Этапы развития физиологии как науки

Принцип функциональных систем в саморегуляции функций организма. Классификация мышечных волокон. Проводящие пути спинного мозга и их физиологическая роль. Тонус центров автономной нервной системы. Физико-химические свойства крови. Анализ кишечного сока.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 12.06.2016
Размер файла 301,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Физиология. Её место в системе мед. образования

Физиология - наука о природе, о существе жизненных процессах. Изучает процессы жизнедеятельности организма и отд.его частей клеток.,орг.,систем. Предметом явл функции орг-ма, их связь между собой, регуляция и приспособление к внеш среде, происхождение и становление в процессе эволюции и индивид.

Задачи ф-и: обучить буд.врачей пониманию мех-ма функционирования каждого органа (функц.мышление), знание принципов получения достов.инф-и о функциях (методическая подготовка буд.врачей=основы функц.диагностики), оценивать и рац.подготавливать здорового человека к видам труда, разработке принципов проф.отбора, диеты и проч.

2. Адаптация. Виды. Адаптац.синдром и его фазы

Ад-я-все виды врожд. и приобр.приспособит.деят-ти, которые обеспечиваются на основе физиол.проц., происходящих на клеточном,орг.,организменном,системном ур-ях. Различают ряд видов ад-и. Физиол.ад-ей наз-ся достижение устойчивого ур-ня активности орг-ма и его частей, при кот. возм. длит. активная деят-ть орг-ма, включая труд.акт-ть в изменённых усл-х сущ-я и спос-ть воспроизв. здор.потомство. Адаптац.р-и делят на ОБЩИЕ (происх.под влиянием любого дост.сильного и длит.стимула и сопр.однотипными сдвигами ф-й орг-ма) и ЧАСТНЫЕ (проявл.в зав.от хар-ра и св-в воздействующего фактора) Неспецифическ.(общий) отв. - стресс,а вызыв.его фактор - стрессор(Селье Г.) По Селье, общ.адапт.синдром как ответная р-я на стрессор включ.в себя усиление деят-ти гипоталамуса,гипофиза с ^АКТГ,гипертрофию коры надпочечников,атроф.вилочк.ж-зы, изъязвление слизистой ж-ка. В общ.адаптац.синдроме С.выделил 3 фазы:

1.р-я тревоги, когда сопротивление сниж-ся;

2.фаза повышения сопротивления;

3.фаза истощения мех-в сопрот-я; если орг-м возвр.к исх.усл.,то он постепенно утрачивает приобр.адапт.

В развитии адаптац выдел 2 этапа: начальная- срочная и последующая-долговременная. Срочная адаптация - разв.сразу с началом действия стрессора на основе готовых физиол.мех-в(напр.,^теплопрдукции в отв.на холод, ^вентиляции лёгк.при vО2 в возд). Долгосрочная ад-я -постепенно,в результате длит.или многокр.возд-я стрессора.

3. Осн.этапы развития физиологии как науки. Выдающиеся открытия в области физиологии

Ф-я обязана своим возн-м потребностям мед-ны и стремл.ч-ка познать себя. Уже в др.времена формировались элементарные представления о деят-ти орг-ма ч-ка, являясь обобщением накопленного опыта ч-ва.

ГИППОКРАТ (460-377): орг-м ч-ка - единство жтдк.сред и психического склада личности,подчёркивая связь ч-ка со средой обитания.

ГАЛЕН(129-201): ввёл живосечение как метод исслед-я, указал на роль диафр.и межрёб.в дых-и;связал псих-е ф-и с головн.мозгов, наличие крови в арт-ях; В СРЕДНИЕ века - врачи арабск.востока(Ибн-Аль-Нафиз описал малый кр.кр-я), эпоха возр-я: успехи в хим.,физ,изобр.микроскопа,соверш.точных наук,

Р.ДЕКАРТ(1596-1650)-рефлекторный принцип орг-и движ-й,

У.ГАРВЕЙ (откр.кровообращение - 1628), 17в. - ряд исслед-й по физ-и мышц,дыхание,обм.в-в (Хелс,Лаувазье),

РАН(1724)Бернулли:движ-е крови по кр.сосудам. 19в.-рассцвет аналитич.физиологии, когда были сделаны выдающиеся открытия практически во всех сист.орг-ма. 19-20вв - физ-я в РФ стала одной из передовых в мире,в чём важн.роль сыграли школы Сеченова, Павлова. Фи-я нервов и м-ц,как возб.тканей(Пфлюгер,Гельмгольц,Бабухин,Данилевский), передача нервн.имп.в синапсах(О.Леви - ноб.премия1936), иссл.ф-й мозга (Сеченов: открыл торможение в ЦНС книга «Рефлексы головн.мозга»), И.И.Павлов (учение о высшей нервной деятельности, физиология пищеварения, продолжил Анохин).

4. Понятие о физиологической функции

Физиология -- наука о природе, о существе жизненных процессов. Физиология изучает жизнедеятельность организма и отдельных его частей: клеток, тканей, органов, систем. Предметом изучения физиологии являются функции живого организма, их связь между собой, регуляция и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи.

Физиологическая функция (functio -- деятельность) -- проявления жизнедеятельности организма и его частей, имеющие приспособительное значение и направленные на достижение полезного результата. В основе функции лежит обмен веществ, энергии и информации.

5. Понятия об управлениях в живых организмах (принципы, способы, механизмы, средства, формы)

Управление-совокупн процессов, обеспечив необходим режимы функционирования, достижение определенных целей или полезных для организма приспособительных результатов. Управление возможно при наличии взаимосвязи органов и систем. Процессы регуляции охватывают все уровни организации.

Принципы: 1)управление по рассогласованию (регулирует разность между задаваемым и фактическим значением величины, например, стимуляция образования глюкозы при уменьшении ее содержания в крови);2)управление по возмущению(выработка компенсирующего вождействия, в результате которого показатель возвращается в исходное положение, например, увеличение глюкозы в крови ведет к стимуляции образования инсулина);3)управление по прогнозированию (выработка воздействия при поступление сообщения о предстоящих изменениях окружающей среды, например, вид или запах пищи).

Способы: 1)запуск(от активной деятельности к состоянию покоя); 2) коррекция(управляет деятельность органа); 3)координация(согласование работы нескольких органов или систем одновременно для получения полезного приспособительного результата).

