Методы и средства измерений

Предмет, задачи и структура теоретической метрологии. Применение теории воспроизведения единиц физических величин и передачи их размеров на практике. Понятие о единстве измерений. Принципы оценивания погрешностей. Основные законы и виды распределений.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 06.10.2017
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Суммарное число витков намагничивающей w1 и измерительной w2 обмоток зависит от конкретного назначения аппарата Эпштейна и бывает различным. Наиболее часто они содержат по 600 витков каждая.

Аппарат Эпштейна представляет собой измерительный преобразователь магнитных величин в электрические и широко используется в практике испытаний магнитных материалов.

По характеру преобразования входной величины ИП делятся на линейные и нелинейные. Линейный преобразователь -- это ИП, имеющий линейную связь между входной и выходной величинами. Их важной разновидностью является масштабный ИП, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.

Его уравнение преобразования имеет вид

Y=kX,

где X, Y -- однородные входная и выходная величины; k -- постоянный коэффициент передачи.

Примерами масштабных преобразователей могут служить усилители, делители напряжения, измерительные трансформаторы напряжения. У нелинейных ИП связь между входной и выходными величинами нелинейная.

По виду входных и выходных величин ИП делятся на:

* аналоговые, преобразующие одну аналоговую величину в другую аналоговую величину;

* аналого-цифровые (АЦП), предназначенные для преобразования аналогового измерительного сигнала в цифровой код;

* цифроаналоговые (ПАП), предназначенные для преобразования цифрового кода в аналоговую величину.

Обозначения в структурных схемах и передаточные функции АЦП и ЦАП показаны на рис. 11.15. В качестве входных (для ЦАП) и выходных (для АЦП) кодов, как правило, используются параллельные двоичные коды. Входной (для АЦП) и выходной (для ЦАП) величиной чаще всего является напряжение и.

Уравнение преобразования идеального однополярного ЦАП

где R -- разрядность ЦАП; Um-- максимальное выходное напряжение ЦАП; N10 -- значение входного кода в десятичной системе исчисления; аi -- коэффициенты, которые могут принимать значения, равные нулю или единице.

Из уравнения видно, что квант напряжения на выходе ЦАП, называемый единицей младшего разряда (ЕМР), равен Um/(2R-l).

Уравнение преобразования идеального однополярного АЦП записывается в виде

где int[X] -- функция, выделяющая целую часть числа X. Минимальное изменение напряжения на входе АЦП, которое приводит к изменению выходного кода, называемое разрешающей способностью, равно Um/(2R-l).

Рис. 11.15. Обозначения в структурных схемах (а), передаточные функции (б) и части передаточных функций (в) АЦП, ЦАП в увеличенном масштабе

Система метрологических параметров преобразователей, отражающая особенности их построения и функционирования, объединяет несколько десятков параметров, важнейшими из которых являются:

* число разрядов R -- количество разрядов кода, связанного с аналоговой величиной, которое может воспринимать ЦАП или вырабатывать АЦП;

* абсолютная погрешность преобразования в конечной точке шкалы -- отклонение значения входного для АЦП и выходного для ЦАП напряжения от номинального значения, соответствующего конечной точке функции преобразования (часто эта погрешность называется мультипликативной);

* дифференциальная нелинейность -- отклонение разности двух аналоговых сигналов, соответствующих двум соседним кодам, от значения ЕМР;

* время установления выходного напряжения -- интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное аналоговое напряжение войдет в зону шириной в одну ЕМР, симметрично расположенную относительно установившегося значения;

* время преобразования -- интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.

Существуют и другие параметры преобразователей, определения которых даны в ГОСТ 19480-74.

Пример 11.3. Промышленность выпускает большое число микроэлектронных ЦАП (шифр ПА в типе) и АЦП (шифр ПВ) [65--68]. Основные метрологические параметры некоторых из них приведены в табл. 11.1.

Таблица 11.1

Метрологические параметры микроэлектронных ЦАП и АЦП

Тип

Число разрядов

ЕМР (Um= 10 В), мВ

Дифференциальная нелинейность

Погрешность в конечной точке шкалы

Время установления (преобразования), МКС

К572ПА2А

12

2,5

±0,025%

±20 ЕМР

15

К1108ПА1А

12

2,5

±0,024%

±30 ЕМР

0,4

К1И8ПА1

8

40

±0,195%

±5 мА

0,04

КИ18ПАЗ

8

40

±0,195%

± 2 мА

0,01

К572ПВЗ

8

40

±0,75 ЕМР

±3 ЕМР

7.5

К1107ПВ1

6

30

±0,78 %

±0,1 В

0,1

К1108ПВ1А

10

5

±0,75 ЕМР

±4 ЕМР

0,9

КИ08ПВ2

12

1.2

±1 ЕМР

± 10 ЕМР

2

9.6 Комплексные средства измерений

Комплексные средства измерений предназначены для реализации всей процедуры измерения. Согласно классификации, по роли в процессе измерения и выполняемым функциям (см. рис. 11.10), к ним относятся измерительные приборы и установки, измерительные системы и измерительно-вычислительные комплексы.

9.6.1 Измерительные приборы и установки

Измерительный прибор -- средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне ее изменения и выработки сигнала измерительной информации, доступной для непосредственного восприятия наблюдателем.

