Элементы математической логики
Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.
Рубрика | Математика |
Предмет | Математическая логика |
Вид | методичка |
Язык | русский |
Прислал(а) | Муравьёва |
Дата добавления | 24.09.2019 |
Размер файла | 738,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.
презентация [67,8 K], добавлен 23.12.2012Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.
курсовая работа [701,9 K], добавлен 27.04.2011Алгебра логики, булева алгебра. Алгебра Жегалкина, педикаты и логические операции над ними. Термины и понятия формальных теорий, теорема о дедукции, автоматическое доказательство теорем. Элементы теории алгоритмов, алгоритмически неразрешимые задачи.
курс лекций [652,4 K], добавлен 29.11.2009Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.
курс лекций [651,0 K], добавлен 08.08.2011Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.
контрольная работа [83,3 K], добавлен 26.04.2011Элементы алгебры, логические операции над высказываниями. Получение логических следствий из данных формул и посылок для данных логических следствий. Необходимые и достаточные условия. Анализ и синтез релейно-контактных схем. Логические следствия и формы.
дипломная работа [295,2 K], добавлен 11.12.2010Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.
реферат [70,9 K], добавлен 11.03.2009Логическая переменная в алгебре логики. Логические операции: отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность. Основные законы алгебры логики. Правила минимизации логической функции (избавление от операций импликации и эквивалентности).
курсовая работа [857,2 K], добавлен 16.01.2012Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.
курсовая работа [1,5 M], добавлен 07.02.2011Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.
презентация [1,0 M], добавлен 17.04.2013