Химические процессы и реакторы
Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов. Зависимость константы равновесия от температуры. Законы химической кинетики при выборе технологического режима и моделировании химических процессов.
Рубрика | Химия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 24.01.2015 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
сА,0 = 1 кмоль/м3, сB,0 = 2 кмоль/м3, объемный расход v = 10 м3/ч.
В каскаде реакторов идеального смешения проводят реакцию А + 2В R + 2S до достижения 80 %-ной степени превращения реагента А. Определите число секций и суммарный объем каскада реакторов для следующих условий осуществления процесса: сА,0 = 1 кмоль/м3, сB,0 = 1 кмоль/м3, k = 0,2 м3/(кмоль•ч), объем каждой секции Vi =1 м3, объемный расход v = 0,2 м3/ч. Определите также объем единичного реактора идеального смешения и объем реактора идеального вытеснения для тех же условий проведения процесса.
Глава 6. ТЕПЛОПЕРЕНОС В ХИМИЧЕСКИХ РЕАКТОРАХ
Характер распределения температуры в химическом реакторе чрезвычайно важен при анализе протекающих в нем процессов, так как температура - один из основных параметров технологического режима. От температуры, во-первых, зависят состояние химического равновесия и предельно достижимая степень превращения реагентов (равновесная), во-вторых,- скорость химических реакций. Кроме того, от температуры зависит селективность при проведении сложных реакций. Изменение температуры может привести к переходу гетерогенного процесса из кинетической области в диффузионную или наоборот. Нарушение равномерного распределения температуры в реакторе может привести к локальным разогревам, нежелательным побочным явлениям и т. д.
Изменение температуры в реакторе в целом или изменение распределения температуры по объему реактора происходит вследствие протекающих в нем процессов, сопровождающихся выделением или поглощением теплоты, а также вследствие теплообмена реактора с окружающей средой.
Существенное влияние на характер распределения температуры оказывает гидродинамическая обстановка в аппарате. Например, в реакторе идеального смешения, в силу допущений об идеальности, все параметры процесса, в том числе и температура, в данный момент времени одинаковы в любой точке реактора. Напротив, в реакторе вытеснения температура может быть различной в разных точках аппарата. Интенсивность перемешивания влияет и на интенсивность теплообмена в аппарате.
Все тепловые явления учитываются при составлении теплового баланса химического реактора.
§6.1 Уравнение теплового баланса. Тепловые режимы химических реакторов
В уравнении теплового баланса учитываются все тепловые потоки, входящие в реактор и выходящие из него. Такими потоками являются: Qвых - физическая теплота реакционной смеси, входящей в элементарный объем, для которого составляется баланс (входной поток); Qвых - физическая теплота реакционной смеси, покидающей элементарный объем (выходной поток); Qxp - теплота химической реакции (знак теплового эффекта зависит от того, происходит ли выделение или поглощение теплоты в результате химической реакции); Qто - теплота, расходуемая на теплообмен с окружающей средой (в зависимости от соотношения температур в реакторе и окружающей среде или в теплообменном устройстве этот поток может быть также направлен и в объем и из него); Qфп - теплота фазовых превращений.
Для стационарного режима работы реактора алгебраическая сумма всех тепловых потоков равна нулю:
Qвх - Qвых ± Qхр ± Qто ± Qaп = 0. (6.1)
В нестационарном режиме происходит положительное или отрицательное накопление теплоты в элементарном объеме:
Qвх - Qвых ± Qхр ± Qто ± Qaп = Qнак. (6.2)
Уравнения (6.1) и (6.2) являются общими уравнениями теплового баланса химического реактора. Конкретный вид уравнения теплового баланса зависит от вида теплового режима и гидродинамической обстановки в реакторе. Различают несколько видов тепловых режимов химических реакторов. Рассмотрим различные тепловые режимы реакторов, в которых не происходит фазовых превращений.