Обобщенная структурная схема измерительного прибора. Данный класс средств измерений включает большое число приборов, различающихся измеряемыми величинами, областью применения, техническими характеристиками, принципом действия, используемой элементной базой и другими особенностями. Тем не менее все эти приборы имеют некоторые общие черты. Обобщенная структурная схема измерительного прибора показана на рис. 11.16.

Измеряемая ФВ воздействует на устройство преобразования, состоящее из первичного измерительного преобразователя и совокупности элементарных средств измерений.

Первичный преобразователь преобразует измеряемую ФВ в другую величину, однородную или неоднородную с ней. Сигнал с выхода преобразователя проходит через совокупность элементарных СИ. В простейших измерительных приборах такая совокупность может отсутствовать. Например, в аналоговых вольтметрах измеряемое напряжение преобразуется в угол поворота стрелки с помощью первичного электромеханического ИП.

Рис. 11.16. Обобщенная структурная схема измерительного прибора

На выходе устройства преобразования формируется сигнал, параметры которого соответствую входным характеристикам отсчет -ного устройства.

Отсчетное устройство -- это элемент СИ, преобразующий измерительный сигнал в форму, доступную восприятию органами чувств человека. По форме представления показаний отсчетные устройства делятся на аналоговые и цифровые.

Составными частями отсчетного устройства являются шкала и указатель. Шкала -- это часть отсчетного средства, представляющая собой ряд отметок, соответствующих последовательному ряду значений величины вместе со связанной с ними нумерацией. Шкала наносится на прямолинейном участке или дуге окружности. Отметка шкалы -- это знак на шкале СИ (черточка, зубец, точка и т.д.), соответствующий некоторому значению ФВ. Для цифровых шкал сами числа являются эквивалентами отметок шкалы. Отметки на шкалах могут быть нанесены равномерно или неравномерно. В связи с этим шкалы называют равномерными и неравномерными. Практически равномерной считается шкала, длины делений которой отличаются не более чем на 30% и имеют постоянную цену деления. Промежуток между двумя соседними отметками шкалы средства измерений называется делением шкалы. Длиной деления шкалы называется расстояние между осями или центрами двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходящей через середины самых коротких отметок шкалы. Длина линии, проходящей через центры всех самых коротких отметок шкалы СИ и ограниченная начальной и конечной отметками, называется длиной шкалы. Линия может быть реальной или воображаемой, кривой или прямой.

Отметка шкалы СИ, у которого проставлено число отсчета, называется числовой отметкой шкалы. Отметки облегчают оператору считывание показаний прибора, которое производится по положению указателя относительно отметок шкалы. Деления шкалы имеют цену. Цена деления шкалы -- это разность значений величины, соответствующих двум соседним отметкам шкалы'СИ. Отметки наносятся на шкалу при градуировке прибора, т.е. при подаче на его вход сигнала с выхода образцовой многозначной меры. У части отметок шкалы проставляются числовые значения величины, подаваемой с выхода меры. Эти отметки становятся числовыми.

Указатель -- часть отсчетного устройства, положение которого относительно отметок шкалы определяет показания измерительного прибора. Указатель выполняется в виде подвижных стрелок разной формы (клиновидной, ножевидной и др.), луча света, пера самописца и т.п.

Шкала СИ имеет начальное и конечное значения. Они соответствуют наименьшему и наибольшему значениям измеряемой величины, которые могут быть отсчитаны по шкале СИ. Например, для медицинского термометра начальное значение шкалы равно 34,3 °С, а конечное -- 42 °С.

При измерении с показывающего устройства считывается показание. Каждое СИ характеризуется диапазоном показаний и диапазоном измерений. Диапазоном показаний называется область значений шкалы СИ, ограниченная ее начальным и конечным делениями. Так, для медицинского термометра диапазон показаний составляет 7,7°С. Диапазоном измерений называется область значений ФВ, в пределах которой нормированы допускаемые пределы погрешности СИ. Значения величины, ограничивающие диапазон снизу и сверху (слева и справа), называются соответственно нижним и верхним пределами измерений. Диапазон измерений всегда меньше или равен диапазону показаний.

Классификация измерительных приборов. Для учета всех особенностей многообразных измерительных приборов применяют классификацию по различным признакам. По форме индикации измеряемой величины различают измерительные приборы:

* показывающие, которые допускают только отсчитывание показаний измеряемой величины, например стрелочный или цифровой вольтметр;

* регистрирующие, предусматривающие регистрацию показаний на том или ином носителе информации, например на бумажной ленте. Регистрация может производится в аналоговой или цифровой форме. Различают самопишущие и печатающие приборы.

По методу преобразования измеряемой величины различают приборы прямого, компенсационного (уравновешивающего) и смешанного преобразования. Эти методы преобразования и соответствующие им структурные схемы рассмотрены в 11.7.2 и 11.7.3.

По назначению измерительные приборы делятся на амперметры, вольтметры, омметры, термометры, гигрометры и т.д.

По форме преобразования используемых измерительных сигналов приборы подразделяют на аналоговые и цифровые.

Аналоговые приборы -- это приборы, показания или выходной сигнал которых является непрерывной функцией изменения измеряемой величины. Идеализированное уравнение преобразования линейных аналоговых и измерительных приборов имеет вид

(11.6)

где X -- измеряемая величина; Y, К -- показание и коэффициент преобразования прибора соответственно. Следует отметить, что большинство измерительных приборов являются линейными. Детально аналоговые приборы рассмотрены в [72].

