• Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.

    лекция (235,5 K)
  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка (219,2 K)
  • Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.

    методичка (738,5 K)
  • Основные определения булевой функции, понятие их истинности, эквивалентности. Получение простых импликант формул с малым числом переменных с использованием карт Карно. Множество булевых функций, заданное в базисе Жегалкина. Кванторы и логика предикатов.

    курс лекций (722,5 K)
  • Выборка, основные задачи математической статистики. Различные эмпирические функции распределения. Выборочные характеристики случайной величины. Примеры параметрических семейств распределений. Оценивание неизвестных параметров. Методы получения оценок.

    контрольная работа (1,3 M)
  • Способы сбора и группировки статистических сведений, полученных в результате наблюдений или в результате поставленных экспериментов. Статистическое распределение выборки. Доверительные интервалы оценки математического ожидания нормального распределения.

    реферат (31,6 K)
  • Характеристика методов и функций математической статистики (исследование, обработка, выводы закономерностей статических данных): понятия "выборка", "генеральная совокупность", "объём выборки", "полигон", "гистограмма частот", "медиана, дисперсия выборки".

    презентация (189,7 K)
  • Предмет и основные методы математической статистики. Ее основные понятия. Эмпирическая функция распределения и гистограмма. Основные понятия выборочного метода. Закон распределения дискретной случайной величины. Понятие выборочного распределения.

    реферат (342,1 K)
  • Обработка данных наблюдений и проверка разных гипотез. Построение гистограммы выборки и теоретической нормальной кривой. Элементы корреляционного анализа. Корреляционная таблица и корреляционное поле. Нахождение выборочного коэффициента корреляции.

    курсовая работа (317,2 K)
  • Проведение случайного эксперимента с использованием элементов статистики: сколько времени люди проводят в социальных сетях. Опросы, изучение публикаций. Использование возможностей табличного процессора MS Excel. Полигон частот, накопленная частота.

    творческая работа (188,4 K)
  • Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.

    методичка (526,8 K)
  • Генеральная и выборочная совокупности, формы представления эмпирических распределений. Статистический анализ выборочных совокупностей, необходимых для решения ряда задач в области физической культуры и спорта. Пример исследования корреляции и регрессии.

    методичка (297,1 K)
  • Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    презентация (314,4 K)
  • Понятие, предмет, задачи предмета "теории вероятностей", вероятность осуществления события, достоверное и противоположное событие. Вероятность осуществления двух или нескольких взаимно исключающих и независимых событий и вероятность их совпадения.

    контрольная работа (22,9 K)
  • События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.

    курсовая работа (134,0 K)
  • Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.

    учебное пособие (953,3 K)
  • Расчет количества невозвратов кредитов и квадратичного отклонения. Дисперсия и среднее квадратичное отклонение случайной величины. Построение гистограммы частот по распределению выборки. Проверка гипотезы о числовом значении математического ожидания.

    контрольная работа (103,0 K)
  • Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.

    учебное пособие (920,4 K)
  • Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.

    лекция (1,3 M)
  • Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.

    учебное пособие (1,3 M)
  • Сиплициальные гомологии: определение и свойства. Комологии и формулы универсальных коэффициентов. Эйлерова характеристика и теорема Лефшеца. Гомоморфизм Бокштейна и изоморфизм Пуанкаре. Теорема о вырезании и точная последовательность Майера-Вьеториса.

    учебное пособие (3,2 M)
  • Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.

    статья (215,4 K)
  • Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.

    методичка (106,6 K)
  • Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.

    учебное пособие (2,2 M)
  • Понятие об игровых моделях разрешения конфликтной ситуации. Виды и основные правила формализованной игры. Специфика определения оптимальной стратегии для каждого игрока. Алгоритм определения нижней и верхней цен игры, заданной платежной матрицей.

    реферат (61,7 K)
  • Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.

    контрольная работа (146,6 K)
  • Функциональная, статистическая и корреляционная зависимости. Установление зависимость случайной величины от других величин. Получение по выборке уравнения регрессии как важный элемент корреляционного анализа. Парная корреляция. Коэффициент корреляции.

    лекция (313,1 K)
  • Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.

    практическая работа (738,1 K)
  • Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

    контрольная работа (27,1 K)
  • Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

    контрольная работа (282,7 K)