В изотермическом режиме температура реакционной смеси, входящей в реактор, равна температуре в реакторе и температуре смеси, покидающей реактор. Это возможно, если выделение или поглощение теплоты в результате химической реакции полностью компенсируется теплообменом с окружающей средой. Для стационарного изотермического режима при постоянстве физических свойств системы можно записать:
Qвх = Qвых,
| Qхр |=| Qто |.
Адиабатический режим характеризуется полным отсутствием теплообмена с окружающей средой. В этом случае вся теплота химической реакции полностью расходуется на нагрев или охлаждение реакционной смеси. Для стационарного адиабатического режима
| Qвх | - | Qвых | = | Qхр |.
Промежуточный режим характеризуется тем, что частично теплота химической реакции расходуется на изменение теплосодержания (нагрев или охлаждение) реакционной смеси, частично - на теплообмен с окружающей средой. Этот режим наиболее часто встречается в реальных химических реакторах. Промежуточный тепловой режим описывается полным уравнением теплового баланса (6.1).
В главе 5 были рассмотрены математические модели изотермических реакторов. Для расчетов на основе этих моделей, как правило, достаточно лишь уравнения материального баланса. При расчете неизотермического реактора необходимо совместно решить систему уравнений материального и теплового балансов, из которых первое учитывает изменение количества вещества, а второе - изменение количества теплоты при протекании химического процесса.
Ниже рассматриваются особенности составления математических моделей и расчетов на их основе для неизотермических реакторов с различной гидродинамической обстановкой.
§6.2 Проточный реактор идеального смешения в неизотермическом режиме
При составлении балансовых уравнений в качестве элементарного объема для реактора идеального смешения принимают полный реакционный объем V. Тепловые потоки за элементарный промежуток времени dф для объема V:
; (6.3)
; (6.4)
; (6.5)
(6.6)
где cp - средняя теплоемкость реакционной смеси; с - средняя плотность реакционной смеси; ?H - тепловой эффект реакции, отнесенный к 1 моль реагента; Кт - коэффициент теплопередачи; Fто - поверхность теплообмена с окружающей средой; ?Тто - движущая сила теплообмена (средняя разность температур в реакторе и внешней среде, с которой происходит теплообмен); величины, относящиеся к входному потоку, отмечены индексом «0», величины без индекса относятся к реакционной смеси, находящейся в реакторе в данный момент или выходящей из него.
Накопление теплоты в реакторе за время dф равно изменению теплосодержания реакционной смеси:
(6.7)
С учетом уравнений (6.2)-(6.7) уравнение теплового баланса для нестационарного режима будет иметь вид
Или
(6.8)
В стационарном режиме правая часть уравнения (6.8) равна нулю. Если также принять, что v0 = v и пренебречь изменением средней теплоемкости и плотности реакционной смеси при изменении состава и температуры, для стационарного режима
(6.9)
Математическая модель неизотермического реактора идеального смешения кроме уравнения теплового баланса (6.9) включает в себя уравнение материального баланса
. (6.10)
Уравнения (6.9) и (6.10) взаимосвязаны: в оба входит в качестве составной части функция wrA(cA, T). Скорость химической реакции wrA зависит и от концентрации реагентов (степени превращения), и от температуры. Чем выше температура, тем выше скорость реакции и, следовательно, тем большая степень превращения должна достигаться при том же среднем времени пребывания . Но рост степени превращения автоматически должен приводить к понижению скорости реакции. В проточном реакторе заданного объема устанавливаются степень превращения и температура, которые одновременно должны удовлетворять и уравнению (6.9), и уравнению (6.10).
При совместном решении уравнений (6.9) и (6.10) при заданных
= V/v и начальной температуре Т0 можно определить значения хА и Т, удовлетворяющие этим уравнениям. Ниже рассмотрен анализ возможных решений уравнений материального и теплового балансов сначала для адиабатического реактора идеального смешения, затем для реактора идеального смешения с внешним теплообменом. На основании этого анализа можно сделать вывод о том, какие условия проведения процесса нужно выбрать для достижения высокой степени превращения реагентов.
