Развитие логического мышления учащихся при решении задач на построение в курсе геометрии 7 - 9-х классов

Логическое мышление и развитие при обучении математике. Психолого-педагогическая характеристика личности. Интеллектуальное развитие в подростковом возрасте. Анализ учебников по геометрии основной школы. Методика обучения решению задач, этапы построения.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 08.12.2011
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

логическое мышление подросток математика геометрия

Глава 2. Методика обучения решению задач на построение с целью развития логического мышления.

§1. Понятие задачи на построение

1.1 Этапы решения задач на построение

Задачей на построение называется задача, в которой указывается по каким данным, какими средствами (инструментами), какой геометрический образ, обладающий заданными свойствами, требуется построить. [27]

Каждая фигура, удовлетворяющая условиям задачи, называется решением этой задачи.

Найти решение задачи на построение - значит свести ее к конечному числу основных построений, то есть указать конечную последовательность основных построений, после выполнения которых, искомая фигура будет уже считаться построенной в силу принятых аксиом конструктивной геометрии.

Одной из основных проблем методики обучения решению задач на построение является методика введения и изучения этапов решения задач на построение [10]. Еще в IV в. до н. э. древнегреческие геометры разработали общую схему решения задач на построение, которой мы пользуемся и теперь. Процесс решения задачи разбивают на 4 этапа, каждый из которых соответствует логическим операциям, образующим структуру мышления (анализу, синтезу, абстракции и обобщению): анализ, построение, доказательство и исследование. Рассмотрим каждый этап более подробно.

Анализ

Анализ -- это важный этап решения задачи, который мы понимаем как поиск способа решения задачи на построение. На этом этапе должны быть подмечены такие зависимости между данными фигурами и искомой фигурой, которые позволили бы в дальнейшем построить эту искомую фигуру (если мы знаем, как строить искомую фигуру, то никакой анализ уже не нужен).

Чтобы облегчить себе поиск связей между искомой фигурой и данными фигурами, обычно оказывается выгодным иметь перед глазами вспомогательный чертеж, чертеж-набросок, изображающий данные и искомые фигуры примерно в том расположении, которое предусмотрено условием задачи. Чертеж можно выполнить от руки, на глаз - это проект чертежа, который должен образоваться, когда задача уже решена.

На вспомогательном чертеже следует выделить данные элементы и важнейшие искомые элементы. Практически часто удобнее начинать построение вспомогательного чертежа не с данной фигуры, а с примерного изображения исходной фигуры, пристраивая к ней данные так, чтобы они находились в отношениях, указанны в условии задачи. [10]

Если вспомогательный чертеж не подсказывает способа построения искомой фигуры, то пытаются обнаружить какую-либо часть искомой фигуры или вообще некоторую фигуру, которая может быть построена, и которой затем можно воспользоваться для построения искомой фигуры.

Также надо учитывать следующие моменты:

1) если на вспомогательном чертеже не удается непосредственно заметить необходимые для решения связи между данными и искомыми элементами, то целесообразно ввести в чертеж вспомогательные фигуры: соединить уже имеющиеся точки прямыми, отметить точки пересечения имеющихся линий, продолжить некоторые отрезки и т. д. Иногда бывает полезно проводить параллели или перпендикуляры к уже имеющимся прямым;

2) если по условию задачи дана сумма или разность отрезков или углов, то эти величины следует ввести в чертеж, то есть следует изобразить их на чертеже-наброске, если их еще нет на нем;

3) в процессе проведения анализа бывает полезно вспомнить теоремы и ранее решенные задачи, в которых встречаются зависимости между элементами, о которых говорится в условии рассматриваемой задачи. [2]

В Приложении 2 приведен анализ задачи на построение: “Построить треугольник, зная основание, меньший угол при основании и разность двух других сторон”.

Из данного примера видно, что при отыскании решения задачи на построение, как и для арифметических задач, применяется аналитико-синтетический метод. Следуя от вопроса задачи, учитываем, какие элементы нам известны, и, наоборот, исходные данные комбинируем так, чтобы построить искомую фигуру.

Название этапа “анализ” не означает, что для отыскания решения применяется только аналитический метод, подобно тому, как и при доказательстве, которое иногда называют “синтезом”, не всегда применяется синтетический метод рассуждения. При разборе задачи, при отыскании путей ее решения анализ и синтез находятся в постоянном взаимодействии, дополняют и проверяют друг друга.

На данном этапе решения задачи активно развиваются:

-- гибкость мышления, а именно: умение целенаправленно варьировать способы познавательной проблемы, умение выходить за границы привычного способа действия, находить новые способы решения проблем при изменении задаваемых условий;

-- глубина мышления, заключающаяся в умение отделить главное от второстепенного, обнаружить логическую структуру рассуждения;

-- целенаправленность мышления, характеризуемая стремлением осуществлять разумный выбор действий при решении какой-либо проблемы, постоянно ориентируясь на поставленную той проблемой цель и стремлением отыскать наиболее кратчайшие пути ее достижения. [9]

Построение

Второй этап решения задач на построение состоит из двух частей:

1) перечисление в определенном порядке всех элементарных построений, которые нужно выполнить, согласно анализу, для решения задачи;

2) непосредственное выполнение этих построений на чертеже при помощи чертежных инструментов. Действительно, решить задачу с помощью тех или иных инструментов -- значит указать конечную совокупность элементарных, допустимых для данных инструментов, построений, выполнение которых в определенной последовательности позволяет дать ответ на вопрос задачи.

Данный этап вводится при решении самой первой задачи на построение, которой обычно является задача о построении отрезка, равного данному, на данном луче с концом в начале этого луча. В беседе, сопровождающей введение этапа, необходимо отметить, в чем состоит решение любой задачи на построение и указать, что осуществление этого этапа как раз и состоит в перечислении конечного числа операций построения искомой фигуры.