Механизмы: 1)гуморальный - изменение физиологич активности органов или систем под влиянием химических веществ. Х-но: относительное медленное распространение и диффузный характер воздействий. 2)нервный - изменение физиологич активности органов или систем под влиянием воздействий, передаваемых из ЦНС. Х-но: высокая скорость распространения, точная передача объекту и высокая надежность осуществления связи. В естеств условиях механизмы работают как единый нейрогуморальный механизм управления.

Средства: нервн механизм использует афферентн и эфферентн каналы связи, а гуморальный- химич вещества - продукты обмена веществ.

Формы: 1) аутокринное - выделение клетками химических средств управления в межклеточную среду; 2) паракринное - выделение клетками химических средств управления в межтканевую жидкость; 3) телекринная - выделение клетками химических средств управления в кровь.

6. Понятие о саморегуляции физиологических функций и её мех-мах.(прямая/обратн.связь)

Функциональные системы (ФС) представляют собой динамически складывающийся саморегулирующийся комплекс центральных и периферических образований, обеспечивающий достижение полезных приспособительных результатов. В состав каждой ФС включаются различные органы и ткани. Объединение последних в ФС осуществляется результатом, ради достижения которого создается ФС. Этот принцип организации ФС получил название принципа избирательной мобилизации деятельности органов и тканей в целостную систему. Например, для обеспечения оптимального для метаболизма газового состава крови происходит избирательная мобилизация в ФС дыхания деятельности легких, сердца, сосудов, почек, кроветворных органов, крови.Включение отдельных органов и тканей в ФС осуществляется попринципу взаимодействия, который предусматривает активное участие каждого элемента системы в достижении полезного приспособительного результата. Организация различных ФС в организме принципиально одинакова. В этом заключается принцип изоморфизма ФС.

Аппараты управления ФС. Построены по принципу изоморфизма и складываются из стадий:

исходная стадия афферентного синтеза (основа лежит доминирующая мотивация, возникающая на базе наиболее значимой в данный момент потребности организма),

принятие решения (избирается единственный путь для удовлетворения ведущей потребности организма. Происходит ограничение степеней свободы деятельности ФС),

акцептор результатов действия представляет собой аппарат предвидения, прогнозирования, моделирования итогов деятельности ФС, где моделируются и сопоставляются параметры результата с афферентной моделью,

программа действия (эфферентный синтез) представляет собой согласованное взаимодействие соматических, вегетативных и гуморальных компонентов в целях успешного достижения полезного приспособительного результата. Эта программа определяет включение эфферентных структур, необходимых для получения полезного результата.

Принципы взаимодействия ФС.

Принцип системогенеза избирательное созревание и инволюцию функциональных систем. Так, ФС кровообращения, дыхания, питания и их отдельные компоненты в процессе онтогенеза созревают и развиваются раньше других ФС.

Принцип мультипараметрического (многосвязного) взаимодействия определяет обобщенную деятельность различных ФС, направленную на достижение многокомпонентного результата. Например, параметры гомеостаза (осмотическое давление, КОС и др.) обеспечиваются самостоятельными ФС, которые объединяются в единую обобщенную ФС гомеостаза.Принцип иерархии предполагает, что ФС организма выстраиваются в определенный ряд в соответствии с биологической или социальной значимостью. Например, в биологическом плане доминирующее положение занимает ФС, обеспечивающая сохранение целостности тканей, затем -- ФС питания, воспроизведения и др.

Принцип последовательного динамического взаимодействияпредусматривает четкую последовательность смены деятельности нескольких взаимосвязанных ФС. Фактором, определяющим начало деятельности каждой последующей ФС, является результат деятельности предыдущей системы. Еще одним принципом организации взаимодействия ФС является принцип системного квантования жизнедеятельности. Например, в процессе дыхания можно выделить следующие системные «кванты» с их конечными результатами: вдох и поступление некоторого количества воздуха в альвеолы; диффузия О2 из альвеол в легочные капилляры и связывание О2 с гемоглобином; транспорт О2 к тканям; диффузия О2 из крови в ткани и СО2 в обратном направлении; транспорт СО2 к легким; диффузия СО2 из крови в альвеолярный воздух; выдох.

7. Принцип Функциональных систем в саморегуляции функций организма. Аппараты управления и основы взаимодействия функц.систем

Гомеостаз -- относительное динамическое постоянство внутренней среды и устойчивость физиологических функций организма. Основным механизмом поддержания гомеостаза является саморегуляция. Саморегуляция представляет собой такой вариант управления, при котором отклонение какой-либо физиологической функции или характеристик (констант) внутренней среды от уровня, обеспечивающего нормальную жизнедеятельность, является причиной возвращения этой функции (константы) к исходному уровню. В ходе естественного отбора живыми организмами выработаны общие механизмы управления процессами приспособления к среде обитания (эндокринные, нейрогуморальные, иммунологические и др.), направленные на обеспечение относительного постоянства внутренней среды. Процессы саморегуляции основаны на использовании прямых и обратных связей. Прямая связь предусматривает выработку управляющих воздействий на основании информации об отклонении константы или действии возмущающих факторов. Например, раздражение холодным воздухом терморецепторов кожи приводит к увеличению процессов теплопродукции. Обратные связи заключаются в том, что выходной, регулируемый сигнал о состоянии объекта управления (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь усиливает управляющее воздействие, позволяет управлять значительными потоками энергии, потребляя незначительные энергетические ресурсы. Отрицательная обратная связь ослабляет управляющее воздействие, уменьшает влияние возмущающих факторов на работу управляющих объектов, способствует возвращению измененного показателя к стационарному уровню. Гомеостаз организма в целом обеспечивается согласованной содружественной работой различных органов и систем, функции которых поддерживаются на относительно постоянном уровне процессами саморегуляции.

Возбудимые ткани

8. Строение и функц.особенности клет.мембран и ионных каналов

Биол.мембр.образуют нар.оболочку всех кл-к и формируют многочисл.органеллы. (бислой липидов +белки+УВ), 6-12нм.