Совместное решение уравнений материального и теплового балансов для стационарного адиабатического реактора идеального смешения. Математическая модель проточного адиабатического реактора идеального смешения представляет собой систему уравнений материального и теплового балансов:
(6.11)
Определим, используя эту систему уравнений, степень превращения хА и температуру Т, достигаемые в реакторе. Различные частные решения зависят от конкретного вида кинетического уравнения wrA = wrA(cA, T) реакции, протекающей в аппарате. Рассмотрим решения для реакций с наиболее простой кинетикой: необратимой реакции первого порядка АR и обратимой реакции первого порядка А R, так как в этих случаях все математические выкладки проще.
Предварительно преобразуем систему уравнений (6.11). В уравнении материального баланса заменим изменение концентраций (сА,0 - cА) равным ему соотношением сА,0 хА. Упростим уравнение теплового баланса, исключив из него скорость реакции wrA.
Для этого воспользуемся уравнением материального баланса, в соответствии с которым wrAV = v(cA,0 - сА) = vcА,0xA. Тогда уравнение теплового баланса примет вид vcpс(Т0 - Т) - ?HvсА,0хА = 0. После сделанных преобразований систему уравнений (6.11) запишем так:
(6.12)
(6.13)
Необратимая реакция первого порядка. Кинетическое уравнение необратимой реакции первого порядка имеет вид
.
Подставим его в уравнение (6.12)
. (6.14)
Для определения степени превращения хА и температуры Т в реакторе уравнение материального баланса (6.14) нужно решить совместно с уравнением теплового баланса (6.13). Аналитическое решение этой системы уравнений затруднено из-за того, что температура T входит в уравнения и в виде линейного члена, и в составе комплекса, являющегося показателем экспоненциальной функции. Такие уравнения являются трансцендентными, и для их решения применяют численные методы.
Решим систему уравнений (6.13) и (6.14) графическим методом. Для этого запишем оба уравнения в виде зависимостей хА Т, построим графики этих зависимостей и найдем точки их пересечения, удовлетворяющие одновременно обоим уравнениям, т. е. являющиеся решениями системы.
В уравнении теплового баланса (8.14) зависимость между хА и T является линейной.
Эта прямая линия пересекает ось температур в точке Т = Т0 и имеет угловой коэффициент
(6.15)
Знак углового коэффициента зависит от знака теплового эффекта, он отрицателен для эндотермических реакций, у которых ?Н > 0 (рис. 6.1, а), и положителен для экзотермических реакций (рис. 6.1, б). Крутизну угла наклона можно изменить, меняя начальную концентрацию сA,0.
Рис. 6.1. Уравнение теплового баланса реактора идеального смешения в координатах хА - Т для эндотермической (а) и экзотермической (б) реакций
Если принять хА = 1 (т. е. реакция прошла до конца), из уравнения (6.15) получим
Величина ?TАД - максимальное изменение температуры реакционной смеси, возможное в адиабатических условиях, или адиабатическое изменение температуры (для экзотермических реакций, например, адиабатический разогрев). Уравнение (6.15) с учетом ?Tад можно записать так:
(6.16)
Вид зависимости хА(T), соответствующей уравнению материального баланса (6.12), зависит от типа кинетического уравнения реакции. Для необратимой реакции первого порядка (эндотермической, и экзотермической) уравнение материального баланса (6.12) можно представить в следующем виде (с учетом того, что V/v = ):
(6.17)
Уравнение (6.17) описывает монотонно возрастающую функцию хa(T). При низких температурах, когда кинетическая энергия молекул существенно ниже энергии активации (об этом можно судить, сравнивая энергии Е и RT), хА 0. При высоких температурах, когда величины Е и RT имеют одинаковый порядок, числовое значение exp[E/(RT)] невелико. Так как предэкспоненциальный множитель k0 = 108 + 1013, то в этом случае хА 1.