Рассмотрим решение задачи: “Построить квадрат по его диагонали”.

Анализ. Проведя диагональ А1С1 (рис. 1), мы видим, что построение квадрата сводится к построению равнобедренного прямоугольного треугольника А1В1С1 по его гипотенузе A1C1, который затем легко дополнить до квадрата.

Построение. Треугольник А1В1С1 можно строить различными способами. Например:

1) Строим угол B1A1C1, содержащий 45°, и на одной его стороне откладываем отрезок А1С1, и равный данной диагонали. Проведя C1B1A1B1, получим треугольник А1В1С1, который дополняем до квадрата A1B1C1D1, что можно сделать различными способами.

2) Проведем через середину А1С1 перпендикуляр В1О1А1С1 и отложим B1O1=A1O1 и соединим В1 с А1 и С1; получим треугольник A1B1C1.

3) На А1С1, как на диаметре, строим окружность и из точки О1 восставляем перпендикуляр О1В1А1С1 до пересечения с окружностью в точке B1. Соединив В1 с А1 и С1, получим треугольник A1B1C1. Проведя B1D1A1C1, мы сразу можем получить точки B1 и D1, как и в предыдущем случае. Очевидно, что построение треугольника A1B1C1 возможно и другими способами. [11]

Решение одной и той же задачи несколькими способами усиливает интерес учащихся к задачам на построение и сознательное отношение к решению таких задач. Если решать задачи на построение все время по заранее указанным методам, то этим самым сковывается изобретательность и инициатива учащихся в нахождении различных и оригинальных способов решения и им трудно научиться самостоятельно решать конструктивные задачи. Они применяют в первую очередь знания изучаемого материала и навыки, полученные при решении задач, предшествующих данной. Если решались задачи, требующие применения определенного метода, то и для предложенной задачи они изберут тот же знакомый им путь решения, даже если он нерационален. Указание учителя на существование более простого способа не дает должного эффекта, так как предложенное учителем решение кажется учащимся искусственным, которого они сами не смогли бы найти.

Конечно, если это делать до того как ученики приобретут прочные навыки в отыскании решений различными способами, то результаты окажутся отрицательными. Внимание учащихся каждый раз будет распыляться между всеми способами, и они ни одного из них не усвоят основательно, чтобы применять его достаточно сознательно.

Различными способами хорошо решать задачи в конце учебного года, при повторении курса геометрии, когда учащиеся уже имеют достаточные навыки в решении задач на построение. Задачу, допускающую различные способы решения, лучше задавать на дом, чтобы они не только решили, но и нашли наиболее простое решение.

На данном этапе также большее развитие получают такие качества мышления как: гибкость, глубина и целенаправленность.

Доказательство

После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое. Доказательство представляет собой часть решения задачи, по своему логическому содержанию обратную анализу. Если в анализе устанавливается, что всякая фигура, удовлетворяющая поставленным условиям, может быть найдена таким-то и таким-то путем, то в этой, третьей части решения доказывается обратное положение. Это обратное положение в общем виде может быть сформулировано так: если некоторая фигура получена из данных элементов таким-то построением, то она действительно удовлетворяет поставленным условиям. В Приложении 2 приведено решение задачи: “Построить трапецию по четырем сторонам”.

При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: “Построить треугольник по двум сторонам и углу между ними”. Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.

Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.

Хотя доказательство при решении задач на построение проводится аналогично доказательству теорем, с использованием аксиом, теорем и свойств геометрических фигур, между ними имеется и некоторое различие. При доказательстве теорем в большинстве случаев без труда выделяют условие и заключение. При решении задач на построение уже труднее найти данные, на основании которых можно доказать, что построенная фигура является искомой. Поэтому при решении конструктивных задач в классе целесообразно иногда специально выделять, что дано, и что требуется доказать. Например, при решении задачи: “Построить ромб по двум его диагоналям” предлагаем ученику записать, что дано (диагонали взаимно перпендикулярны и, пересекаясь, делятся пополам) и что требуется доказать (стороны равны). В свою очередь при решении задач дома и в контрольных работах можно не требовать оформления доказательства с выделением отдельно условия и заключения. Нет надобности требовать проведения особого доказательства в задачах, где правильность решения очевидна [11].

На этапе доказательства активно развиваются: глубина и критичность мышления, т.к. на этом этапе необходимо проникнуть в сущность каждого из изучаемых фактов, в их взаимосвязи с другими фактами, а также заново проследить ход рассуждения, чтобы наткнуться на противоречие, помогающее осознать ошибку.

Исследование

При построении обычно ограничиваются отысканием одного какого-либо решения, причем предполагается, что все шаги построения действительно выполнимы. Для полного решения задачи нужно еще выяснить следующие вопросы: 1) всегда ли (то есть при любом ли выборе данных) можно выполнить построение избранным способом; 2) можно ли и как построить искомую фигуру, если избранный способ нельзя применить; 3) сколько решений имеет задача при каждом возможном выборе данных? Рассмотрение всех этих вопросов и составляет содержание исследования [2].

Таким образом, исследование имеет целью установить условия разрешимости и определить число решений. Нередко школьники и даже учителя проводят исследование, произвольно выбирая те или иные случаи, причем неясно, почему рассматриваются именно такие, а не какие-либо иные случаи. Остается неясным также, все ли возможные случаи рассмотрены. Практически в большинстве случаев удается достигнуть необходимой полноты исследования, если проводить это исследование по ходу построения, что является наиболее доступным и целесообразным способом. Сущность этого приема состоит в том, чтобы перебрать последовательно все шаги, из которых слагается построение, и относительно каждого шага установить, всегда ли указанное на этом шаге построение выполнимо, а если выполнимо, то однозначно ли.