Функции: 1)барьерная (препятств.своб.диффузии,поддерживРосм), 2)регуляторная (регуляция содержимого кл-ки),3)контактная(контакты м/у кл-ми -обмен ионами,медиаторами, и пр.,передача электр.сигналов),4)преобразование внешних стимулов неэлектр.природы в электр.сигналы; 5) высвоб-е нейромедиаторов в синаптических окончаниях.

Электрич.хар-ки мембран:ёмкостные св-ва(непроницаема для гидратированных ионов,но достаточно тонкая и обесп.эффективн.разделение зарядов); проводимость (обратна сопротивлению),степень проницаемости(спос-ть пропускать в-ва, зависит от диффунд.в-ва и его концентрации). ИоныNa.K.Ca.Cl-проникают в Кл-ку и выходят ч/з спец.каналы, заполненные жидкостью (d?0,5-0.7нм), ионные каналы обеспечивают такие св-ва мембраны, как селективность(избират-ть) и проводимость.Селективность обесп.особой белковой стр-рой. Большинство каналов яв-ся электроуправляемыми,т.е.их спос-ть проводить ионы зависит от величины мембр.потенциала. у входа имеется т.н.воротный мех-м. Проводимость разл.каналов неодинакова;имеются особые калиевые каналы, активирующиеся при^внутриклет.сод-я Са и деполяриз-я мембраны. Са-каналы - деполяризация(напр.,входящимNa-током).

9. Общие св-ва возб.тканей. (возбудимость, раздражимость)

Раздражимость-способность реагировать изменением обмена в-в в ответ на действие раздражителей, кот по природе различ: химич, физич, социал, механич, биолог. Возбудимость -- свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нервные, мышечные и некоторые секреторные клетки. Возбуждение -- ответ ткани на ее раздражение, проявляющийся в специфической для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (генерация потенциала действия, метаболические изменения). Раздр-ли: адекватные(приспособл.в ходе эволюции: звук-специфич раздражение уха), неадекватные (неприспособление:механич.раздражение глаз), допороговые раждрражители(не вызывают раздр-я), пороговые(вызывают). Рефрактерность - временная утрата возбудимости (бывает абсолютная-нет реакции на 2-й раздражитель и относительная - слабая реакция на 2-й раздр-ль).

10. Методы исследования возбудимых тканей

Для изучения возбудимых клеток,физиол.установка должна содержать след.осн.элементы: электроды для регистрации и стимуляции, усилители биоэлектр.сигналов, регистратор, стимулятор, система д/обработки физиол.инф-и. При работе на изолир органах, тканях отдельных кл-ках, применяют спец.камеры и р-ры(напр.,Хэнкса),позволяющие в теч.длит.времени поддерживать норм жизнедеят-ть. Во время эксперимента р-р должен быть насыщен О2и иметь соотв.t; использовать проточные камеры для непрерывного обновления р-ра.электроды должны оказыватьminвлияние на объект исслед-я,т.е.должны только передовать инф-ю от объекта или на объект. Есл исслед.собств.проц.возб-я, то исп-т 2 электрода с разл.Sконтактной пов-ти.(1:1000). При этом электрод меньшей площади - активный, большей-активный. При исслед.процесса распространения возбуждения исп-т 2 электрода с одинак.Sконтактн.пов-й, устанавливаемых на возб.ткани на нек.расстоянии др.от друга,и индиферентн.(пассивн)электрод,устанавливаемый в отдалении. В 1-м случае - монополярный способ отведения потенциала (раздр-и),во втором - о биполярном способе.при исслед-и электрофизиол.характеристик отдельн.кл-к используют стеклянные микроэлектроды.

Исслед.биол.объект помещён в камеру,содержащую солевой р-р и электрод сравнения. Если измерительный электрод так же нах-ся в р-ре,то разность потенциалов м/у ним и электродом сравнения стремится к нулю. В момент проникновения микроэлектрода внутрь клетки регистрируют отриц потенциал относительно внешней среды. У покоящейся Кл-ки с норм метаболизмом и стабильными усл внеш.и внутр.среды постоянная разность потенциалов будет регистрироваться неопределённо долго. Эта постоянная разность потенциалов называется потенциалом покоя. При этом потенциал внеклет среды принимается равным нулю. Величина потенциала покоя неодинакова у разл типов Кл-к и колеблется в пределах -70-95мВ. Если в Кл-ку введён 2-й стимулирующий электрд,можно исслед.р-ю возбудимой мембраны на действие эл.тока. (гиперполяризация/деполяризация)

11. Потенциал покоя и его происхождение. Особенности в раннем онтогенезе. Активный и пассивный транспорт в-в ч/з мембрану. Na-Kнасос

Потенциал покоя(ПП)-устойчивая разность потенциалов покоящейся клетки между ее внутренним содержимым и внеклеточной средой; возникает в результате асимметричного распределения ионов по обе стороны мембраны клетки. На основе потенциала покоя нейронов формируются возбуждающий и тормозный постсинаптические потенциалы, а также потенциал действия. В невозб состоянии клет мембр высокопрониц для K(конц -100ммоль*л-1) и малопрониц дляNa(конц 20-30ммоль*л-1). В раннем онтогенезе ПП величина меньше и примерно равна 55мВ, высок конц как К, так иNa. У новорожден конц К в 2 раза меньше, т.к. активность К-Nа насоса. К 3мес соотношение конц меняется в пользу К, норм величины достиг к более позднему возрасу. Активный транспорт: с затратой энергии, перемещает ионы против градиента концентраций.ПроницаемостьCLнизкая и ионыне влияют на ПП. Различают 2вида активного транспорта.