Таким образом, график функции (6.17) - кривая без экстремумов (рис. 6.2, кривая 1), при низких температурах асимптотически приближающаяся к нулю, при высоких - к единице, а при «средних» температурах имеющая одну точку перегиба (ее координаты можно получить, приравняв нулю производную d2xA/dT2).
Положение среднего участка кривой относительно оси температур можно изменить, увеличив или уменьшив среднее время пребывания в реакторе ( = V/v). Из уравнения (6.17) следует, что увеличение при тех же температурах приведет к росту хА (рис. 6.2, кривая 2).
Рис. 6.2. Уравнение материального баланса реактора идеального смешения в координатах хA - Т для необратимой реакции первого порядка при среднем времени пребывания 1 (1) и 2 (2)
Решение системы уравнений материального и теплового балансов имеет несколько различающийся вид для эндо- и экзотермических необратимых реакций. В случае проведения в адиабатическом реакторе идеального смешения необратимой эндотермической реакции графики функций (6.16) и (6.17) имеют лишь одну точку пересечения (см. рис. 6.3).
Координаты этой точки (хА/, T/) и являются решением системы уравнений: если в адиабатический реактор идеального смешения заданного объема V подает исходный реагент А, имеющий концентрацию сА,0 с объемным расходом v и при начальной температуре Т0, необратимая эндотермическая реакция будет протекать в аппарате при температуре Т и при этом будет достигаться степень превращения хА/.
Рис. 6.3. Уравнения теплового (1) и материального (2) балансов для адиабатического реактора идеального смешения при проведении в нем необратимой эндотермической реакции (совместное решение)
Если в адиабатическом реакторе проводят необратимую экзотермическую реакцию, система уравнений материального и теплового балансов может иметь как одно, так и несколько решений, отвечающих стационарному режиму.
Из рис. 6.4 видно, что графики функций (6.16) и (6.17) имеют только одну точку пересечения, если начальная температура Т0 реакционного потока будет сравнительно низкой (например, Т10) или сравнительно высокой (например, T20). При этом оказывается, что при подаче реагентов в реактор с низкой начальной температурой Т10 процесс будет протекать при температуре, мало отличающейся от T10, а достигаемая степень превращения (ордината точки А на рис. 6.4) также будет очень низка. Более выгодным является режим работы реактора, соответствующий начальной температуре Т30. В этом случае также имеется лишь одна точка пересечения графиков (точка Е), т. е. одно решение системы уравнений, но оно соответствует высокой степени превращения, почти равной единице.
Если же реагенты подавать в реактор с начальной температурой Т20, то линии, соответствующие уравнениям материального и теплового балансов, пересекаются трижды, т. е. координаты точек В, С, D являются возможными решениями системы уравнений, составляющей математическую модель адиабатического реактора идеального смешения.
В таких случаях говорят о множественности стационарных состояний реактора. При этом возникает дополнительная проблема устойчивости рассматриваемых стационарных состояний.
Рис. 6.4. Уравнения теплового (1, 2, 3) и материального (4) балансов для адиабатического реактора идеального смешения при проведении в нем необратимой экзотермической реакции (совместное решение)
Обратимая реакция первого порядка. Для обратимой реакции первого порядка А R кинетическое уравнение имеет вид
. (6.18)
Выразив в уравнении (6.18) концентрации сА и сR через сА,0 и хА получим
В условиях равновесия для обратимой реакции первого порядка имеет место равенство скоростей прямой и обратной реакции , откуда следует, что
(6 19)
С учетом выражения (6.19) кинетическое уравнение обратимой реакции первого порядка примет вид
(6.20)
После подстановки выражения (6.20) в формулу (6.12) уравнение материального баланса можно представить в виде зависимости хА от Т:
(6.21)
Уравнение (6.21), как и следовало ожидать, при хА,е = 1 (т. е. для необратимой реакции первого порядка) переходит в уравнение (6.17).
Для графического решения системы уравнений материального и теплового балансов в случае обратимой реакции нужно построить график функции (6.21). График уравнения теплового баланса (6.15), не содержащего никаких кинетических параметров реакции, от вида кинетического уравнения не зависит.