Рассмотрим решение и исследование задачи: “Построить окружность, касающуюся данной прямой PQ и данной окружности (О; ОА) в заданной на ней точке А”.

Рис. 2

Решение. Решаем эту задачу методом геометрических мест. Проводим прямую ОА (рис. 2). В точке А строим касательную АВ к данной окружности, а затем -- биссектрисы углов РВА и ABQ. Точки пересечения прямой ОА с прямыми ВМ и BN и будут центрами искомых окружностей.

Проводя исследование по построению, легко обнаруживаем, что наше решение не применимо, если OAPQ. Для такого случая рассматриваем решение задачи отдельно. В результате получим, что если ОА не перпендикулярна PQ, то задача имеет два решения, за исключением случая, когда окружность (О; ОА) пересекает PQ в точке А, так как тогда прямые ВМ, ВN и ОА пересекутся в точке А, и окружности не получим. Если же OAPQ, но А не лежит на PQ, то получаем одну окружность с центром на ОА и радиусом, равным половине расстояния от точки А до данной прямой PQ. Если же при этом А лежит на PQ, то задача неопределенная.

Таким образом, для задачи имеются лишь 4 характерные конфигурации исходных данных:

1) ОА не перпендикулярна PQ и А не принадлежит PQ -- 2 решения;

2) OA не перпендикулярна PQ и A принадлежит PQ -- нет решений;

3) OAPQ, но A не принадлежит PQ -- 1 решение;

4) OAPQ и А принадлежит PQ -- бесконечное множество решений. [11]

В итоге таких рассуждений решается вопрос о возможности и однозначности построения искомой фигуры данным способом. Но остается еще открытым вопрос: не возникнут ли новые решения, если изменить как-либо способ построения? Иногда удается доказать, что всякое решение данной задачи совпадает с одним из уже полученных решений. Если же это не удается, то можно предположить, что задача имеет другие решения, которые могут быть найдены другими способами. В этих случаях надо тщательно проверить, нет ли каких-либо иных возможных случаев расположения данных или искомых фигур, которые не были предусмотрены ранее проведенным анализом.

При проведении исследования активно развивается широта мышления. Ведь на этом этапе необходимо обхватить проблему в целом, не упуская при этом имеющих значение деталей, обобщить проблему и расширить область приложения результатов, полученных в процессе её разрешения.

1.2. Методы решения задач на построение

К основным методам решения задач на построение, изучаемых в средней школе, относятся:

1) Метод геометрических мест.

2) Методы геометрических преобразований:

а) метод центральной симметрии;

б) метод осевой симметрии;

в) метод параллельного переноса;

г) метод поворота;

д) метод подобия;

3) Алгебраический метод. [18]

Перечисленные методы являются одним из видов применения на практике соответствующих геометрических понятий, которые составляют основу каждого из методов. Поэтому без хорошего знания этих понятий учениками не может быть никакой речи об успешном усвоении соответствующих методов. Но, с другой стороны, в силах учителя подобрать такую систему задач на построение и так построить обучение, чтобы решаемые задачи углубляли представление и увеличивали знания школьников о данном понятии, раскрывая его с разных сторон. Задачи при изучении конкретного метода должны подбираться так, чтобы в них как можно более ярко проявлялась суть изучаемого метода, особенно на первоначальном этапе его изучения. При этом если задача решается несколькими методами, то изучаемый метод должен позволять решить задачу наиболее экономно и красиво. Рассмотрим более подробно каждый метод.

Метод геометрических мест

Математическая сущность метода геометрических мест весьма проста. Она состоит в том, что искомая точка определяется как точка пересечения некоторых двух геометрических мест (или иногда как точка пересечения некоторого геометрического места с данной прямой или окружностью); при этом те условия задачи, которые определяют положение искомой точки, расчленяются мысленно на два условия, и каждое из них дает некоторое геометрическое место, построение которого оказывается возможным (иногда одно из этих геометрических мест заменяется непосредственно данной прямой или окружностью). [18]

Метод геометрических мест является одним из важнейших приемов решения геометрических задач на построение вообще и должен занимать большое место в решении задач на построение, по преимуществу в 8 классе.

При изложении этого метода в школе дело, конечно, заключается не в том, чтобы учащиеся умели описать суть метода словами, а в том, чтобы учащиеся умели сознательно пользоваться этим методом.

Основа данного метода - понятие геометрического места точек. Геометрическим местом точек (ГМТ) пространства, обладающих данным свойством, называется множество всех точек пространства, каждая из которых обладает этим свойством.

Все остальные точки пространства указанным свойством не обладают. ГМТ задается свойством точек, которое называется характеристическим свойством этого ГМТ (фигуры).

Каждая задача, в которой требуется найти ГМТ по его характеристическому свойству, предполагает требование описать это ГМТ наглядно через известные элементарные фигуры. Решение задачи на отыскание ГМТ неизбежно приводит к доказательству двух утверждений - прямого и ему противоположного; необходимо доказать, что: 1) каждая точка предполагаемого (искомого) ГМТ обладает заданным свойством; 2) любая точка, не принадлежащая этой фигуре, заданным свойством не обладает.

Набор изучаемых ГМТ может быть самым разнообразным. Традиционный школьный набор - это:

а) множество всех точек плоскости, удаленных от данной точки на данное расстояние;

б) множество всех точек плоскости, равноудаленных от двух данных точек;

в) множество всех точек плоскости, удаленных от данной прямой на данное расстояние;

г) множество всех точек плоскости, равноудаленных от двух данных прямых.

Сущность метода геометрических мест заключается в следующем:

а) задача сводится к построению некоторой точки;

б) выясняется, какими свойствами обладает данная точка;

в) рассматривается одно из свойств, строится множество всех точек, обладающих этим свойством;

г) берется следующее свойство и так далее;

д) поскольку искомая точка должна обладать всеми этими свойствами, то она должна принадлежать каждому из построенных множеств, то есть принадлежит пересечению этих множеств.