· Первичный(получает Е, высвоб непосредств при гидролизе АТФ или креатинфосфата),

· Вторичный(перенос в-в против нрадиента конц-й, энергообеспечениь - за счёт Е,кот высвобождается при транспорте др.в-в по градиенту конц-й). Примером первичного активного транспорта яв-ся мех-м, поддерживающий низкую внутриклет.конц-юNaи высокую к-юK(натрий-калиевый насос). 1молекула АТФ обеспечивает один цикл работыNа-К насоса:перено 3Nа за пределы клетки и 2К внутрь клетки. Функционир-е насоса по такой схеме приводит к след.резтам: поддерж-е высокой конц-иKвнутри кл-ки,что обеспечивает постоянство величины ПП; поддерж-ся низкая конц-яNaвнутри к-ки,что обеспеч работу мех-ма генерации потенциала действия и сохранение норм осмолярности и объёма к-ки. Пример вторичного активного транспорта - поддержание низкой внутриклет конц-иCа за счёт высокого натриевого конц.градиента: выведение Са ументьшается при удаленииNaиз окр среды. Доказано,что сущ-т спец обменный мех-м (переносчик-обменник),источником Е которого служит высокий градиентNa). Поддерживая стабильный концентрационный градиентNa, натрий-калиевый насос способствует сопряженному транспорту АК и сахаров ч/з клт мембр. Т.о.,возникновение трансмембранной разности потенциалов(потенциал покоя) обусловлено высокой проводимостью клет мембр в сост покоя для К(для мышечных клеток иCl), ионной асимметрии конц-й дляK(Cl-для мышечн),работой систем активного транспорта, кот созд и поддерж ионную асимметрию.

12. Потенциал действия. Его фазы. Мех-м происождения. Динамика возбудимости к-ки в разл фазы потенциала действия. Особенности в раннем онтогенезе

Потенциал действия(ПД) - быстрое колебание потенциала, сопровождающееся перезарядкой мембраны. Min значение тока, необх для дост критического потенциала,наз-т пороговым током. Следует подчеркнуть, что не сущ-т абсолютных значений величины порогового тока и критического ур-ня потенциала,т.к.эти параметры зависят от св-в мембраны и ионного состава окр среды,от параметров стимула.Смещение мембр потенциала до критич ур-ня приводит к генерации потенциала действия (ПД).

Фазы:

· локальный ответ(подпороговое колебание мембранного потенциала),

· быстрая деполяризация (входNа в клетку),

· реверсия -овершут(перезарядка мембраны),

· реполяризация или отриц следовой потенциал (избыточный выходК из клетки), положительный следовой потенциал, кот возникает как следствие работыNa-Kнасоса,

· потом - стадия рефрактерности(абсолютная и относительная). Абсолютная рефрактерность - полная невозбудимость клетки, когда даже сверхпороговый раздражитель не может вызвать новое возбуждение. Соответствует пику ПД и длится 1-2мс.

Относительная рефрактерность-период возбудимости, когда сильный раждражитель уже может вызвать новое возбуждение. Соответствует конечной части фазы реполяризации. Во время локального ответа и отрицательного следового потенциала наблюдается супернормал возбудимость(экзальтация)- период повыш возбудимости, когда даже подпороговый раждражитель может вызвать новое возбуждение.

13. Функциональные изменения под действием пост.и перем.эл.тока на возб.ткани Электротон. Аккомодация. Полярное действие тока

Постоянный ток. При кратковр воз-и подпорог пост тока измен-я возб-ть ткани под стимулирующими электродами. Под катодом происх деполяриз клет мембр,под анодом - гиперполяриз-я. Т.е. возб-ть ткани под катодом^(уменьшается разность между критичес потенциалом и ПП),под анодом -v(увелич разность). При кратковрем сдвигах знач-е критич потенциала не измен. При больш прод-ти дейст подпорог тока измен-ся не только мембр потенц,но и знач-е критического потенциала. При этом под катодом происх смещение ур-ня критич пот-ла вверх,что саидетельствует об инактивацииNa-каналов. Т.о.,возб-ть тока под катодом уменьш при длит возд-и подпорог тока.Это явл-е уменьшения возб-ти при длит действии подпорог раздр-ля наз-ся аккомодацией. При этом в исслед кл-х возник аномально низкоамплитудн ПД. Под анодом измен-е критич потенц измен в противоп направ - при длит дейст тока возб-ть увелич-ся. Очевидно,что увелич-е знач-я тока до порог величины приведёт к тому,что возб-е будет возникать под катодом при замык цепи. Измен-е возб-ти и возникн возбужд-я под катодом при замык-и и анодом при разм-и наз-сязаконом полярного действия тока. Эксперим-впервые доказано пфлюгером. Сущ-т опред соотнош-е м/у врем дейст раздр-ля и его амплит. Миним величина тока,вызыв возб-е,получ название порого раздражения, или реобазы. Величина определяется разностью м/у критич потенц-м и мембр потенц покоя. Хронаксия-время,в теч которого должен действ раздр-ль удвоенной реобазы,чтобы вызвать возб-е.исп-ся при оценке функц сост=я нервно-мышечн сист. При её органич поражениях величина хронаксии и реобазы нервов и м-ц значит возрастает.Переменный ток. Эффект-ть действия перем тока опред-ся не только амплит,прод-ю возд-я,но и частотой. Низкочастотн ток предст наиб опасн-ть при прохожд ч/з обл сердца(вызыв фибрилляц жел-в)токи большей частоты (выше 10 кГц) выз-т тепловой эфф-т.

14. Понятие о хронаксии и лабильности

Хронакся- время,в теч кот долж действ раздр-ль удвоенной реобазы(миним величина тока,вызыв возб-е) чтобы вызв возб-е. испоьзуя этот критерий, можно точно изимерить временные хар-ки возб стр-р. Хронаксиметрия исп-ся при оценке функц сост-я нервно-мышечн системы ч-ка. При её орг.поражениях значение хронаксии и реобазы нервов и м-ц значительно возраст-т. Т.о.при оценке степени возб-ти стр-р используют количеств характеристики раздр-ля - амплитуду,продолжит действия, скорость нарастания амплитуды. След, количественная оценка физиол св-в возб ткани произв опосредованно по характеристикам раздр-ля.Лабильность понятие в физиологию в 1892 г. ввёл русский физиолог Н.Е.Введенский Лабильность(функциональная подвижность ткани)-скорость протекания одного цикла возбуждения. Чем выше рефрактерная фаза, тем ниже лабильность. Мерой лабильности явл максим значение ПД, кот возбудимая ткань может воспротзвести в 1сек.(для нерва=500-1000Гц, синапса-100Гц, мышцы=150-200Гц).