Цифровые приборы -- это приборы, принцип действия которых основан на квантовании измеряемой или пропорциональной ей величины. Показания таких приборов представлены в цифровой форме. Наличие операции квантования приводит к появлению у цифровых приборов специфических свойств, обуславливающих существенные различия в методах выбора, анализа, описания и нормирования метрологических характеристик по сравнению с аналоговыми приборами.

В процессе квантования бесконечному множеству значений измеряемой величины ставится в соответствие конечное и счетное множество возможных показаний цифрового прибора. Их число определяется схемой аналого-цифрового преобразователя, выполняющего в цифровом приборе операцию квантования. Одновременно с квантованием, как правило, осуществляется дискретизация по времени измерительных сигналов. Квантование и дискретизация рассмотрены в разд. 10.5. Структурная схема цифрового прибора показана на рис. 11.17.

Рис. 11.17. Обобщенная структурная схема цифрового измерительного прибора

Измеряемая физическая величина X воздействует на первичный измерительный преобразователь (ПП), имеющий коэффициент преобразования Кпп. Он преобразует величину X в электрический сигнал, в качестве которого используется главным образом напряжение. В рассматриваемом случае u = KппX. Это напряжение в свою очередь поступает на масштабный измерительный преобразователь (МП), необходимый для изменения пределов измерения цифрового прибора. Он может иметь разное число диапазонов измерения: от 1 до NП. Диапазон изменения измеряемой величины X разбивается на NП поддиапазонов: X1min, ... , X1max; X2min, ... , Х2maх; XNпmin,…, XNпmax, где Xi min, ... , Xi max - минимальные и максимальные точки 1-го диапазона измерений.

Среди диапазонов измерения выбираются основной и дополнительные. Основным считается тот диапазон, на котором измеряемая величина претерпевает наименьшее число преобразований на пути от входа прибора до входа АЦП. Все остальные диапазоны считаются дополнительными. На практике возникают ситуации, когда выделить основной диапазон по указанным признакам невозможно. В этом случае в качестве основного выбирают диапазон с наименьшими пределами допускаемых погрешностей или устанавливают его по соглашению.

Масштабный преобразователь так изменяет (уменьшает или увеличивает) входное напряжение в заданное число Кi раз (i = 1; 2; ...; Nп), чтобы сигнал un на его выходе был нормирован, т.е. его значение находилось в заданных пределах. Как правило, стараются обеспечить выполнение условий, при которых пределы изменения нормированного напряжения совпадают с большей частью допустимого диапазона изменения входного сигнала АЦП при всех возможных значениях измеряемого сигнала. Это позволяет минимизировать погрешности, вносимые АЦП.

Нормированное напряжение uн= КiКППХ преобразуется АЦП в цифровой код N, имеющий разрядность RАЦП. АЦП выполняется однопредельным, рассчитанным на один фиксированный диапазон изменения входного сигнала uн.

Важной характеристикой цифрового прибора является метод преобразования аналоговой измеряемой величины в ее цифровой эквивалент, реализованный в АЦП. Принято отождествлять принцип действия цифрового измерительного прибора с принципом действия АЦП, входящего в его состав. В настоящее время разработано и используется в СИ большое число [66] различных методов преобразования. К основным из них относятся методы поразрядного уравновешивания (метод последовательных приближений), двойного интегрирования и преобразования напряжения в частоту.

Метрологические свойства АЦП и цифрового прибора в целом существенно зависят от номинальной ступени квантования АЦП, равной

где Nmax, Nmin -- максимальное и минимальное значения выходного кода АЦП; uH(Nmax), uH(Nmin) -- значения входного напряжения АЦП, соответствующие Nmax и Nmin.

При использовании двоичного цифрового кода максимальное число возможных выходных кодовых комбинаций . Уравнение преобразования АЦП в общем случае имеет вид

Полученный двоичный цифровой код поступает на преобразователь кодов (ПК). Он необходим для преобразования выходного цифрового кода АЦП в код, "понимаемый" цифровым отсчетным устройством (ОУ). Наиболее частым в практике является преобразование двоичного кода в двоично-десятичный. Числа, представляемые кодами N и N1 в точности равны друг другу, отличаются только формами представления, и поэтому в дальнейшем рассмотрении будем оперировать кодом N.

Цифровые ОУ выполняются в виде цифровых табло, дисплеев, основанных на различных физических принципах. Они преобразуют код в показания СИ, понятные человеку.

Важной характеристикой ОУ является его разрядность -- число полных десятичных разрядов, которые индицируются цифрами от 0 до 9. Цифровые ОУ, позволяющие индицировать еще один дополнительный разряд, но неполностью, называются отсчетными устройствами с расширенным диапазоном измерений. Их разрядность обозначается в виде RОУl/2. Это означает, что устройство имеет RОУ полных разрядов и один неполный. В нем, как правило, может индицироваться только 0 или 1.

Разрядность ОУ определяет разрешающую способность цифрового прибора, выражаемую в значении (ЕМР) показаний прибора. Для приборов с обычным и расширенным диапазонами измерений она соответственно равна

где Ximax -- максимальное значение измеряемой величины X на i-м диапазоне измерения.