В Приложении 3 приведено решение задачи: “Построить треугольник АВС по двум высотам, проведенным из вершин B и C, и по медиане, проведенной из вершины A”.

Методические рекомендации по методу ГМТ [10].

Понятие ГМТ, обладающих некоторым свойством, лучше ввести на примере ГМТ, равноудаленных от двух данных точек. А затем, когда будут изучены признаки равенства прямоугольных треугольников, при решении задачи о нахождения точки, равноудаленной от двух данных точек A и B, необходимо дать определение ГМТ, обладающих некоторым свойством, как множество всех точек, обладающих этим свойством.

Уже в 7 классе встречаются некоторые задачи, решение которых можно было бы рассматривать как использование метода геометрических мест (например, задача на построение треугольника по трем сторонам). Однако само упоминание о методе и его изучение должно быть отнесено к 8 классу.

В каком же месте курса 8 класса следует знакомить учащихся с методом геометрических мест? Несомненно, что это должно быть сделано по возможности ранее. Наиболее подходящим для этого временем был бы тот момент, когда учащиеся в конце темы “Четырехугольники” ознакомились с достаточным числом геометрических мест.

Учитель начинает с того, что показывает учащимся, какое значение имеет идея геометрического места при решении хорошо известной им задачи, скажем при построении треугольника по трем сторонам. Пусть основание треугольника AB уже построено; остается определить положение третей вершины C. Выясняется, что для определения положения точки C в задаче остаются два условия: длина сторон АС и ВС. Проводя дугу окружности с центром в точке А и радиусом В, мы строим геометрическое место точек, расстояние которых от точки А равно В; аналогично для второй дуги, и т. д. Вслед за этим может быть предложен как в классе, так и для решения дома, ряд других несложных задач, близких по содержанию к предыдущей, например:

1) построить треугольник по основанию, медиане, проведенной к основанию и боковой стороне;

2) построить треугольник по основанию, боковой стороне и высоте, опущенной на основание.

Целесообразно в качестве одной из первых задач на метод геометрических мест дать и такую задачу, где искомая фигура определялась бы не только по своей форме и размерам, но и по положению на плоскости. Примером может служить следующая задача:

3) построить равнобедренный треугольник, у которого основанием служит данный отрезок АВ, а вершина лежит на данной окружности. [10]

В дальнейшей работе по геометрии в 8 классе задачи на метод геометрических мест должны предлагаться систематически до конца учебного года вместе с задачами на вычисление. Наряду с этим применение метода геометрических мест должно быть отчетливо выяснено учащимся и в тех вопросах теоретического курса, где это уместно. Сюда относятся такие вопросы, как проведение окружности через три точки, построение касательной к окружности из данной точки, построение вписанных и описанных окружностей (при решении этой задачи особенно полезным будет рассмотрение геометрического места точек, равноудаленных от двух пересекающихся прямых, вместо геометрического места точек, равноудаленных от сторон данного угла).

Задачи на построение, решаемые методом геометрических мест, могут быть весьма разнообразными. Не следует ставить себе целью дать какую-либо формальную их классификацию - она не имела бы большой ценности ни с научной, ни с методической стороны. Точно также не следует ставить цель указать некий стандартный список задач этого рода для средней школы. Это просто помощь преподавателю в подборе, а также и в составлении вновь задач такого рода, указав те точки зрения, которых при этом необходимо было бы придерживаться.

Различные задачи на построение, разрешаемые методом геометрических мест, отличаются одна от другой, прежде всего, характером тех геометрических мест, с помощью которых определяется положение искомой точки. Отбирая задачи на построение для решения с каждым классом, следует подумать о том, чтобы в этих задачах встречались, по возможности, разнообразные сочетания этих основных геометрических мест. Тем самым будет обеспечено достаточное разнообразие разрешаемых задач по существу, по той идее, которая лежит в их основе.

Методы геометрических преобразований

Методы этой группы имеют достаточно много общего. Каждый изучается, как правило, при рассмотрении соответствующего преобразования, при этом решаемые задачи служат для закрепления и более глубокого усвоения изучаемого понятия. Для повышения эффективности обучения необходимо, чтобы, кроме первоначальных представлений о самом преобразовании, учащиеся умели выполнять построение образов фигур при этом преобразовании, так как использование образа искомой фигуры при построении есть основа каждого из этих методов, их основная идея и суть.

Если искомую фигуру сразу построить затруднительно, то ее преобразуют в какую-нибудь другую фигуру, построение которой можно сделать легче или непосредственно.

При изучении этих методов целесообразно выделить наиболее характерные признаки с тем, чтобы в будущем, анализируя задачу, ученик мог выбрать соответствующий метод.

Действующая программа по геометрии не предполагает использовать идею геометрических преобразований в качестве руководящей идеи школьного курса геометрии, хотя использование геометрических преобразований при решении задач на построение имеет большое методическое значение. [26]

Метод центральной симметрии

Симметрией относительно точки O (центральной симметрией) Z0 пространства называется преобразование пространства, которое точку O отображает на себя, а любую другую точку М отображает на такую точку М1, что точка O является серединой отрезка ММ1.

Данный метод применим к тем задачам, в условии которых в той или иной форме указана точка, являющаяся центром симметрии искомой или вспомогательной фигуры.

Рассмотрим задачу: “Через данную точку A провести прямую так, чтобы ее отрезок с концами на данных прямой и окружности делился точкой пополам”.