15. Нейрон. Его строение,физиологич св-ва и ф-и. классификация нейронов

Нейроны - специализир кл-ки,способн приним,обрабатыв,кодир,хран,передав и воспроизв инф-ю,организовывать р-и на раздр-я,устанавл контакты с др.нейр и к-ми органов. Способн генерир электрич потенц и с их помощью перед инф-ю ч/з спец окончания - синапсы. Выполнению ф-й нейр способств нейромедиаторы,синтезир-ся в его аксоплазме. Разм 6-120мкм. В мозге-до 1011нейр. Для разл стр-р мозга характерно опред типы нейронной организации. Нейры образуют группы,ядра и т.п. Клеточные скопления образ серое в-во. Между ядрами и кл-ми проходят миелинове и безмиелинов волокна: аксоны и дендриты. Строение: функц выделяют след части: воспринимающую часть-дендриты,сома, на кот находится аксонный холмик; передающую чвсть-аксон. Сома: информ, трофическ по отношению к отросткам. Сод-ит:рибосомы,тигроидн в-во,КГ,лизосомы, пигменты-меланин и липофусцин, митохондрии, нейротруб,ядро с ядрышк. Дендриты- восприним импульсы от др нерв клеток. Аксонный холмик -генераторный пункт ПД.Аксон проводит возбуждение к др клеткам. Типы нейронов:по кол-ву отростков: псевдоуниполярные (2отростока,сливающ вблизи тела в1), биполярные(1аксон,1дендрит),мультиполярные(неск дендритов,1аксон).По направленности: афферентн, эфферентные и вставочные.От характера влияния:возбуждающие и тормозящие.От активности:фоново-активные(активны и без воздействия) имолчащие(активны в ответ на раздражение).От медиатора: адренергические, лолинергические, серотонинергические и др.

16. Функциональная характеристика афферентных,эфферентных и вставочных нейронов

Афферентные нейроны.-нейр,воспринимающие инф-ю. как правило, имеют больш разветвлён.это хар-но для всех ур-ней ЦНС. В задн рогах спин мозга афер яв-ся чувствит нейроны малых размеров.Вставочные-(интернейроны)-обрабат инф-ю,получаемую от афер нейронов и передают их на другие вставочные или эффер н.,формируя нейр сети). Усиливают сигнал, удлиняет время сохр-я информации в центре. Всавочные нейроны могут быть возбуждающими(в новой коре,облегч передачу инф-и с одной группы нейр в другую); и тормозные(кот.возбуждаются прямыми сигналами или сигналами,идущими из того же центра по обратным связям).Эфферентные нейроны-нейр,передающие инф-ю от нервного центра к исполнительн орг или другим центрам НС. Связывают м/у собой разл стр-ры мозга,обеспечивая межполушарные и внутриполушарные связи,формируя функц сост-е мозга(утомление,обучение и проч).

17. Нейроглия.Её виды. Функциональная хар-ка и физиол. роль. Пульсация глиоцитов и ее зна

Нейроглия - совокупность клет эл-тов нервной ткани, образованная спец клетками разл формы. Обнаружена она Вирховым. К-ки глии заполняют простр-ва м/у нейр,составляя 40%объёма мозга. Глиальные к-ки по разм в 3-4 р меньше нейр. Различают неск типов глии, в зав от сотава клеток: астроциты,олигодендроциты,микроглиоциты. Астроциты - многоотросчатые мелкие кл-ки с ядрами овальной формы и небольш числом хроматина. 7-25мкм. Расп. в сером в-ве. Служат опорой нейронам,обеспеч репаративные процессы,изолир нервн волокно,обеспеч транспорт в-в из капилляров в нейр и наоборот. Олигодендроциты - к-ки,имеющие малое кол-во отростков.меньше по размеру,чем астроциты,участвуют в миелинизации волокон, сод-ся в белом в-ве,в метаболизме нейронов,трофике нейронов.Микроглия-самые мелкие к-ки,многоотросчатые,способны к фагоцитозу,способны изменять размер. Изменение размера глиальных клеток носит ритмический характер и это очень медленный процесс. Частота «пульсации» варьирует от 2 до 20 в час. «Пульсация» происходит в виде ритмического уменьшения объема клетки. Отростки клетки набухают, но не укорачиваются. «Пульсация» усиливается при электрической стимуляции глии; латентный период в этом случае весьма большой -- около 4 мин.Глиальные к-ки не обладают импульсной активностью,подобно нервным,однако,мембрана глиальн кл-к имеет заряд,формирующий мембр потенциал,кот отлич большой инертностью. Глиальные к-ки способны передавать возб-е,распространение которого от кл-ки к кл-ке будет ослабевать. Вслед того,что глия тесно контактирует с нейронами,процессы возб-я нервн Эл-тов сказываются на электрич явлениях глиальных эл-тов .это влияние может быть обусловлено тем, что мембр потенциал нейроглии зависит от конц-и ионовKв окр среде: во время возб-я нейрона многоKскапливается в нейроне,что приводит к деполяризации клет мембран.чение.

18. Синапсы.Их классификация. Механизм формирования и физиологическая роль ВПСП и ТПСТ в синапсах ЦНС

Синапсы - контакты,кот устанавл нейр как самост образования. Синапс предст собой сложн стр-ру и состоит из пресинаптич части(окончание аксона,перед сигнал), син щели и постсин части(стр-ра воспринимающей кл-ки).

Классификаия синапсов. По месторасположению (нервно-мышечн,нейронейрональные, кот делятся на аксосоматическ, аксоаксональные, аксодендритические, дендросоматические), по хар-ру действия(возб и тормозящ), по спос передачи сигнала (электрич,химич,смеш). Электрич синапсы:односторонне проведение,при срочных р-х орг-ма,малоутомляем; химич синапсы-в пресинаптич части-пузырьки с медиаторами. Возникновение постсинаптич потенциала обеспеч-ся реакцией связывания медиатора и белкового рец-ра на постсинаптич мембр,что приводит к открыванию или закрыванию ионного канала. Действие медиатора на постсин мембр заключ в повышении её прониц для ионов Na. Возникн-е потока ионовNaиз синаптич щели ч/з постсинаптич мембрану ведёт к её деполяризации и вызывает генерацию возбуждающего постсинаптического потенциала (ВПСП). Для синапсов с хим способом передачи возб-я характерны синаптич задержка проведения возб-я,длящаяся ок 0.5 мс и развитие постсинаптич потенциала (ПСП) в ответ на импульс.Этот потенциал при возб-и проявл в деполяриз-и постсин мембр,а при торможении-в гиперполяр,в рез чего развив тормозной постсин потенц(ТПСП). При возб-и проводимость постсин мембр увелич. ВПСП - при действии ах, норадрен,дофамина,серотонина; ТПСП-глицин,гамк.