В уравнении (6.21) от температуры зависят константа скорости прямой реакции k1, и равновесная степень превращения хА,е.
Для обратимой эндотермической реакции (?H > 0) с ростом температуры увеличивается и константа равновесия, и равновесная степень превращения. Величина хА, рассчитанная по уравнению (6.21), при любых температурах будет меньше, чем k1, , и меньше, чем хА,е, т. е. грфик функции хА(Т) должен находиться на координатной плоскости (рис. 6.5, a) ниже графиков функций k1(Т) и хА,e(Т).
Система уравнений материального и теплового балансов для обратимой экзотермической реакции имеет такой же вид, как и для обратимой эндотермической реакции, т. е. это уравнения (6.21) и (6.15). Однако график функции хА(Т), определяемый уравнением (6.21), будет другим. Связано это с тем, что равновесная степень превращения хА,е для экзотермических реакций с ростом температуры падает. Поэтому, построив график функции хА(Т), пользуясь при этом теми же приемами, что и для обратимой экзотермической реакции, получим кривую с максимумом (рис. 6.5, б). Абсолютное значение максимума и его положение относительно кривой определяются, с одной стороны, средним временем пребывания реагентов в реакторе ф, а с другой - состоянием химического равновесия.
Уравнение теплового баланса - прямая 1 с положительным тангенсом угла наклона. Эта прямая может пересекаться с кривой 2, отвечающей уравнению материального баланса, в одной или в нескольких точках (одно или несколько стационарных состояний).
Рис. 6.5. Уравнения теплового (1) и материального (2) балансов для адиабатического реактора идеального смешения при проведении в нем обратимых эндотермической (а) и экзотермической (б) реакций (совместное решение)
Способы увеличения степени превращения реагентов при проведении реакций в адиабатическом реакторе идеального смешения. В зависимости от начальных условий (температуры на входе Т0, начальной концентрации сА,0), соотношения объема аппарата и объемного расхода ( = V/v), а также типа химической реакции в проточном реакторе идеального смешения устанавливается некоторое стационарное состояние, характеризующееся неизменяющимися во времени значениями температуры реакционной смеси и степени превращения на выходе из аппарата. Эти значения T и xA могут быть определены на основании совместного решения уравнений материального и теплового балансов, как это было показано выше.
В промышленных условиях очень важно наиболее полно использовать исходное сырье, т. е. достичь высоких значений степени превращения. Анализ получающихся решений позволяет найти условия проведения процесса, при которых достигается оптимальная степень превращения реагентов в адиабатическом реакторе идеального смешения.
Графическое решение системы уравнений материального и теплового балансов сводится к определению точки пересечения графиков функций хА(Т), отвечающих и тому, и другому уравнениям. Более высокая степень превращения исходного сырья в адиабатическом реакторе соответствует на рис. 6.3-6.5 смещению точки пересечения в область больших значений хА. Добиться этого можно, изменяя взаимное положение кривой, отвечающей уравнению материального баланса, и прямой, соответствующей уравнению теплового баланса. Укажем возможные способы влияния на положение этих линий.
Для эндотермических реакций (необратимых и обратимых) повышения степени превращения можно добиться, прежде всего, увеличением начальной температуры T0, что приведет к параллельному смещению вправо прямой 1 (см. рис. 6.3 и 6.5, а).
Для необратимых экзотермических реакций увеличение температуры на входе в реактор также приведет к росту степени превращения (см. рис. 6.4, прямая 2). Одновременно это позволит избежать тройного пересечения линий 2 и 4, отвечающего случаю множественности стационарных состояний. Однако увеличение начальной температуры должно быть оправдано экономическими соображениями, так как рост степени превращения будет сопровождаться при этом и увеличением затрат на нагрев исходной реакционной смеси.