1. Решение. Пусть m и ? -- данные прямая и окружность, CD --искомый отрезок, Сm, Dа (рис. 3). Тогда ZA(C) = D. Если ZA(m) = m1, то Dm1 и, следовательно, Dаm1. Отсюда вытекает такое построение: строим образ m1 прямой m при симметрии ZA, точки D и Е пересечения прямой m1 с данной окружностью ? определяют вместе с точкой А искомые прямые DA и ЕА .[20]

Метод осевой симметрии

Симметрией пространства относительно данной прямой l (осевой симметрией) Sl называется преобразование, которое каждую точку прямой l отображает на себя, а любую другую точку М пространства отображает на такую точку М1, что прямая l служит серединным перпендикуляром к отрезку ММ1. Прямая l называется осью симметрии.

Трудно указать общие признаки задач, решаемых методом осевой симметрии. В более сложных задачах метод осевой симметрии, нередко спрямляющий ломаные линии в прямые, может быть применим, если в условиях содержится сумма или разность частей некоторой ломаной линии. Можно ограничится указанием, что метод осевой симметрии применим для задач, в условии которых указана прямая, являющаяся осью симметрии части элементов фигуры. Такую прямую легко установить по свойствам фигур. Применение осевой симметрии целесообразно для задач, которые легко решаются, если часть данных расположена по одну сторону некоторой прямой, а остальные - по другую.

Рис. 4

Рассмотрим задачу: “Построить ромб так, чтобы одна из его диагоналей была равна данному отрезку r и лежала на данной прямой а, а остальные две вершины ромба лежали соответственно на данных прямых b и с”.

Анализ. Пусть (рис.4) ABDC -- искомый ромб, AD = r. Замечаем, что задача о построении ромба сводится к построению одной какой-либо из его вершин, например вершины С. По свойствам ромба точки В и С симметричны относительно прямой а. Поэтому при осевой симметрии относительно прямой а точка В преобразуется в точку С, а, следовательно, прямая b -- в некоторую прямую b', проходящую через точку С. Таким образом, точка С может быть построена как точка пересечения прямых с и b', из которых одна дана, а другая легко строится.

Построение. Строим последовательно: прямую b', симметричную с прямой b относительно прямой а; точку С, общую для прямых с и b'; прямую ВС; точку О ВС а; точки А и D на прямой а, отстоящие от точки О на расстоянии ; ABCD -- искомый ромб.

Доказательство ввиду его простоты опустим.

Исследование. Возможны следующие случаи: 1) с || b', решений нет; 2) с b', решений бесконечно много; 3) прямые с и b' пересекаются вне прямой а, одно решение; 4) прямые с и b' пересекаются на прямой а, решений нет .[2]

Метод параллельного переноса

Параллельным переносом на вектор называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что вектор равен вектору .

Методом параллельного переноса решают задачи, при анализе которых трудно найти зависимость между данными элементами, позволяющую построить искомую фигуру (данные элементы удалены друг от друга); но если мы какую-нибудь часть или всю фигуру перенесем параллельно в некотором направлении на определенное расстояние, то получим вспомогательную фигуру, которую легко можно построить. Направление и величина переноса определяются так, чтобы во вспомогательную фигуру вошло большее число данных.

Рассмотрим задачу: “Построить выпуклый четырехугольник, зная три его угла и две противоположные стороны”.

Подробнее: даны два отрезка а и b и три угла ?, ?, ?. Требуется построить четырехугольник ABCD так, чтобы А = ?, В = ?, D = ?, AD = a, СВ = b. Предполагается, что 0° < ? < 180°, 0° < ? < 180°, 0°< ? < 180°.

Рис. 5

Анализ. Допустим, что ABCD (рис. 5) -- искомый четырехугольник. Перенесем сторону ВС на вектор , и пусть отрезок ВС займет после переноса положение АЕ. Тогда в AED известны: AD = a, AE = b, DAE = BAD -BAE = = A - (180° - B) = ? + ? - 180°. По этим данным AED может быть построен.

Рис. 6

Построение

.1) На произвольной прямой строим отрезок AD = а (рис. 6);

2) Через точку A проводим луч AM под углом ? + ? - 180° к лучу AD;

3) Откладываем на луче AM отрезок АЕ = b;

4) Строим луч EN, образующий с ЕА угол ? и расположенный с точкой D по разные стороны от прямой AM;

5) Строим луч DK так, чтобы ADK был равен ? и чтобы луч DK располагался по ту же сторону прямой DE, что и луч EN;

6) Отмечаем точку C пересечения лучей EN и DK -- третью вершину четырехугольника;

7) Четвертая вершина B получается в пересечении прямой AF, параллельной СЕ, с прямой CL, параллельной АЕ.

Доказательство. BAD = ВАЕ+DAE = (180° - ?) + (? + ? - 180°) = ?. ABC = СЕА, как углы, стороны которых соответственно параллельны и противоположно направлены. СЕА = ? по построению. ADC = ? по построению. Отрезок AD = а по построению. ВС = АЕ, как отрезки параллельных между параллельными. Но АЕ = b, а значит, и ВС = b. [2]

Метод поворота

Поворотом плоскости вокруг точки О на угол ? называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 = ?.

Данный метод применяется к тем задачам, где либо части фигур сближаются в положение, удобное для построения, либо при заданных явно или косвенно центре и угле поворота требуется отыскать две соответственные точки, лежащие на данных или искомых фигурах.

Рассмотрим задачу: “Земельный участок квадратной формы был огорожен. От изгороди сохранились два столба на параллельных сторонах квадрата. Кроме того, остался столб в центре квадрата. Требуется восстановить границу участка”.

Анализ. Пусть ABCD -- искомый квадрат, О -- его центр, М и N-- данные точки соответственно на сторонах АВ и CD (рис. 7). Если повернуть квадрат на 180° около его центра О, то он преобразуется сам в себя. Точка М займет некоторое положение М' на стороне CD, а точка N -- некоторое положение N' на стороне АВ. После этого нетрудно уже построить прямые АВ и CD и восстановить искомый квадрат.

Построение. 1) Строим точку М', симметричную М относительно 0, и точку N', симметричную N относительно О. 2) Строим прямые MN' и NM'.

3) Повернем построенные прямые около точки О на 90°. Четыре построенные прямые ограничивают искомый квадрат.

Доказательство опускаем.

Исследование. По смыслу задачи невозможен случай, когда точки М и N располагаются с точкой О на одной прямой, но не симметричны относительно О. Если точки М и N симметричны относительно О, то задача становится неопределенной. В остальных случаях задача имеет единственное решение. [2]

Метод подобия

Метод подобия состоит в том, что сначала строится некоторая фигура, подобная искомой, но удовлетворяющая не всем поставленным в задаче условиям. Затем построенную вспомогательную фигуру заменяем фигурой, ей подобной и удовлетворяющей уже всем требуемым условиям. [18]

Задача решается методом подобия, если ее условие можно разделить на две части, одна из которых определяет форму фигуры с точностью до подобия, а вторая - размеры фигуры. При решении задач в классе или разборе задач из домашнего задания на этот метод следует задавать учащимся вопросы: Что (какая часть) в условии задачи определяет фигуру с точностью до подобия? Что определяет размеры искомой фигуры?

Методические рекомендации по методу подобия [10].

При разборе метода подобия целесообразно классифицировать решаемые задачи по способу задания размеров искомой фигуры:

1) задачи, в которых размеры искомой фигуры определяются заданием некоторого отрезка;

2) задачи, в которых размеры искомой фигуры определяются заданием суммы или разности некоторых ее отрезков;

3) задачи, в которых размеры искомой фигуры определяются положением ее относительно данных фигур.

Такая классификация удобна, главным образом, потому, что для каждой из трех групп задач способы выбора центра подобия различны.

В задачах из первой группы за центр подобия лучше всего выбирать один из концов отрезка вспомогательной фигуры, соответствующего данному отрезку, через который проходит наибольшее число прямолинейных отрезков искомой фигуры, так как при гомотетии лишь прямые, проходящие через центр подобия, преобразуются сами в себя. При таком выборе легко находить одну точку (второй конец данного отрезка) искомой фигуры, что в большинстве случаев значительно облегчает выполнение дальнейшего построения.

И для задач второй группы за центр подобия можно выбирать один из концов построенной суммы или разности отрезков, соответствующей данной. Целесообразно расчленить подобное преобразование: отдельно найти один из отрезков, сумма или разность которых дана, а затем выполнить построение искомой фигуры.

При решении задач третьей группы центр подобия уже определяется, и в большинстве случаев однозначно, расположением фигуры, подобной искомой, относительно данных фигур. [10]

В Приложении 3 приведено решение задачи на метод подобия: “Построить трапецию ABCD по углу А и основанию ВС, если известно, что AB:CD:AD = 1:2:3”.

Алгебраический метод

Алгебраический метод решения задач на построении - один из важнейших методов теории конструктивных задач. Именно с помощью этого метода решаются вопросы, связанные с разрешимостью задач тем или иным набором инструментов.

Кроме того, это один из самых мощных методов, позволяющий решать многие задачи, решение которых обычными способами затруднительно. Метод прекрасно демонстрирует тесную взаимосвязь алгебры и геометрии.

Но, к сожалению, в школьном курсе геометрии алгебраическому методу практически не уделяется внимания, хотя с методической точки зрения изучение этого метода не представляет особых сложностей.

Суть метода состоит в следующем:

а) задача сводится к построению некоторого отрезка;

б) используя известные геометрические соотношения между искомыми и данными, составляют уравнение (систему уравнений), связывающее искомые и данные;

в) решая уравнение или систему уравнений, выражают формулой длину искомого отрезка через длины данных;

г) по формуле строится искомый отрезок (если это возможно);

д) с помощью найденного отрезка строится искомая фигура.

Подготовительную работу составляет изучение основных формул и способов построения, где также отрабатываются некоторые элементы схемы решения задач алгебраическим методом, и усваивается сама идея такого подхода к решению задач на построение.

В школьном курсе геометрии обычно рассматривают построения циркулем и линейкой отрезков, заданных следующими некоторыми простейшими формулами [2]:

1) х = а + b (рис. 8).

2) х = а -- b(а > b) (рис. 9).

Рис. 8 Рис.9

3) х = nа, где n -- натуральное число. Сводится к построению 1). На рис. 10 построен отрезок х, такой, что х = 6а.

Рис. 10 Рис. 11

4) х = .

Строим луч, выходящий из какого-либо конца О данного отрезка а под произвольным углом к нему. Откладываем на этом луче n раз произвольный отрезок b, так что OB = nb (см. рис. 11). Соединяем точку В со вторым концом А отрезка а. Через точку В1, определяемую условием 0В1 = b, проводим прямую, параллельную АВ, и отмечаем точку A1, в которой она пересечет отрезок а.

5) х = а (n и m -- данные натуральные числа).

Разделим отрезок а на m равных частей и увеличим полученный отрезок в n раз.

6) х = (построение отрезка, четвертого пропорционального трем данным отрезкам).

Запишем условие в виде пропорции с : а = b : х. Пусть (рис. 12) ОА = а, ОС = с, так что члены одного из отношений отложены на одном луче, исходящем из точки О. На другом луче, исходящем из той же точки, откладываем известный член другого отношения ОB = b. Через точку А проводим прямую, параллельную ВС, и отмечаем точку X ее пересечения с прямой ОВ. Отрезок ОХ искомый, то есть ОХ = х.

Рис. 12 Рис. 13 Рис. 14

7) x = .

Можно воспользоваться построением 6), полагая b = а.