В соответствии с уравнением преобразования АЦП функция преобразования цифрового прибора, связывающая измеряемую величину X с показаниями Y, представленными в единицах величины X, имеет вид

(11.7)

где qxi = q/(K1KПП) -- номинальная ступень квантования (квант) измеряемой величины X на i-м диапазоне измерения. Размерность кванта qxi равна размерности X, а его величина определяет предельно достижимую точность измерения данным цифровым прибором.

Размер номинальной ступени квантования qxi зависит от того, на каком диапазоне производится измерение. Квант qxi определяется значениями крайних точек диапазона измерения и максимальным числом возможных выходных кодовых комбинаций М:

Размер номинальной ступени квантования на i-м диапазоне измерения обычно выбирается равным единице младшего разряда этого диапазона.

Согласно (11.7), каждому из возможных показаний Yi (i = 1, ..., М) ставится в соответствие подмножество [XLi; XRi] значений измеряемой величины, где XLi; XRi -- левая и правая границы i-ro подмножества, причем XRi - XLi = qxi. Функция преобразования цифрового прибора (11.7) имеет вид ступенчатой кривой с разрывами в точках XLi и XRi для i (l;M) (рис. 11.18,а). Эта кривая должна наилучшим образом приближаться к прямой, которая задавется уравнением Y = X (прямая 1 на рис. 11.18,а и б), описывающим идеальную ситуацию: показания СИ равны измеряемой величине. Под наилучшим приближением понимается такое положение ступенчатой кривой, при котором абсолютные отклонения ее от прямой 1 минимальны, т.е.

Одна из таких возможных кривых показана на рис. 11.18, б. Она описывается уравнением

(11.8)

Рис. 11.18. Функции преобразования цифрового прибора и погрешности квантования

В пределе, при стремлении кванта q хi 0 оно переходит в уравнение

Y = X. Это свидетельствует о существовании тесной взаимосвязи теории погрешностей аналоговых и цифровых СИ.

Функции (11.7) и (11.8) не совпадают в точности с уравнением Y = X, так как условие qxi= 0 на практике невыполнимо. Поэтому даже идеальный АЦП обладает погрешностью, которая обусловлена самим принципом аналого-цифрового преобразования. Эта погрешность относится к разряду методических и называется погрешностью квантования. С учетом (11.8)

где frac(X) -- функция, выделяющая дробную часть числа X. Полученная функция показана на рис. 11.18, б. Погрешность квантования для функции (11.7) = -qxifrac(X/qxi) показана на рис. 11.18,а.

Функции преобразования идеального и реального цифровых приборов отличаются тем, что последняя может иметь смещение относительно нулевой точки, и тем, что действительный размер ступени квантования может отличаться от номинального и быть непостоянным.

Тенденция развития измерительной техники такова, что цифровых приборов становится все больше. С теорией разработки и применения цифровых средств измерений можно ознакомиться в [69-71].

В заключение отметим, что специфика приборов, применяемых для измерения ФВ, изучается в соответствующих дисциплинах. Измерение электрических величин (в том числе времени и частоты) подробно рассмотрено в [51, 54, 62, 69-75], теория построения и использования регистрирующих приборов проанализирована в [62, 76, 77], вопросы, связанные с измерением неэлектрических величин -- [59, 61, 77], в том числе массы [78], геометрических размеров и углов [79].

Измерительная установка. Это -- совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в удобной для непосредственного восприятия наблюдателем форме и расположенная в одном месте.

Измерительную установку, предназначенную для испытания каких-либо изделий, называют испытательным стендом (например, для измерения удельного сопротивления электрических материалов, испытания магнитных материалов).

Измерительную установку с включенными в нее эталонами, применяемую для поверки СИ, называют поверочной установкой (например, установка для поверки вольтметров). Некоторые большие измерительные установки, используемые главным образом в машиностроении, называют измерительными машинами (например, силоизмерительная машина, делительная машина).

9.6.2 Измерительные системы и измерительно-вычислительные комплексы

Усложнение современного производства, развитие научных исследований привело к необходимости измерять и контролировать одновременно сотни и тысячи различных физических величин. Естественная физиологическая ограниченность возможностей человека в восприятии и обработке больших объемов информации стала одной из причин появления таких СИ, как измерительные системы. Измерительные системы -- это совокупность функционально объединенных средств измерений, средств вычислительной техники и вспомогательных устройств, соединенных между собой каналами связи, предназначенных для выработки сигналов измерительной информации о физических величинах, свойственных данному объекту, в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления. Примерами могут служить системы, развернутые на крупных предприятиях и предназначенные для контроля технологического процесса производства какого-либо изделия, например производства стали, электроэнергии и т.п.

В зависимости от назначения измерительные системы разделяют на измерительные, контролирующие, управляющие. По числу измерительных каналов системы подразделяются на одно-, двух-, трех- и многоканальные.

Важной их разновидностью являются информационно-измерительные системы (ИИС), предназначенные для представления измерительной информации в виде, необходимом потребителю. По организации алгоритма функционирования различают системы:

* с заранее заданным алгоритмом работы, правила функционирования которых не меняются, поэтому они могут использоваться только для исследования объектов, работающих в постоянном режиме;

* программируемые, алгоритм работы которых меняется по заданной программе, составляемой в соответствии с условиями функционирования объекта исследования;

* адаптивные, алгоритм работы которых, а в ряде случаев и структура, изменяются, приспосабливаясь к изменениям измеряемых величин и условий работы объекта.