19. Классификация мышечных волокон. Скелетные м-цы,их функции и физиол св-ва

М-цы преобразуют хим энергию питат в-в в механическую энергию. 2 типа мышц: поперечно-полосатая(сердечная и скелетная)и гладкая. Доля мышечн ткани при рождении 25%,сред возр-40%,у пожилых-ок 30%. Скелетные м-цы сост из мышечн волокон неск типов,отлич друг от друга структ-функц характеристиками. В наст время выделяют 4 осн типа мышечн волокон. Медленные фазические волокна окислит типа(большое сод-е миоглобина,м-цы имеют тёмно-красн цвет, ф-и: поддерж-е позы ч-ка, утомление наступает медленно,восстан-ся после утомления быстро);быстрые фазические волокна окислительного типа(быстр сокр-я без заметного утомления,быстрые,энергичн движ-я);Быстрые фазические волокна с гликолитическим типом окисления(АТФ-за счёт гликолиза; быстрое сильное сокращение, быстрое утомл-е,миоглобин-отсутств-«белые»волокна»). Для всех вышеперечисленных характерн наличие одной концевой пластинки,образ 1-м двигат аксоном.Тонические мышечные волокна- двигат аксон образует множ синаптич контактов с мембраной мышечного волокна. Развитие сокращения - медленно,что обусл низкой активностью миазиновой атф-азы, медленно расслабоение.-входят в состав наружн м-ц глаза). Чем меньше волокон входит в м-ц,тем более мелкие и точные движ-я она способна выполнять.Ф-и: поддерж позы тела; перемещ тела в простр; перемещ отдельн частей тела относит др/др; источник тепла,выполняя терморегуляторн ф-ю.Св-ва: возбудимость - способность отвечать на действие раздражителя изменением ионной проводимости и мембр потенциала; в естест усл медиатором яв-ся ацетилхолин; проводимость - способность проводить ПД вдоль и вглубь мышечн волокна по Т-сист; сократимость - спос-ть укорачиваться при возб-и; эластичность - спос развивать напряж-е при растягивании; тонус -в естест усл-х скелетные м-цы постоянно нах-ся в состоянии некоторого сокращения,называемого мышечным тонусом,кот имеет рефлекторн происх.

20. Механизм мышечного сокращения. Этапы. Роль Ca

Электрохимический этап мышечного сокращения.

1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.

Хемомеханический этап мышечного сокращения.

Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

1) ионы Ca запускают механизм мышечного сокращения;

2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.

В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

1)Ca2+реагирует с трипонином;2)Ca2+активирует АТФ-азу;3)Ca2+снимает заряды с АДФ, АТФ, АТФ-азы.

Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.

21. Режимы мышечного сокращения. Одиночное мышечное сокращение(ОМС) и его периоды. Суммация,тетанус,их мех-мы. Особенности мышечного сокращения у детей

Исследование сократительной способности мышцы производят в различных режимах.Выделяют следующие режимы: изотонический режим- мышца укорачивается, но при этом еенапряжение не изменяется.Изометрический режим- меняется напряжение, но длина мышцы остается без изменений. Смешанный режим - меняется длина мышцы и ее напряжение.Виды мышеч сокращений:одичное мышечное сокращение, суммированное мыщечное сокращение, тетаническое мыш сок-ние, тоническ мыш сок-ние. Одиночное мыш сок-ние - сок-ние мышцы при раздр-е одиночным пороговым стимулом. Периоды:1)латентный(скрытй период от момента нанесения раздражения до появления мышеч сок-ния 0,01с);2)укорочение(0,04с); 3)расслабление(0,05с). Величина одиночного сокр-я равна0,1с.Суммация- увелич амплитуды мыш сок-ния при действии на мышцу 2последоват стимулов, если интервал времени между ними меньше, чем длительность одиноч мыш сок-ния, но больше, чем латентный период.Виды суммации:полная(когда 2радражитель попадает в фазу укорочения мышцы) и неполная(когда 2раздражитель попадает в фазурасслабления). Тетанус - множественное сокращение м-ц под действием высокочастотного раздражителя. Тетанус может быть гладким(возникает при действии раздраж относит высок частоты и явл результатом полн мышечн суммации) и зубчатым (возникает при действии раздраж относит небольш частоты и явл результатом неполн мыш суммации). Зубчатый бывает мелко- и крупнозубчатый. Чем выше частота стимула, тем выше амплитуда тетануса.Особенностью мышц плода и новорожден явл медленность ОМС - как фазы укорочения, так и фазы расслабления. Также отсутствуют различия скорости будущих быстрых и медленных мышц, хотя сами мышцы отлич по цвету(красн и бел) и по гистохимич признакам. У новорожден наблюдается ускорение как бастр, так и медлен волокон, но у медлен происходит вторич замедление сокращения. Ускорение обусловлено интенсив активацией мышеч белков и увелич числа саркомеров. С возрасто увелич сила сок-ний мышц.

22. Строение нервно-мышеч синапса. Мех-м образования ПКП и его роль в передаче возбуждения

Нервно-мышечн синапсы обеспеч проведен возб-я с нервн волокна на мышечн благодаря медиатору - ах,кот при возб нервн окончания переходит в синаптич щель и действ на концевую пластинку мышечн волокн.Сост из пресинаптич части нервн окончания, синаптич щели, постсинаптич части мыш волокна. Прониц-ть постсин мембр для ах возможна благодаря тому,что в рез деполяриз мембраны открыв её кальциевые каналы, Са входит в пресинаптич часть синапса из синапт щели.Ах проникает в син щель,где взаимод с рецепторами,кот,высвобождаясь,открывают белковый канал,встроенный в мембрану. Через него в мышечн кл-ку проникает Na,что приводит к деполяризации мембраны и развитию потенциала кнцевой пластинки(ПКП),кот вызывает генерацию потенциала действия мышечн волокна. Возб-е передаётся в 1-м направлении;скорость проведения возб-я ч/з синапс намного меньше, чем по нервн волокну.; синапс имеет св-ва утомляться.

23. Работа и мощность мышцы.Их энергетическое обеспечение. Теплообразование при мышечном сокращении

A=FS(Е,затрачиваемая на перемещение тела с силой на опред расст-е),если сокращение м-цы происходит без нагрузки,то А=0(изотонич); если приmaxнагрузке нет укорочения,то А=0(изометрич). В этих случаях хим Е полностью переходит в тепловуюЕ. Сагласно закону средн нагрузок,м-ца может совершатьmaxА при средн нагрузках. Статическая работа - при фиксированной позе;динамич работа-при движ-и. Сила сокр-я и работа в ед времени - мощность. В рез продолж деят-ти развивается утомление. Статич - более утомителен. В динамичес режиме скорость расщепления и синтеза атф может ^в 20 раз,увелич объём минутн кровотока в 2-3 р. Приmaxнагр атф-гликолиз анаэробный(ок 30 с) и в начале деят-ти. Скелетная м-ца превращает химическ Е в механич работу с выделением тепла. Хило было установлено: теплота активации(быстрое выделение тепла на ранних этапах мыш сокр,когда отсутств видимые признаки укорочения/напряж-я); теплота укорочения(выделение теплоты при работе); теплота расслабления(выделение тепла упругими Эл-тами м-цы при расслаблении.)

24. Методы исследования функционального состояния мышечной системы человека

Динамометрические методы исп-т для оценки силовых и скоростных характеристик скелетных м-ц ч-ка. Эргометрические исп-т для опред физич работоспособности с пом спец устр-в - велоэргомеров и тредбанов(бегущ дорожк) созд-ся возм-ть дозировать нагр на орг-м ч-ка. Электромиографические методы - нашли широкое применение в физиол и клинич практике, проводят электромиограмму или регистрацию потенциалов мышечн волокон. Стабилографические методы основаны на измерении колебаний и смещения центра тяжести тела во фронт и саггит плоскостях.(спец.платформа,на кот стан-ся пациент и регистрируют разл колебания тела,обусл мышечн нагрузками).

Гладкие м-цы нах-ся в стенках внутр органов,кровеносн,лимф сосудах,в коже и морф отлич-ся от скелетн и серд м-ц отсутствием видимой поперечной исчерч. Гладк м-цы: висцеальны(во всех внутр орг,протоках пищеварит ж-з,кровеносн сосудах,коже); мультиунитарные(ресничная м-ца и радужка глаза); состоят из кл-к веретенообр формы,сред длина которых 100мкм,а d=3 мкм. Кл-ки расп в составе мышечн пучков и тесно прилегают др к др. Содержат актин и миозин,кот расп здесь менее упорядоченно,чем в волокнах скелетн м-ры. Св-ва:электрическая активность-висцерал гладкие мышцы характериз нестабил МембранПотенциал. При умен кот мышца сокращается, а при увел -расслабляется. В сред МП=50мВ. Автоматия(ПД гладк мышечн кл-к имеют автоматический (пейсмекерный) хар-р,подобно потенциалам проводящей системы.Реакция на растяжение(в ответ на растяжение гладк м-ца сокращается:при наполнении ж-ка стенки растяг-ся, а в ответ на его растяжение,вызванное пищей, сокращаются,сохраняя форму ж-ка,обеспечивая контакт стенок с пищей).Пластичность(если растянуть висц гл м-цу,то её напряж-е возрастёт,однако,если удерживать её в растянутом положении, то напряжение будет постепенно снижаться, иногда ниже ур-ня первоначального растяжения. Это св-во - пластичность м-цы).Связь возбуждения с сокращением(в мех-ме сокращения гадкой м-цы имеется особ-ть,отличающая его от мех-ма сокращения скелетной м-ры - ОБЯЗАТЕЛЬНАЯ фосфорилизация миозина)Химическая чувствительность(гл м-цы облад высокой чувствительностью к различным физиологически активным в-вам(адреналину,норадр,АХ,гистамину и др.) Это обусл наличием специфических рецепторов мембраны гладкомышен кл-к. Норадреналин - тормозит сокращение; АХ оказывеет на мембр потенциал противоположн действие (увелич тонус, возраст частота ритмичн сокращ-й. Висцеральная гладкая мышца имеет двойную иннервацию -- симпатическую и парасимпатическую, функция которой заключается в изменении деятельности гладкой мышцы. Раздражение одного из вегетативных нервов обычно увеличивает активность гладкой мышцы, стимуляция другого -- уменьшает.В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холинергических нейронов имеются утолщения, называемые варикозами. Они содержат гранулы с медиатором, который выделяется из каждой варикозы нервных волокон. Таким образом, по ходу следования нервного волокна могут возбуждаться или тормозиться многие гладкие мышечные клетки. Клетки, лишенные непосредственных контактов с варикозами, активируются потенциалами действия, распространяющимися через нексусы на соседние клетки. Скорость проведения возбуждения в гладкой мышце невелика и составляет несколько сантиметров в секунду.

25. Понятие о рефлексе. Рефлекторная дуга. Её части. Классификация рефлексов

Рефлекс - реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием центральной нервной системы. Рефлекторная реакция происходит при пороговом, надпороговом раздражении входа рефлекторной дуги -- рецептивного поля данного рефлекса. Рецептивным полем называется определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клетками, раздражение которых инициирует, запускает рефлекторную реакцию.Рефлекторная дуга -последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции, или ответа, на раздражение. Состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями. Классификация рефлексов:по способу вызывания(условные,безусловные);от располож рецепторов: экстерорецептивные (возник при раздражении рецепторов кож покровов и поверхностн слизистых); интероцептивные (при раздраж рецепторов внут органов) проприорецепторные (при раздраж сухожилий, суставн пов-й).По ур-ню замыкания в ЦНС: спинномозговые,бульбарные, мезэнцефальные, диэнцефальные, кортикальные.По биол назначению:пищевые, оборонительные, половые и пр.

26. Понятие о нервных центрах. Физиологические свойства нервных центров

Нервный центр -- совокупность структур центральной нервной системы, координ деяте-ть кот обеспеч рег отд ф-й организма или определенный рефлекторный акт. Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.Св-ва:Односторонн провед возб-я(от входа, афферентных путей к выходу, эфферентным путям.)Иррадиация возб-я(Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов -- иррадиации возбуждения.)Суммация возб-я(процесспространтв.суммацииобусловлен наличием на мембране нерв к-ки сотен и тысяч сонаптич контактоввременная суммацияобусловлена суммацией ВПСП на постсин мембр).Наличие синаптической задержки(при высокой скорости распр импульса по нервн проводнику основное время рефлекса приходится на синаптич передачу возб-я (синаптическая задержка примерно 1 мс. В нейронах)Высокая утомляемость(длит повторн раздр-е рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов -- в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору)Тонус(определяется тем, что в покое в отсутствие спец внешн разд опред кол-во нервн кл-к нах-ся в сост пост возб-я, генер фоновые импульсн потоки)Пластичность(Функц.возм нерв ц существ модифицироватькартинуосуществляемыхрефлекторных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами)Конвергенция(предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т. е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.)Интеграция(важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).Свойство доминанты-повышенн возбудимость в ЦНС.Цефализация(сосредоточение функции регуляции и координации деятельности организма в головных отделах ЦНС..

27. Принципы интеграции и координации деят-ти ЦНС. Доминанта

В реализации информационно-управляющей функции нервной системы значительная роль принадлежит процессам интеграции и координации деятельности отдельных нервных клеток и нейронных ансамблей, которые основаны на особенностях взаимодействия информационных потоков на уровне нервных клеток и рефлекторных дуг. Конструктивные особенности афферентных, промежуточных (центральных) и эфферентных нейронов обеспечивают широкий диапазон иррадиации и концентрации возбуждения на основе двух кардинальных принципов: дивергенции и конвергенции. Дивергенциейназывается способность нервной клетки устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря этому одна нервная клетка может участвовать в нескольких различных реакциях, передавать возбуждение значительному числу других нейронов, которые могут возбудить большее количество нейронов, обеспечивая широкую иррадиацию возбудительного процесса в центральных нервных образованиях. Процессы конвергенции заключаются в схождении различных импульсных потоков от нескольких нервных клеток к одному и тому же нейрону. В координационной деятельности центральных нервных образований значительная роль взаимодействия рефлексов, которая проявляется в различных эффектах (в облегчении, или суммации, и в угнетении, или подавлении, возбуждения). Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

28. Физиологическая роль гематоэнцефалического барьера и цереброспинальной жидкости. Особенности гемаэнцефалического барьера у детей

Организм человека и высших животныхобладает рядом специфических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохранения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства. регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганизмов, токсинов. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы. Цереброспинальная жидкость (син.: ликвор, спинномозговая жидкость) -- прозрачная бесцветная жидкость, заполняющая полости желудочков мозга, субарахноидальное пространство головного мозга и спинномозговой канал, периваскулярные и перицеллюлярные пространства в ткани мозга. Цереброспинальная жидкость выполняет питательные функции, а также определяет величину внутримозгового давления. Состав цереброспинальной жидкости формируется в процессе обмена веществ между мозгом, кровью и тканевой жидкостью, включая все компоненты ткани мозга. В цереброспинальной жидкости содержится ряд биологически активных соединений: гормоны гипофиза и гипоталамуса, ГАМК, АХ, норадреналин, дофамин, серотонин, малатонин, продукты их метаболизма.

29. Механизм, особенности, скорость распространения возб-я по безмиелиновым и миелиновым нервным волокнам

Законы распространения возб-я по нервным стволам. Изменение скорости в процессе онтогенеза.Существуют два типа нервных волокон: миелиновые и безмиелиновые.


Подобные документы

  • Основные восходящие (чувствительные) пути спинного мозга. Типы волокон мышечной ткани и их значение. Важнейшие двигательные безусловные рефлексы у человека. Общие функции спинного мозга. Морфо-функциональные особенности спинного мозга в онтогенезе.

    лекция [1,3 M], добавлен 08.01.2014

  • Значение центральной нервной системы человека в процессе регулирования организма и его связи с внешней средой. Анатомическая структура спинного и головного мозга. Понятие серого и белого вещества, нервных центров, волокон и соединительнотканных оболочек.

    реферат [2,4 M], добавлен 19.01.2011

  • Представление схемы нервных волокон головного и спинного мозга. Характеристика ассоциативных, комиссуральных (спаечных) и проекционных типов проводящих путей. Классификация нервных волокон по различных признакам. Черепные и спинномозговые нервы.

    презентация [967,3 K], добавлен 27.08.2013

  • Строение спинного мозга. Передние, задние и боковые рога в сером веществе. Чувствительные, двигательные проводящие пути. Проводниковая функция спинного мозга. Клетки Реншоу, процесс образования тормозных синапсов. Латеральный корково-спинно-мозговой путь.

    презентация [1003,7 K], добавлен 15.10.2013

  • Строение и основные компоненты спинного мозга, его отделы и назначение в организме. Виды нейронов спинного мозга, их характерные свойства и признаки. Проводящие пути мозга и его рефлекторные реакции. Типы и отделы повреждений мозга, пути их излечения.

    реферат [20,7 K], добавлен 14.11.2009

  • Классификация, строение и значение нервной системы. Структура и функции центральной нервной системы. Морфология и принципы формирования корешка спинного мозга. Клеточно-тканевой состав и топография проводящих путей серого и белого веществ спинного мозга.

    методичка [1,7 M], добавлен 24.09.2010

  • Регуляция функций организма, согласованная деятельность органов и систем, связь организма с внешней средой как основные функции деятельности нервной системы. Свойства нервной ткани - возбудимость и проводимость. Строение головного мозга и его зоны.

    реферат [2,7 M], добавлен 04.06.2010

  • Строение промежуточного мозга. Роль печени и поджелудочной железы в пищеварении. Торможение центральной нервной системы. Анатомия и физиология вегетативной нервной системы, ее возрастные особенности. Состав крови и физико-химические свойства плазмы.

    контрольная работа [2,7 M], добавлен 13.12.2013

  • Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.

    презентация [3,6 M], добавлен 08.01.2014

  • Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.

    презентация [607,2 K], добавлен 20.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.