8) х = (построение среднего пропорционального двух данных отрезков).

Строим отрезки АС = а, ВС = b, так что АВ = а + b. На АВ как на диаметре строим полуокружность (см. рис. 13). В точке С восставим перпендикуляр к АВ и отметим точку D его пересечения с окружностью. Тогда х = CD.

9) х = Отрезок x строится как гипотенуза прямоугольного треугольника с катетами а и b (см. рис. 14).

10) х = (a > b). Отрезок x строится как катет прямоугольного треугольника с гипотенузой а и катетом b.

К рассмотренным построениям можно свести построение отрезков, заданных более сложными формулами.

Желательно постепенное изучение этих формул, когда каждая из них разбирается при рассмотрении теории, необходимой для осуществления соответствующего построения.

На этом месте целесообразно также введение простейших задач на алгебраический метод (например, задача о восстановлении отрезков по их сумме и разности) с тем, чтобы формулы рассматривались во взаимосвязи. В дальнейшем, перед серьезным изучением метода, формулы следует повторить.

В Приложении 3 приведена задача на алгебраический метод: “Из вершин данного треугольника как из центров описать три окружности, касающиеся попарно внешним образом”.

Вывод: описанные методы рекомендуется использовать для решения геометрических задач на построение. При этом необходимо обращать внимание, в том числе, и на развитие инициативы учащихся, привитие им интереса и навыков к решению конструктивных задач.

Было бы неправильно думать, что методы решения задач на построение могут служить основой для классификации самих задач. Существенным, а не случайным следует признавать то обстоятельство, что целый ряд задач на построение может одинаково успешно решаться различными методами. С другой стороны, существуют задачи, которые решаются просто комбинацией основных построений без явного применения какого-либо метода.

С методической точки зрения наиболее приемлемым является применение при обучении решению задач на построение следующего принципа. Необходимо осуществлять последовательный подбор задач в соответствии с целями курса геометрии и постепенное ознакомление учащихся с методами решения задач на построение.

В свою очередь, необходимо ознакомить учащихся с самими методами и научить определять, каким из них можно решить предложенную задачу. Для этого, прежде всего, учащихся необходимо научить выделять наиболее характерные признаки задач, решаемых тем или иным методом. Эти признаки определяются самим содержанием метода.

§2. Методические особенности обучения решению задач на построение.

2.1. Ведение понятия «задача на построение»

По программе в 7 классе после изучения окружности рассматриваются построения циркулем и линейкой. Начать изучение этой темы следует с рассмотрения следующих вопросов: а) структура задачи на построение; б) возможности циркуля и линейки; в) четырехэтапная схема решения задачи на построение; г) требования к решению задачи на построение в 7 классе.

При знакомстве с понятием «задача на построение» надо показать отличие задач на построение от других видов задач. Поэтому нужно объяснить учащимся, что задача на построение имеет особую структуру (по-особому устроена): в ней даны геометрические фигуры и условия, связывающие их между собой; а требования такой задачи можно разделить на две части:

1) построить новую фигуру, связанную с данными фигурами некоторыми условиями;

2) определенным набором инструментов.

О втором требовании учитель должен сообщить учащимся, даже если его нет в учебнике. Учителю следует подчеркнуть, что новую фигуру, которую требуется построить, называют по-другому «искомой», что в некоторых задачах инструменты указываются, а в задачах, где инструменты не указаны, подразумеваются циркуль и линейка, именно ими будут выполняться теперь все построения. Разговор о структуре задачи на построение необходим и для обучения учащихся краткой записи, которую удобно делать в следующем виде:

Дано: (указываются данные фигуры и условия, связывающие их между собой).

Построить:... (указывается вид искомой фигуры) так, чтобы: (перечисляются условия, связывающие искомую фигуру с данной). На последующих уроках в процессе решения задач следует объяснить учащимся, что прежде чем записывать данные фигуры и условия, связывающие их между собой, нужно хорошо понять, что дано:

1. Если даны вид и расположение фигур относительно друг друга, то в «Дано» нужно записывать только обозначение этих фигур и с помощью имеющихся значков отношения между ними, а сами фигуры изобразить позднее там, где будут выполняться построения. Например:

Задача. Даны две параллельные прямые и точка на одной из них. Построить окружность, касающуюся этих прямых и проходящую через данную точку.

Краткая запись будет следующей:

Дано: прямые а и b, А; А а, а // b,

Построить окружность так, чтобы: 1) а касалась окружности;

2) b касалась окружности;

3) А принадлежала окружности.

2. Если даны вид и размеры фигур, без учета взаимного расположения, то в «Дано» следует изобразить и обозначить фигуры. Например:

Задача. Построить треугольник по двум сторонам и радиусу описанной окружности.

Дано:

Построить: треугольник АВС так, чтобы:

1) ВС = а; 2) АС = b; 3) А, В, С принадлежали окружности (О; К).

Затем нужно объяснить учащимся, что «решить задачу на построение определенными инструментами» - значит свести ее к числу простейших задач, «элементарных операций», которые могут быть выполнены этими инструментами. Обсуждая, какие простейшие построения можно выполнить циркулем и линейкой необходимо обговорить все, что можно выполнить этими инструментами, в том числе то, что раньше считалось само собой разумеющимся, а именно: можно построить точки принадлежащие и не принадлежащие построенной фигуре, а также найти общие точки построенных фигур или выбрать одну из них. Именно отсюда следуют возможности построения произвольной точки, прямой, общей точки двух прямых, прямой и окружности, двух окружностей.