Для обратимых экзотермических реакций, проводимых в адиабатическом реакторе идеального смешения, целесообразно добиться таких условий, чтобы решение системы уравнений материального и теплового балансов соответствовало точке максимума линии 2, отвечающего уравнению материального баланса (см. рис. 6.5, б). Смещение прямой 1 вправо при возрастании начальной температуры может привести не к увеличению, а к уменьшению степени превращения. Выбор оптимальных условий проведения обратимых экзотермических реакций представляет наибольшую сложность.
Другой способ изменения положения прямой, отвечающей уравнению теплового баланса, состоит в изменении угла ее наклона. Угловой коэффициент прямой, описываемой уравнением (6.15), можно увеличить или уменьшить, изменив начальную концентрацию сА,0:
.
В эндотермических реакциях для повышения хA при сохранении прежней начальной температуры нужно увеличить крутизну прямой, что можно сделать уменьшением сA,0 (это не всегда целесообразно, так как придется работать с низко концентрированными реагентами). При проведении экзотермических реакций увеличение сА,0 приведет к росту ?Тад, и прямая станет более пологой.
Повышение степени превращения хА может быть достигнуто также при увеличении среднего времени пребывания = V/v. Во всех рассмотренных случаях на графиках (см. рис. 6.3-6.5) произойдет смешение влево линии, отвечающей уравнению материального баланса. При проведении обратимых реакций положение этой линии ограничено условиями равновесия [зависимость хА,е(T)]. Поэтому добиться увеличения хА можно изменением условий, влияющих на равновесие.
В каждом конкретном случае проводится анализ всех возможных способов увеличения степени превращения с проведением технико-экономического сравнения.
Стационарный неадиабатический реактор идеального смешения. Для расчетов реактора идеального смешения, работающего в промежуточном тепловом режиме, пользуются полным уравнением теплового баланса (6.9)
.
Движущей силой теплообмена ?Tто между реакционной смесью, находящейся в реакторе, и теплоносителем (внешней средой) является средняя разность температур реакционной смеси и теплоносителя. Температура реакционной смеси Т одинакова в любой точке аппарата идеального смешения. Если считать, что средняя температура теплоносителя Тт, то ?Tто = |Tт - Т |.
Рассмотрим проведение экзотермической реакции в реакторе идеального смешения с отводом теплоты. Тогда Т > Тт и уравнение (6.9) с учетом уравнения материального баланса можно записать так:
(6.22)
Преобразуем уравнение (6.22) к виду хА = хА(T), чтобы сделать возможным графическое решение системы уравнений материального и теплового балансов (рис. 6.6):
(6.23)
Рис. 6.6. Уравнения материального и теплового балансов для неадиабатического реактора идеального смешения при проведении необратимой экзотермической реакции (совместное решение): линии уравнения теплового баланса: 1 - для адиабатического реактора; 2 - для реактора с отводом теплоты; штриховая - для изотермического реактора; 3 - линия уравнения материального баланса
Уравнение (6.23) - уравнение прямой, как и уравнение теплового баланса (6.15) адиабатического реактора идеального смешения, но с большим свободным членом и большим угловым коэффициентом. Поэтому прямая, описываемая им, смещена относительно линии уравнения теплового баланса адиабатического реактора и имеет большую крутизну (линия 2).
Аналогичные рассуждения подходят для проведения эндотермических реакций в реакторах с подводом теплоты.
Предельным случаем неадиабатического реактора является изотермический аппарат, в котором вся теплота реакции компенсируется теплообменом с внешней средой. Уравнение теплового баланса для изотермического реактора изобразится прямой линией, параллельной оси ординат (Т = Т0) - штриховая линия.
§6.3 Тепловая устойчивость химических реакторов
При анализе совместного решения уравнений материального и теплового балансов адиабатического реактора идеального смешения для экзотермических реакций было отмечено, что возможны случаи, когда система имеет не одно, а несколько решений. Например, при пересечении прямой 2 и кривой 4 на рис. 8.4 (необратимая экзотермическая реакция первого порядка) система уравнений материального и теплового балансов имеет три решения, соответствующие точкам В, С и D. Решаемая графически система уравнений была составлена в предположении о стационарном режиме работы реактора, т. е. о неизменности во времени параметров процесса (в частности, температуры и степени превращения). Таким образом, наличие нескольких решений означает возможность множественности стационарных состояний.
На практике, конечно, из трех возможных решений будет реализовано одно. Желательно, чтобы работа реактора характеризовалась высокой степенью превращения исходного реагента, т. е. соответствовала точке D. Возможно ли это? Как при наличии нескольких стационарных состояний практически обеспечить наиболее выгодное состояние? Ответить на эти вопросы помогает анализ устойчивости стационарных состояний.
Устойчивость системы в стационарном состоянии определяется ее реакцией на возмущающее воздействие.
Стационарное состояние системы называется устойчивым, если небольшие кратковременные возмущающие воздействия не могут вывести систему за пределы небольшой области, окружающей исследуемый стационарный режим.
Если систему, находящуюся в устойчивом состоянии, отклонить от него, а затем предоставить ее самой себе, она самопроизвольно вернется в начальное состояние. Отклонение системы, находящейся в неустойчивом состоянии, вызовет после снятия возмущения ее самопроизвольный переход в другое, устойчивое состояние.
Для анализа устойчивости трех стационарных состояний В, С и D адиабатического реактора идеального смешения (см. рис. 6.4) используем сначала физические представления о природе процесса в реакторе. С этой целью преобразуем уравнения (6.15) и (6.17), умножив их на тепловой эффект реакции ?Н.
Уравнение теплового баланса (6.15) примет вид
(6.24)
Произведение теплоемкости на плотность реакционной смеси и ее температуру, отнесенное к начальной концентрации, представляет собой физическую теплоту реакционной смеси, приходящуюся на 1 моль (кмоль) исходного вещества, вошедшего в реактор. Для экзотермической реакции Т0 < Т, а получаемая в уравнении (6.24) величина g_ показывает, насколько больше физической теплоты будет вынесено из реактора покидающей его реакционной смесью, чем было внесено в реактор входным потоком. Так как g_ отнесено к 1 моль (кмоль) реагента А, эту величину можно назвать удельным отводом теплоты из реактора.
Уравнение (6.17) показывает, каков прирост степени превращения реагента при протекании химического процесса в реакторе. Если эту величину умножить на тепловой эффект экзотермической реакции ?Н (кДж/кмоль) исходного реагента А, вступившего в реакцию, получают удельное выделение теплоты g+ в реакторе, приходящееся на 1 кмоль реагента А, вошедшего в реактор.
Так как величина ?Н принята постоянной, то умножение на нее уравнений (6.15) и (6.17) изменит лишь масштаб на графике, используемом для численного решения системы уравнений материального и теплового балансов. Точки пересечения линий на рис. 6.5, а приобретают теперь новый физический смысл: они отвечают условиям равенства удельного теплоотвода и удельного тепловыделения, обеспечивающего стационарное состояние. При нарушении этого равенства, вызванном, например, кратковременным возмущением во входном потоке, будут преобладать либо g+, либо g_ и, следовательно, будет происходить самопроизвольное повышение или понижение температуры в аппарате.
Рассмотрим более подробно разные стационарные состояния при наличии решений системы уравнений материального и теплового балансов.
На рис. 6.7 в координатах g - T показана верхняя точка пересечения D, перенесенная с рис. 6.4. Пусть вследствие некоторого возмущения состояние теплового равновесия нарушится; например, в системе установится более высокая температура ТD+. В этом положении удельный теплоотвод g_ превышает удельный теплоотвод g+ и после снятия возмущения произойдет самопроизвольное снижение температуры до TD, т. е. система вернется в прежнее состояние равновесия. Если при нарушении равновесия температура в реакторе понизится до TD, то после снятия возмущения произойдет самопроизвольный разогрев до температуры TD вследствие того, что g+ > g_. Таким образом, точка D соответствует устойчивому стационарному состоянию адиабатического реактора идеального смешения.
Анализ состояния теплового равновесия в точке В (рис. 67, б) также позволяет сделать вывод, что это решение системы уравнений отвечает устойчивому стационарному состоянию.
Иным будет положение теплового равновесия средней точки пересечения С (рис. 6.7, в). Отклонение от состояния равновесия вправо по оси температур приведет к дальнейшему самопроизвольному разогреву, влево - к самопроизвольному понижению температуры. Следовательно, равновесие системы в точке С является неустойчивым.
Рис. 6.7. Устойчивые (а, б) и неустойчивые (в) стационарные состояния адиабатического реактора идеального смешения при проведении экзотермической реакции
Следует отметить, что для устойчивых стационарных состояний производная dg+/dT (тангенс угла наклона касательной к кривой g+(Т) в точках пересечения) меньше, чем тангенс угла наклона линии g-(Т):
а для неустойчивых состояний
Эти неравенства могут быть использованы при анализе устойчивости работы реактора.
Проверка системы на устойчивость стационарного состояния связана с введением нестационарности (кратковременным нарушением состояния теплового равновесия, следовательно, непостоянством параметров во времени). Уравнение материального и теплового балансов проточного нестационарного реактора идеального смешения можно представить в таком виде:
(6.25)
Такие системы дифференциальных уравнений поддаются графическому анализу, при котором зависимые переменные сА и Т считаются координатами так называемой фазовой плоскости. Используя уравнения типа (6.25), можно для фиксированных значений различных параметров определить каждую точку состояния системы на плоскости (сА, T).
Поскольку система сменяет во времени ряд состояний от начального до конечного, изображение их на плоскости (сА, Т) дает траекторию. Эти траектории (фазовые траектории) напоминают по своему виду траектории движения шара по различным плоскостям (см. рис. 6.8-6.10). Например, на рис. 6.8 точки А и С соответствуют устойчивому стационарному состоянию (сходимость в узел и спиралевидная сходимость в фокус), точка В - неустойчивому стационарному состоянию (расходящиеся траектории движения шара по поверхности седла).
Рис. 6.8. Фазовая плоскость с множественными стационарными состояниями для проточного реактора с перемешиванием
Следует отметить, что стационарное состояние реактора может быть очень чувствительным к небольшим возмущениям входных параметров. Проанализируем, например, рис. 6.4 (случай тройного пересечения при совместном решении уравнений материального и теплового балансов для проводимой в реакторе экзотермической реакции). Небольшое изменение температуры реакционного потока на входе (смещение вправо прямой 1 или 2) может вызвать скачкообразное увеличение температуры в реакторе. Такую высокую чувствительность режима процесса к незначительным изменениям его параметров называют параметрической чувствительностью.
При выборе условий проведения экзотермической реакции обычно стремятся обеспечить единственное устойчивое стационарное состояние с высокой степенью превращения. Для этого можно увеличить или уменьшить температуру Т0 (что вызовет сдвиг вправо прямой, отвечающей уравнению теплового баланса), или среднее время пребывания в реакторе (при этом сдвигается влево кривая, отвечающая уравнению материального баланса). Такие решения иногда невыгодны экономически. В данных случаях для того, чтобы реактор самопроизвольно достигал верхней точки D (см. рис. 6.4), в момент пуска в ректоре нужно иметь температуру, отвечающую точке неустойчивого состояния С или чуть выше.
§6.4 Оптимальный температурный режим и способы его осуществления в промышленных реакторах
В предыдущих параграфах были рассмотрены варианты тепловых режимов химических реакторов и способы учета теплопереноса в реакторе при разработке математической модели.
Температурный (тепловой) режим проведения химического процесса, обеспечивающий экономически целесообразную максимальную производительность единицы объема реактора (интенсивность) по целевому продукту, называют оптимальным.
Подход к разработке оптимального температурного режима может быть различным в зависимости от типа химической реакции. