и блестяще объяснила большое число различных явлений, столкнулась тем не менее с серьезными трудностями при попытке объяснить экспериментальные факты, относящиеся к атомному миру. Эти трудности можно было преодолеть только привлечением совершенно новых представлений, понятий и идей, в корне отличных от понятий и идей, называемых ныне классическими, на которых покоится электромагнитная теория.
Глава IV. Теория относительности
1. Принцип относительности
Прежде чем говорить о развитии наших представлений о квантах, нельзя не посвятить короткую главу теории относительности.
Теория относительности и кванты - это два столпа современной теоретической физики, и, хотя эта книга посвящена теории квантов, невозможно обойти молчанием и теорию относительности.
Развитие теории относительности началось с изучения некоторых вопросов, связанных с оптическими явлениями, происходящими в движущихся средах. Френелево представление о свете предполагало существование эфира, заполняющего всю Вселенную и проникающего во все тела. Такой эфир играл роль среды, в которой распространялись световые волны. Электромагнитная теория Максвелла несколько ослабила значение его, так как эта теория не требует, чтобы световые колебания были колебаниями какой-либо среды. В теории Максвелла световые колебания полностью, определяются заданием векторов электромагнитного поля. После того как все попытки механической интерпретации законов электродинамики потерпели неудачу, поля в максвелловой теории в конце концов стали рассматривать как исходные понятия, которые бесполезно пытаться перевести на язык механики. С этого момента исчезла какая бы то ни была необходимость предполагать существование упругой среды, передающей электромагнитные колебания, и можно было подумать, что понятие эфира становится бесполезным. В действительности же это было не совсем так, и последователи Максвелла, в частности Лоренц, вынуждены были снова поднять вопрос об эфире. В чем же было дело? Почему пришлось продолжить разговор об эфире? Потому что уравнения электродинамики Максвелла не удовлетворяли принципу относительности классической механики. Иными словами, будучи справедливыми в одной какой-либо системе координат, они становились неверными в другой системе координат, движущейся прямолинейно и равномерно относительно первой. По крайней мере, если допустить (что представлялось тогда само собой разумеющимся), что при переходе от одной системы к другой координаты заменяются так, как это обычно делается в аналогичных случаях в классической механике. Действительно, классическая механика исходит из существования некоего абсолютного времени, единого для всех наблюдателей и для всех систем отсчета. В ней предполагается также, что расстояние между двумя точками пространства является инвариантом, т.е. должно иметь одно и то же значение во всех системах координат, которые можно использовать для определения положения точек в пространстве. Из этих двух принципов, которые казались вполне естественными, непосредственно следовали простые классические формулы преобразования координат при переходе от одной системы отсчета к другой, которая движется относительно первой прямолинейно и равномерно. Эти формулы определяют так называемое преобразование Галилея. Одним из основных положений классической механики является требование, чтобы все ее уравнения были инвариантны относительно преобразования Галилея. И действительно, пользуясь формулами преобразования Галилея, легко убедиться, что если уравнения Ньютона справедливы в системе координат, связанной с неподвижными звездами, то они будут справедливы также и во всех других системах отсчета, движущихся прямолинейно и равномерно относительно этих неподвижных звезд. Напротив, уравнения Максвелла и Лоренца, существенно отличающиеся по своей форме от уравнений классической механики, не инвариантны относительно преобразования Галилея. Следовательно, если уравнения Максвелла справедливы в какой-либо одной системе координат, то они становятся несправедливыми при переходе к другой, движущейся относительно первой прямолинейно и равномерно. Дело обстоит так, как если бы существовала некая среда, заполняющая всю Вселенную, такая, что уравнения Максвелла справедливы только в одной, связанной с этой средой системе отсчета. Именно с этой средой отсчета ассоциировали последователи Максвелла понятие эфира. Эфир не был для них уже упругой средой с особыми свойствами, способной передавать световые колебания. Он стал абстрактной, весьма условной средой, служащей лишь для фиксации систем отсчета, в которых справедливы уравнения электродинамики Максвелла.
Но даже сведенный до такой незначительной роли эфир все же оставался, как мы уже сказали, довольно неудобной концепцией. Действительно, согласно теории Максвелла - Лоренца, для наблюдателя, движущегося относительно эфира, световые явления должны были бы протекать иначе, чем для неподвижного. Следовательно, изучение этих явлений в движущейся системе координат должно было позволить определить скорость этой системы координат относительно эфира, который таким образом приобретает уже некоторое более конкретное содержание. В частности, физики, работающие в своих лабораториях на Земле, вследствие вращения Земли вокруг Солнца находятся в постоянном движении, направление которого периодически меняется со временем года, поскольку Земля движется вокруг Солнца приблизительно по круговой орбите. И если, по невероятной случайности, в какой-то момент времени земной наблюдатель находится в покое относительно эфира, то уже через несколько недель или месяцев он будет двигаться относительно него с довольно большой скоростью. Таким образом, с помощью нескольких, проведенных последовательно друг за другом экспериментов можно было бы весьма точно определить скорость Земли относительно эфира. Однако ни один из многочисленных экспериментов, поставленных учеными XIX в. с целью определения движения Земли относительно эфира, не позволил «почувствовать» движения Земли. Тем не менее в течение долгого времени это отсутствие результата можно было увязать с теорией, поскольку предсказываемый эффект был весьма мал, а точность поставленных оптических экспериментов была недостаточно высока и не позволяла сделать вполне определенных выводов. Действительно, можно показать, что движение наблюдателя по отношению к эфиру приводит к поправкам, пропорциональным квадрату отношения скорости движения наблюдателя к скорости света в пустоте. Поскольку же это отношение всегда очень мало, то и ожидаемый эффект также очень мал. Но физики, постоянно совершенствуя технику эксперимента, получили, наконец, возможность измерять столь слабые эффекты. Теперь уже с помощью опытов по интерференции с полной уверенностью можно было сказать, зависят результаты экспериментов от скорости Земли относительно эфира или нет. И опыт снова дал, на этот раз уже определенно, отрицательный ответ: ожидаемый эффект, хотя и очень малый, но все же лежащий в пределах точности наблюдений, который предсказывала теория, обнаружить не удалось. Эфир продолжал оставаться неуловимым, что теперь уже явно противоречило классической теории. Этот чрезвычайно важный вывод позволил сделать знаменитый опыт Майкельсона, проведенный в 1881г. и повторенный им несколько позже вместе с Морли. Другие опыты, которые тоже должны были обнаружить движение Земли относительно эфира с помощью уже не оптических, но электромагнитных явлений (опыты Траутона и Нобеля), были не более успешны, чем опыт Майкельсона.
Само собой разумеется, было сделано немало попыток согласовать отрицательный результат опыта Майкельсона с существующими теориями. В частности, Фицджеральд и Лоренц выдвинули гипотезу о сокращении материальных тел при их движении относительно эфира. Это сокращение, не меняя поперечных размеров, должно приводить к сокращению линейных размеров тел в направлении их движения относительно эфира и, таким образом, точно компенсировать влияние относительного движения на скорость распространения света.
Но эта остроумная гипотеза носила, очевидно, весьма искусственный характер и, казалось, была выдвинута с единственной целью скрыть неудачу. И, как известно, лишь Альберт Эйнштейн нашел истинное решение этого вопроса (1905г.).
Казалось совершенно очевидно, что уравнения электродинамики Максвелла - Лоренца должны позволить с помощью соответствующим образом поставленных экспериментов определить движение наблюдателя по отношению к эфиру. Причина такой уверенности заключалась в том, что уравнения Максвелла меняют свой вид при переходе от одной системы координат к другой, движущейся относительно первой. Но при этом a priori допускалось, что координаты какого-либо тела, измеренные в двух системах координат, движущихся относительно друг друга прямолинейно и равномерно, связаны между собой формулами преобразования Галилея. Итак, уравнения Максвелла - Лоренца не инвариантны относительно преобразований Галилея. А раз это так, то эксперименты должны позволить определить движение Земли относительно эфира. Но опыт свидетельствовал, что движение Земли не сказывается на электродинамических явлениях.
Как показал Лоренц, хотя уравнения электродинамики не инвариантны относительно преобразования Галилея, они инвариантны относительно некоторого другого линейного преобразования координат, имеющего несколько более сложный вид, чем преобразование Галилея, и носящего ныне название преобразований Лоренца. Вначале этот факт казался просто математическим курьезом, а преобразования Лоренца, казалось, не имели никакого физического смысла. Но Эйнштейн исходил из обратного. Он предположил, что преобразование Лоренца отражает действительную физическую реальность и связывает координаты, измеренные двумя наблюдателями, движущимися равномерно и прямолинейно Друг относительно друга (если, конечно, оба они движутся прямолинейно и равномерно относительно системы координат, связанной с неподвижными звездами). И как раз не преобразование. Галилея, а именно преобразование Лоренца имеет точный физический смысл. Тогда из инвариантности уравнений электродинамики относительно преобразования Лоренца следует, что они имеют одинаковый вид во всех системах координат, движущихся прямолинейно и равномерно относительно неподвижных звезд. А значит, все электромагнитные и оптические явления будут протекать совершенно одинаково независимо от того, в какой системе координат они наблюдаются, и обнаружить по этим явлениям абсолютное движение по отношению к эфиру оказывается невозможно. Таким образом, отрицательный результат опыта Майкельсона и других опытов, поставленных с целью обнаружить движение Земли относительно эфира, становится совершенно естественным. И если принять теперь относительность всех оптических и электромагнитных явлений (в том же смысле, в каком классическая механика понимает относительность всех механических явлений), то отсюда с необходимостью будет следовать, что не преобразование Галилея, а именно преобразование Лоренца выражает точную связь между двумя различными наблюдателями, движущимися прямолинейно и равномерно Друг относительно друга.
Важно было понять причины, по которым преобразования Галилея необходимо заменить преобразованием Лоренца, и выяснить физические следствия этой замены. Это сделал Эйнштейн при помощи тонкой и глубокой критики понятий пространства и времени. Такая критика была совершенно необходима, поскольку преобразование Лоренца влекло за собой целый ряд следствий, казавшихся тогда совершенно парадоксальными. Действительно, из преобразования Лоренца следовало, что, с одной стороны, не существует абсолютного времени, т.е. два наблюдателя, движущихся друг относительно друга, пользуются различным временем, а с другой стороны, что расстояние между двумя материальными точками также не имеет абсолютного характера и различно для различных наблюдателей. Из постулата об абсолютности времени и пространства следует преобразование Галилея. Если же принять преобразования Лоренца, то нужно отказаться от этих, казавшихся столь естественными постулатов. Чтобы прояснить этот трудный вопрос, Эйнштейн провел глубокий критический анализ экспериментальных методов измерения пространства и времени. При этом в качестве основного положения он принял постулат, согласно которому ни какая энергия, никакой сигнал не может распространяться, со скоростью, превышающей скорость света в пустоте, а скорость распространения света в пустоте постоянна и не зависит от направления распространения. Существование этой верхней границы для скорости распространения сигналов позволило вывести формулы преобразования Лоренца и понять их физический смысл.
Прежде всего, Эйнштейн поставил перед собой вопрос, каким образом должны быть синхронизованы в некоторой данной системе отсчета различные часы, по которым измеряется время в различных точках этой системы. Поскольку невозможно непосредственно сравнить между собой часы, расположенные в различных точках пространства, то для их синхронизации необходимо использовать тот или иной метод сигнализации. Синхронизовав все часы в какой-либо рассматриваемой системе координат, можно сказать, что таким образом мы определили собственное время этой системы координат. Но синхронизованные таким образом часы оказываются таковыми только в одной системе координат, именно в той, в которой проводилась синхронизация (а также, разумеется, во всех системах координат, покоящихся относительно этой). При этом, что очень существенно, оказывается невозможно ввести никакое абсолютное время, справедливое для всех систем координат. Поясним это более подробно. Пусть имеется две системы отсчета А и В, движущиеся друг относительно друга прямолинейно и равномерно. Будем предполагать, что в той и другой системе координат часы синхронизованы, т.е. будем предполагать, что часы, синхронизованные между собой, расположены как в различных точках системы А, так и в различных точках системы В.В процессе движения часы, установленные в А, будут проходить мимо часов, установленных в В.Пусть теперь наблюдатели, находящиеся в системе А, в какой-либо момент времени, скажем, когда их собственные часы показывают полдень, отметят время, показываемое проходящими в этот момент мимо них часами системы координат В.Тогда окажется, что время, определенное различными наблюдателями по движущимся часам, также различно. Иначе говоря, время, определенное в один и тот же момент собственного времени системы А по различным часам системы В, оказывается различным. С другой стороны, поскольку с тем же основанием можно считать, что система А движется относительно В, то время, определяемое в один и тот же момент собственного времени В наблюдателями, находящимися в системе В, по различным часам системы А, также будет различным. Таким образом, в теории относительности понятие одновременности теряет свой абсолютный смысл: два события, происходящие в один и тот же момент времени в некоторой системе координат, будут не одновременными в другой системе координат, движущейся относительно первой. И этот, на первый взгляд столь парадоксальный вывод, как ясно показал Эйнштейн, является непосредственным следствием невозможности синхронизовать часы с помощью сигналов, распространяющихся со скоростью, превышающей скорость распространения света в пустоте.
Продолжая тем же путем физическую интерпретацию преобразования Лоренца, Эйнштейн показал, что любое материальное тело, движущееся относительно наблюдателя, будет ему казаться короче (в направлении движения), чем наблюдателю, относительно которого это тело покоится, т.е. наблюдателю, движущемуся вместе с этим телом. Поясним это утверждение также несколько более подробно. Пусть два наблюдателя движутся друг относительно друга равномерно и прямолинейно в некотором направлении D. Предположим, что один из наблюдателей несет с собой линейку, ориентированную параллельно D. Пусть ее длина, измеренная этим наблюдателем, равна, например, одному метру. Тогда для другого наблюдателя длина этой же линейки будет меньше метра, причем это отличие будет тем значительнее, чем больше будет скорость относительного движения. Величина этого «сокращения» движущейся линейки, вообще говоря, чрезвычайно мала и становится заметной лишь при приближении скорости относительного движения к скорости света в пустоте. Именно по этой причине такое сокращение не удавалось измерить с помощью прямого эксперимента. Однако это сокращение, имеющее практически ничтожную величину, оказалось в точности равным тому, которое предполагали Фицджеральд и Лоренц, и было как раз таким, чтобы строго объяснить отрицательный результат опыта Майкельсона. И тем не менее, несмотря на это совпадение, имеется существенная разница между сокращением по Фицджеральду - Лоренцу и сокращением по Эйнштейну. Действительно, первые рассматривали его как действительное сокращение тел, находящихся в абсолютном движении по отношению к неподвижному эфиру, тогда как второй - лишь как кажущееся движущемуся наблюдателю сокращение, связанное только с процессами измерений, которыми пользуются различные наблюдатели для измерения расстояний и промежутков времени, и преобразованием Лоренца, математически выражающим связь между результатами измерений, проделанных двумя различными, наблюдателями, находящимися в относительном движении.
Кажущееся сокращение размеров сопровождается кажущимся замедлением хода часов. Наблюдатели, находящиеся, например, в системе координат А, изучая ход часов, движущихся вместе с системой В, обнаружат, что они отстают от их собственных часов, покоящихся в системе А.Иначе говоря, можно утверждать, что движущиеся часы идут медленнее неподвижных. Как показал Эйнштейн, это тоже одно из следствий преобразования Лоренца. Итак, кажущееся сокращение длин и замедление хода часов однозначно следует из новых определений пространства и времени, с которыми и связано преобразование Лоренца. И обратно, постулируя сокращение размеров и замедление хода часов, можно получить формулы преобразования Лоренца.
Рассуждения, при помощи которых Эйнштейн вводит свои новые представления, порою очень хитроумны и их сложно изложить корректно. Но они совершенно безупречны, и с логической точки зрения им не может быть предъявлено ни одно серьезное возражение. В частности, теория объясняет такой на первый взгляд парадоксальный факт, что сокращение масштабов и замедление хода часов имеют взаимный характер. Если каждый из двух наблюдателей, движущихся Друг относительно друга прямолинейно и равномерно, обладает одинаковыми часами и линейками, то, произведя измерения, каждый из них обнаружит, что линейка другого короче его собственной, а часы другого отстают от его «асов. Эта взаимность, которая на первый взгляд кажется такой удивительной, становится легко понятной при более внимательном изучении теории, чего мы здесь, конечно, не можем сделать.
Изменение понятий о пространстве и времени, вызванное принципом относительности Эйнштейна, привело к изменению основных принципов кинематики. В частности, закон сложения скоростей приобрел иной, несколько более сложный вид. Это в свою очередь легко позволило понять результаты опытов Физо по распространению света в движущихся диспергирующих средах. На языке теории эфира эти эксперименты можно было понять, говоря о частичном увлечении эфира движущимися телами. Опыты Физо подтвердили предложенную Френелем формулу, определяющую коэффициент увлечения как функцию показателя преломления движущейся среды. Лоренц в своей теории электронов сумел подтвердить эту формулу, но теория относительности дала ей гораздо более простое и изящное объяснение, показав, что она прямо следует из нового закона сложения скоростей.
2. Пространство и время
Преобразования Галилея были основаны на гипотезе полной независимости времени и пространства. Отсюда и следовал абсолютный характер, приписывавшийся этим понятиям. В теории же относительности, как это ясно уже из самого вида преобразования Лоренца, пространственные координаты и время (т.е. временная координата) больше не могут рассматриваться независимо. Для геометрического Объяснения соотношений между пространственными координатами и временем различных наблюдателей нужно ввести некоторое абстрактное четырехмерное пространство, позволяющее очень изящно отразить внутреннюю связь между пространственными координатами и временем, которая содержится в преобразованиях Лоренца, Это геометрическое толкование предложено и развито Минковским, а четырехмерное пространство получило название четырехмерного мира, или пространства-времени.
Преобразование Лоренца оставляет неизменным взаимное расстояние между двумя точками в четырехмерном мире, т.е., как говорят, расстояние между двумя мировыми точкам. Поэтому преобразование Лоренца можно рассматривать просто как поворот системы координат в четырехмерном пространстве и все физические законы записать в виде некоторых уравнений для четырехмерных тензоров.
Каждый наблюдатель по-своему выкраивает из четырехмерного мира свое пространство и свое время, и формулы преобразований Лоренца немедленно следуют из того, что два по-разному равномерно движущихся наблюдателя разными Способами отделяют пространство от времени.
Таким образом, мы видим, что теория относительности позволяет в каком-то смысле объединить временную координату и пространственные координаты в единое четырехмерное многообразие. Однако из этого, разумеется, вовсе не следует делать вывод, что в теории относительности полностью стирается физическое различие между временем и пространством и они становятся совершенно равноправными. Они целиком сохраняют там свой существенно различный физический смысл. Более того, различие их находит с вое отражение также в математической записи уравнении, ;в которые время входит иным образом, чем координаты. Так, если потребовать, чтобы указанное четырехмерное пространство было эвклидовым (в геометрическом смысле), то в качестве четвертой координаты необходимо выбрать, не само время, а произведение его на мнимую единицу. В этом и проявляется существенное различие между временем и пространством.
0дно из основных свойств времени - это его способность изменяться только в одном направлении. Отсюда вытекает своего рода неизотропность четырехмерного пространства: выделенный характер положительного направления вдоль оси времени. Каждому положению материальной точки в некоторый момент времени будет соответствовать точка в четырехмерном пространстве. Совокупность таких мировых точек, соответствующих различным положениям материальной точки для различных моментов времени, определяет некоторую кривую в четырехмерном пространстве, называемую мировой линией этой материальной точки. На каждой такой мировой линии имеется выделенное направление от прошедшего к будущему, и эта неравнозначность направлений также связана с различием между временной и пространственными координатами.
Подобные документы
- История возникновения и формирования квантовой механики и квантово-механической теории твердого тела
Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.
доклад [473,4 K], добавлен 24.09.2019 "Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.
реферат [90,7 K], добавлен 21.11.2011Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.
реферат [44,0 K], добавлен 17.02.2010Квантовая теория в ряду других современных физических теорий. Споры и дискуссии о реальности квантово-механических состояний. Необычайность свойств квантовой механики. Основные трактовки и интерпретации квантово-механической теории различными учеными.
реферат [41,8 K], добавлен 28.03.2011Законы квантовой механики, сущность и границы её применимости. Эффект Комптона и свойства света в период формирования новой физики. Волновая теория Бройля и ряд его крупнейших технических достижений. Теория теплового излучения и электромагнетизм.
реферат [36,5 K], добавлен 26.02.2012История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.
реферат [37,0 K], добавлен 25.10.2010Механика и элементы специальной теории относительности. Кинематика и динамика поступательного и вращательного движений материальной точки. Работа и механическая энергия, законы сохранения в механике. Молекулярная физика и термодинамика, теплоемкость.
курс лекций [692,1 K], добавлен 23.09.2009Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.
презентация [39,7 M], добавлен 13.02.2016Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.
реферат [16,0 K], добавлен 29.03.2003Электромагнитная теория механики, связь материи с зарядом, массы с энергией, квантовая природа элементарных явлений и их революционное влияние на все основные понятия физики. Противоречия между картиной движущегося электрона и квантовыми постулатами.
реферат [31,4 K], добавлен 20.09.2009