Полное решение всякой задачи на построение осуществляется обычно в четыре этапа: анализ, построение, доказательство и исследование. Данная схема решения, конечно же, должна быть сообщена учащимся, но на первом уроке можно не объяснять суть каждого этапа, ограничиваясь минимальным, например: прежде чем построить фигуру, нужно найти способ построения, увидеть план - 1 этап; затем нужно это построение осуществить - 2 этап; проверить верно ли построение - 3 этап и дать ответ: всегда ли получается искомая фигура и сколько их может получиться - 4 этап.

Даже это знакомство позволяет сразу решать задачи по полной схеме. с понятиями «анализ», «построение», «доказательство» и «исследование» происходит постепенно как по времени ознакомления с ними, так и по степени их понимания. Первым по времени вводится понятие построение, вторым и третьим, почти одновременно, доказательство и исследование, последним анализ. Для достижения более глубокого понимания сути этих понятий учитель в процессе решения задач должен систематически обращаться к ним, дополняя знания учащихся.

Следует обсудить с учащимися также вопрос о том, в каком случае задача будет считаться решенной. Задача считается решенной, если описан ход построений и доказано, что построенная фигура является искомой, т.е. удовлетворяет всем требуемым условиям. Нужно обучить учащихся, что любую задачу необходимо решать по четырехэтапной схеме, но в начале изучения задач

письменно оформлять только один этап: построение, а остальные проводить устно.

Полную же схему решения лучше показать позже (в 8 классе) на специально подобранной задаче, которая бы допускала один наиболее естественный ход решения (при анализе задачи мысль учащихся должна легко пойти по вполне определенному пути), чтобы она требовала исследования, и в то же время, чтобы это исследование не было слишком сложным. Вместе с тем задача не должна быть слишком простой, так как в этом случае способ решения может оказаться очевидным для учащихся, и тогда анализ задачи покажется им чем-то искусственным. Наиболее подходящими для этой цели являются задачи, решаемые методом геометрических мест. Хорошим примером для иллюстрации общей схемы решения задач на построение является задача: “Построить треугольник по двум сторонам и острому углу, лежащему против одной из них”.

Сделав чертеж произвольного треугольника, учащиеся составляют план построения и при соответствующем выборе данных получают два решения. Они видят необходимость доказательства (проверки, какой из полученных треугольников является искомым), а также и необходимость исследования (всегда ли получим два решения?). Здесь естественно выделяются все этапы и очевидна их целесообразность. Если учащиеся хорошо владеют основными построениями, больших затруднений в оформлении решений они не испытывают. [27]

Эта задача на построение является хорошим примером, показывающим связь между числом решений задачи на построение треугольника по определенным данным и признаками равенства треугольников.

При решении задач на построение параллелограммов хорошим примером для повторения общей схемы будет задача: “Построить параллелограмм по стороне и двум диагоналям”.

После того как схема решения задачи на построение объяснена учащимся, этой схемы следует придерживаться при решении всех дальнейших задач на построение.

Тем не менее, необязательно все задачи решать, строго придерживаясь схемы с подробным описанием всех этапов. Ученики проводят анализ лишь тогда, когда решение задачи не очевидно, доказательство - когда в нем есть необходимость.

Усвоение учащимися общей схемы имеет большое значение не только для решения задач на построение. С методической точки зрения и при решении арифметических задач, и при решении задач на составление уравнений мы пользуемся теми же четырьмя этапами, что и при решении задач на построение.

Остановимся более подробно на рассмотрении этапа “исследование”. Каждая задача на построение включает в себя требование построить геометрическую фигуру, удовлетворяющую определенным условиям, которые в большинстве своем задаются размерами или положением некоторых геометрических образов. Условия задач формулируются в самом общем виде, а поэтому исходные данные являются как бы параметрами, принимающими всевозможные допустимые значения. Необходимо учить школьников видеть эти допустимые значения.

Они определяются наиболее естественным образом. Например, в задаче: “Построить треугольник по двум сторонам а и b и углу С между ними” допустимыми значениями для а и b будут всевозможные отрезки, которые можно характеризовать положительными числами, их длинами, а угол С может принимать всевозможные значения от 0° до 180°.

Рассмотрим задачу: “Построить окружность, касающуюся данной окружности в данной на ней точке и данной прямой”. В ней прямая может занимать любое положение на плоскости. Окружностью также может быть любая окружность на плоскости. Но так как окружность характеризуется положением центра и величиной радиуса, то можно сказать, что центром данной окружности может быть любая точка плоскости, а радиусом - любой отрезок, длина которого 0<?<?.

Иногда рассматривают и направленные окружности, тогда уже радиус может быть и неположительным числом, но подобные случаи обычно оговариваются в условии задачи. Точка также может занимать произвольное положение, но уже не на плоскости, а на данной окружности, так как она обязательно должна принадлежать ей.

Решение задачи на построение считается законченным, если указаны необходимые и достаточные условия, при которых найденное решение является ответом на задачу. Значит, мы при всяком выборе данных должны устанавливать: имеет ли задача решение и если имеет, то сколько. Например: “Построить окружность, проходящую через три данные различные точки”. Если данные точки не лежат на одной прямой, то задача имеет решение и притом только одно; если же точки лежат на одной прямой, то задача решения не имеет.

Переходим теперь к одному из самых существенных, в методическом отношении, вопросов исследования задачи на построение. Как установить и перечислить все те случаи, которые имеют существенное значение для решения данной задачи? Известно, что очень часто учащиеся, решающие ту или иную задачу, особенно на первых порах, пытаются исследовать ее, исходя из вопроса: “А что будет, если…”, придумывая те или иные “если” более или менее произвольно. Необходимо приучать учащихся вести исследование по самому ходу построения. Желая исследовать задачу, надо в последовательном порядке перебрать еще раз те операции, из которых слагается построение, и для каждой из этих операций определить, всегда ли она возможна, какое число точек, отрезков и т. д. эта операция может давать. Таким путем удается сравнительно легко научиться исследованию задачи.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.