Наиболее перспективным методом разработки и производства ИИС является метод агрегатно-модульного построения из сравнительно ограниченного набора унифицированных, конструктивно законченных узлов или блоков. При построении агрегатированных систем должны быть решены задачи совместимости и сопряжения блоков как между собой, так и с внешними устройствами. Применительно к ИИС существует пять видов совместимости:

* информационная, которая предусматривает согласованность входных и выходных сигналов по видам и номенклатуре, информативным параметрам и уровням;

* конструктивная, обеспечиваемая согласованностью эстетических требований, конструктивных параметров, механических сопряжений блоков при их совместном использовании;

* энергетическая, предполагающая согласованность напряжений и токов, питающих блоки;

* метрологическая, обеспечивающая сопоставимость результатов измерений, рациональный выбор и нормирование метрологических характеристик блоков, а также согласование параметров входных и выходных цепей;

* эксплуатационная, т.е. согласованность характеристик блоков по надежности и стабильности, а также характеристик, определяющих влияние внешних факторов.

Связь между блоками системы и их совместимость устанавливается посредством стандартных интерфейсов.

Под интерфейсом понимается совокупность механических, электрических и программных средств, позволяющих объединять блоки в единую систему.

Структура ИИС довольно разнообразна и существенно зависит от решаемых задач. Детально вопросы проектирования таких систем рассмотрены в [62, 71, 81- 83].

Важной разновидностью ИИС является измерительно-вычислительные комплексы (ИВК) -- функционально объединенная совокупность средств измерений, компьютеров и вспомогательных устройств, предназначенная для выполнения конкретной измерительной задачи. Основными признаками принадлежности средства измерений к ИВК являются: наличие процессора или компьютера; программное управление средствами измерений; наличие нормированных метрологических характеристик; блочно-модульная структура, состоящая из технической (аппаратной) и программной (алгоритмической) подсистем.

Техническая подсистема должна содержать СИ электрических величин (измерительные компоненты), средства вычислительной техники (вычислительные компоненты), меры текущего времени и интервалов времени, средства ввода-вывода цифровых и аналоговых сигналов с нормированными метрологическими характеристиками.

В программную подсистему ИВК входят системное и общее прикладное программное обеспечение (ПО), в совокупности образующие математическое обеспечение ИВК. Системное ПО представляет собой совокупность программного обеспечения компьютера, используемого в ИВК, и дополнительных программных средств, позволяющих работать в диалоговом режиме; управлять измерительными компонентами; обмениваться информацией внутри подсистем комплекса; проводить диагностику технического состояния.

Программное обеспечение представляет собой взаимодополняющую, взаимодействующую совокупность подпрограмм, реализующих:

* типовые алгоритмы эффективного представления и обработки измерительной информации, планирования эксперимента и других измерительных процедур;

* архивирование данных измерений;

* метрологические функции ИВК (аттестация, поверка, экспериментальное определение метрологических характеристик и т.п.).

Большое значение имеет эффективное и наглядное построение экранных форм и управляющих элементов, называемых интерфей сом пользователя, обеспечивающих взаимодействие оператора с компьютером. Эффективность интерфейса заключается в быстром, насколько это возможно, развитии у пользователей простой концептуальной модели взаимодействия с комплексом.

Другими важными характеристиками интерфейса являются его конкретность и наглядность, что обеспечивается с помощью последовательно раскрываемых окон, раскрывающихся вложенных меню и командных строк с указанием функциональных, "горячих" клавиш.

Измерительно-вычислительные комплексы предназначены для выполнения таких функций, как:

* осуществление прямых, косвенных, совместных или совокупных измерений физических величин;

* управление процессом измерений и воздействием на объект измерений;

* представление оператору результатов измерений в требуемом виде.

Для реализации этих функций ИВК должен обеспечивать:

* восприятие, преобразование и обработку электрических сигналов от первичных измерительных преобразователей;

* управление средствами измерений и другими техническими компонентами, входящими в состав ИВК;

* выработку нормированных сигналов, являющихся входными для средств воздействия на объект;

* оценку метрологических характеристик и представление результатов измерений в установленной форме.

По назначению ИВК делятся на типовые, проблемные и специализированные. Типовые комплексы предназначены для решения широкого круга типовых задач автоматизации измерений, испытаний или исследований независимо от области применения.

Проблемные комплексы разрабатываются для решения специфичной для конкретной области применения задачи автоматизации измерений.

Специализированные ИВК предназначены для решения уникальных задач автоматизации измерений, для которых разработка типовых и специализированных комплексов экономически нецелесообразна.

Основными составными частями комплекса являются (рис. 11.19):

* компьютер с периферийными устройствами, подключенными к нему, в том числе и посредством компьютерной сети;

* програмное обеспечение, представляющее собой совокупность взаимосвязанных программ, написанных на алгоритмических языках разного уровня;

* интерфейс, организующий связь технических устройств ИВК с компьютером;

* формирователь испытательных сигналов, которыми воздействуют на объект измерения с целью получения измерительных сигналов. Каждый такой сигнал (например, на рис. 11.19 это i-й сигнал) вырабатывается с помощью последовательно соединенных ЦАП. и преобразователя "напряжение -- испытательный сигнал" (ПНИС;);

* измерительные каналы (ИК), предназначенные для преобразования в цифровой код заданного числа сигналов (К -- для первого ИК и L -- для N-ro ИК). Структура ИК существенно зависит от решаемой задачи.

Однако практически в любом случае каждый из них содержит аналоговый измерительный (АИП) и аналого-цифровой (АЦП) преобразователи.

При обработке нескольких измерительных сигналов одним АЦП в состав комплекса включается коммутатор, предназначенный для поочередного подключения сигналов к входу АЦП. Коммутатор может включаться как после АИП (ИК1 на рис. 11.19), так и перед ним (ИК N на рис. 11.19).

Рис. 11.19. Структурная схема измерительно-вычислительного комплекса

АИП предназначен для преобразования измерительного сигнала в сигнал, однородный с входным сигналом АЦП (т.е. в напряжение), и масштабирования (усиления или ослабления) его до уровня, необходимого для проведения операции аналого-цифрового преобразования с минимальной погрешностью. При наличии нескольких измерительных сигналов (К сигналов в ИК1 на рис. 11.19) АИП состоит из К независимых последовательно соединенных первичных преобразователей и управляемых компьютером масштабируемых усилителей. Если же измерительные сигналы являются однородными физическими величинами и могут быть поочередно выбраны (скоммутированы), то в ИК целесообразно использовать только один АИП (рис. 11.19 -- ИК N). Он последовательно во времени проводит преобразование измерительного сигнала и последующее его масштабирование.

АЦП преобразует сигнал в цифровой код и передает его через интерфейс в компьютер. Работой всей аппаратной части ИВК управляет компьютер. Это осуществляется посредством:

* подачи управляющих сигналов различного рода;

* считывания и передачи по требуемым адресам цифровой информации (сигналы "Данные" и "Адрес" на рис. 11.19). Под "Адресом" понимается уникальный цифровой код, присвоенный конкретному блоку ИВК или его части и позволяющий компьютеру через интерфейс однозначно идентифицировать данное устройство.

По команде оператора выбирается тот или иной режим работы ИВК из числа реализованных в программном обеспечении. Компьютер рассчитывает цифровой код, описывающий заданное изменение во времени каждого из М испытательных сигналов, и в виде двоичного цифрового кода записывает в оперативные запоминающие устройства формирователя испытательных сигналов (на рис. 11.19 не показаны). Оттуда эти коды последовательно во времени циклически поступают на вход каждого из ЦАП. Формируемые на их выходах напряжения с помощью ПНИС преобразуются в тре буемые физические величины, воздействующие на объект измерения.

Измерительные сигналы, представляющие собой отклик объекта измерения на испытательные воздействия, преобразуются в измерительных каналах в двоичный цифровой код и считываются компьютером. Полученные коды обрабатываются по заданным алгоритмам, в результате получается искомая измерительная инфор мация.

Каждый ИВК -- это сложное техническое устройство, поэтому содержит средства диагностики его состояния. Измерительно-вычислительные комплексы рассмотрены в [84, 85].

Пример 11.4. Рассмотрим ИВК, который предназначен [86] для измерения магнитных характеристик и параметров прецизионных сплавов и электротехнических сталей, проводимого в соответствии с ГОСТ 12119-80. Структурная схема автоматизированного магнитоизмерительного комплекса (АМК) показана на рис. 11.20.

Рис. 11.20. Структурная схема автоматизированного магнитоизмерительного комплекса

Интерфейс комплекса, используя сформированные в управляющем компьютере сигналы системной шины ISA, организует цифровую часть внутренней шины комплекса, состоящую из 16-разрядной шины данных, 14 радиальных адресных линий, двух линий для передачи сигналов, управляющих чтением и записью; 14 внутренних адресов АМК выбираются из разрешенных адресов компьютера, зарезервированных для внешних устройств. С помощью сигналов, передаваемых по внутренней шине, организуется работа всех модулей комплекса.

Синхронизацию работы комплекса обеспечивает программно-управляемый таймер, реализующий метод цифровой фазовой автоматической подстройки частоты. Он формирует два синхронизирующих сигнала: меандры с частотой перемагничивающего сигнала f и f/256. Последний обеспечивает дискретизацию перемагничивающего и измеряемых сигналов на N=256 точек. Таймер позволяет программно задавать частоту перемагничивающего сигнала в диапазоне от fmin = 20 Гц до fmаx = 5120 Гц. Погрешность установки частоты не превышает 0,05%.

Для измерения параметров и характеристик испытуемый магнитный материал необходимо пере магнитить. Это осуществляется подачей испытательного сигнала -- напряжения. При измерении ряда параметров должен быть обеспечен заданный режим перемагничивания, т.е. определенный закон изменения магнитной индукции в испытуемом образце (см. пример 2.4 в разд. 2.7). В частности, ГОСТ 12119-80 требует, чтобы при измерении удельных потерь индукция в испытуемом образце изменялась по синусоидальному закону, причем коэффициент гармоник не должен превышать 2%.

Испытательные сигналы в АМК формируются источником перемагничивающего сигнала (ИПС), состоящим из ЦАП, усилителя мощности (УМ) и аттенюатора (Атт). Формирование перемагничивающего сигнала происходит следующим образом. Компьютер по математической модели, описывающей требуемый сигнал, рассчитывает цифровой код, который представляется в виде массива из N=256 двоичных 12-разрядных чисел. Эти коды записываются в два буферных оперативных запоминающих устройства ЦАП (на рис. 11.20 не показаны). Из одного такого устройства последовательно во времени с частотой дискретизации fN коды поступают в 12-разрядный ЦАП, где преобразуются в переменное напряжение заданной частоты f и формы. Оно усиливается УМ и через аттенюатор поступает на блок первичных преобразователей (БПП). Аттенюатор предназначен для ступенчатого изменения уровня выходного сигнала в широких пределах, что дает возможность испытывать образцы магнитных материалов различных размеров.

Для формирования заданного закона перемагничивания используются итерационные методы [87], суть которых состоит в том, чтобы рассчитать и сформировать испытательный сигнал такой формы, при перемагничивании которым магнитная индукция в образце изменялась бы по заданному закону. Процесс формирования занимает во времени несколько тактов итераций, в течение которых закон изменения магнитной величины последовательно приближается к требуемому. Форма перемагничивающего напряжения задается программно.

Блок первичных преобразователей содержит испытуемый магнитный образец МО с намагничивающей w1 и измерительной w2 обмотками и эталонный резистор R0. Ток с выхода аттенюатора, протекая по намагничивающей обмотке, перемагничивает испытуемый образец. Для получения измерительных сигналов, пропорциональных магнитной индукции и напряженности поля, в комплексе используются первичные преобразователи, рассмотренные в примере 11.2 (см. рис. 11.14).

Переменные напряжения, пропорциональные скорости изменения магнитной индукции и напряженности магнитного поля, поступают на вход измерительного канала, состоящего из коммутатора (Ком), масштабирующего усилителя (МУ) и 12-разрядного АЦП. В канале измеряемое переменное напряжение преобразуется в 256 значений цифрового кода, пропорциональных мгновенным значениям измеряемых напряжений в 256 точках дискретизации, равномерно распределенных по периоду измеряемого напряжения. Полученные массивы цифровых кодов поступают в компьютер, где путем пересчета определяются требуемые магнитные характеристики. Коммутатор реализует подключение четырех возможных входных сигналов u1..., u4 (см. рис. 11.20). Последние два сигнала u3 и u4 нужны для автоматической калибровки коэффициента передачи масштабирующего усилителя (Е0) и устранения смещения нуля в измерительном канале (нулевой потенциал).

Масштабирующий усилитель осуществляет автоматический выбор одного из восьми пределов измерения. Это делается для того, чтобы его выходной сигнал лежал в диапазоне 5,12 ... 10,24 В, наиболее подходящем для эффективной работы АЦП. Установленный коэффициент передачи усилителя используется в управляющем компьютере для пересчета выходного кода АЦП в напряжение и далее в магнитную величину. Поскольку АЦП преобразует биполярный переменный сигнал, то для учета знака используется старший, двенадцатый разряд выходного кода. В этом случае мгновенное значение j-ro (j = l,..., 4) входного напряжения коммутатора

где Uоп -- прецизионное постоянное напряжение, используемое в АЦП, kj, kyj -- коэффициенты передачи коммутатора и масштабирующего усилителя при измерении j-ro входного сигнала; Nj(ti) -- мгновенное значение выходного кода АЦП при измерении j-ro входного сигнала.

При измерении магнитных величин напряжения u1 и u2 описываются формулами (11.6) и (11.7). Из приведенного выше уравнения с учетом этих формул легко получить выражения, по которым компьютер проводит расчет мгновенных значений напряженности поля и скорости изменения магнитной индукции:

Для определения мгновенных значений магнитной индукции используются известные формулы численного интегрирования. Полученные пары [H(ti); B(ti)] описывают множество точек петли гистерезиса. С их помощью можно рассчитать практически любые магнитные характеристики и параметры испытуемого образца.

Программное обеспечение комплекса написано на языках Паскаль и Ассемблер. Функционально оно может быть разделено на несколько взаимосвязанных частей -- подсистем, обеспечивающих ввод/вывод исходной информации об объекте и режимах испытаний, проведение различных режимов испытаний, вывод измерительной информации и ее архивирование, оперативную диагностику состояния комплекса, тестирование блоков комплекса.

Подсистема ввода/вывода исходной информации предназначена для настройки комплекса на измерение свойств конкретного образца при выбранном законе изменения магнитной индукции. Подсистема режимов испытаний является основной и дает возможность проводить: проверку метрологических параметров измерительного канала; установку амплитудных значений индукции и напряженности поля; магнитную подготовку испытуемого образца; измерение кривой намагничивания и кривой потерь; измерение петли гистерезиса и ее характерных точек; построение графиков ранее измеренных зависимостей, хранимых в виде файлов. При измерении всех характеристик имеется возможность выводить данные на диск, принтер, а также получать на экране монитора графики полученных зависимостей. Подсистема тестирования модулей комплекса позволяет контролировать метрологические характеристики ЦАП, АТТТТ и измерительного канала в целом. Для этого в состав комплекса включен (см. рис. 11.20) программно-управляемый прецизионный калибратор, состоящий из ПАП, усилителя (УК) и делителя (ДК) калибратора.

9.7 Моделирование средств измерений

9.7.1 Структурные элементы и схемы средств измерений

Построение и изучение СИ невозможно без математических моделей, адекватно описывающих те или иные их свойства и характеристики. В метрологии используется моделирование измерительных сигналов (см. гл. 10) и моделирование средств измерений.

Математическая модель СИ описывает взаимосвязь его показаний Y со значением измеряемой величины X, конструктивными параметрами а1, а2,..., aL и влияющими величинами z1, z2,...,zK: Y = F(x; a1, a2,... aL; z1, z2,...,zK).

Для построения математических моделей (ММ) СИ необходимо знать, как устроены СИ и каким образом происходит преобразование измерительных сигналов, т.е. нужно знать структуру СИ. Для сложных СИ, каковыми являются большинство современных приборов, анализ их составных частей и ММ является далеко не простой задачей. Для ее оптимального решения, а также для упрощения анализа процессов, протекающих в СИ, введены понятия структурной схемы и измерительных цепи, канала и тракта.

Измерительная цепь -- совокупность элементов СИ, образующих непрерывный путь прохождения измерительного сигнала от входа до выхода и обеспечивающих осуществление всех его преобразований.

Измерительный канал -- это измерительная цепь, образованная последовательным соединением СИ и других технических устройств, предназначенная для измерения одной величины и имеющая нормированные метрологические характеристики.

Измерительный тракт -- совокупность измерительных каналов, предназначенных для измерения определенной величины и имеющих одинаковые метрологические характеристики.

Структурная схема -- условное обозначение измерительной цепи (канала или тракта) СИ с указанием преобразуемых величин. Эта схема определяет основные структурные блоки СИ, их назначение и взаимосвязи.

Основной предпосылкой, использованной при введении этих понятий, было обоснованное допущение о том, что каждое преобразование сигнала происходит в отдельном звене или блоке. Структурные схемы состоят из соединенных определенным образом структурных элементов (блоков), каждый из которых выполняет одну из ряда функций, связанных с измерением. Свойства структурных элементов или их совокупностей описываются с помощью соответствующих уравнений, известных из физики, электротехники, электроники и других технических наук.

Основной характеристикой структурного элемента является его функция (уравнение) преобразования Y = f[X, Kj, Zi] -- уравнение, связывающее между собой входной X и выходной Y сигналы элемента, его параметры Kj и в ряде случаев внешние влияющие величины Zi. Функция преобразования структурного блока является его математической моделью. Ее вид зависит от того, насколько полно элемент необходимо описать, и какие его свойства являются для исследователя наиболее важными. Например, ММ идеального усилителя может быть записана в виде uвых(t) = kuвх(t), где k -- коэффициент усиления, являющийся постоянным параметром усилителя. Если необходимо учесть напряжение смещения и0 на его выходе, модель запишется в виде uвых(t) = kuвх(t) + u0 . Процесс уточнения модели усилителя можно продолжить и дальше. Например, учесть его фазочастотные характеристики, влияние внешней температуры и т.д.


Подобные документы

  • Вопросы теории измерений, средства обеспечения их единства и способов достижения необходимой точности как предмет изучения метрологии. Исследование изменений событий и их частоты. Цифровые измерительные приборы. Методы, средства и объекты измерений.

    курсовая работа [607,8 K], добавлен 30.06.2015

  • История развития метрологии. Правовые основы метрологической деятельности в Российской Федерации. Юридическая ответственность за нарушение нормативных требований. Объекты, методы измерений, виды контроля. Международная система единиц физических величин.

    шпаргалка [394,4 K], добавлен 13.11.2008

  • Общие положения Государственной системы обеспечения единства измерений. Передача размеров единиц физических величин, их поверочные схемы. Способы поверки средств измерений. Погрешности государственных первичных и специальных эталонов, их оценка.

    контрольная работа [184,3 K], добавлен 19.09.2015

  • Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

    реферат [49,4 K], добавлен 14.02.2011

  • Основные сведения о физических величинах, их эталоны. Система международных единиц, классификация видов и средств измерений. Количественные оценки погрешности. Измерение напряжения и силы тока. Назначение вольтметра, осциллографа и цифрового частотомера.

    шпаргалка [690,1 K], добавлен 14.06.2012

  • Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.

    курсовая работа [437,4 K], добавлен 29.04.2014

  • Теоретические основы и главные понятия метрологии. Методы нормирования метрологических характеристик средств измерений, оценки погрешностей средств и результатов измерений. Основы обеспечения единства измерений. Структура и функции метрологических служб.

    учебное пособие [1,4 M], добавлен 30.11.2010

  • Классификация погрешностей измерительных устройств. Размерность и размер единиц физических величин. Основные методы стандартизации. Расчет критериев Романовского и Диксона. Основные положения системы допусков и посадок. Определение коэффициентов вариации.

    контрольная работа [492,4 K], добавлен 12.04.2016

  • Классификация методов поверки. Метод непосредственного сличения, при помощи компаратора (прибора сравнения), прямых и косвенных измерений, независимой поверки. Система передачи размеров единиц физических величин. Эталонная база Республики Беларусь.

    реферат [206,6 K], добавлен 05.02.2009

  • Предмет и основные задачи теоретический, прикладной и законодательной метрологии. Исторически важные этапы в развитии науки об измерениях. Характеристика международной системы единиц физических величин. Деятельность Международного комитета мер и весов.

    реферат [23,8 K], добавлен 06.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.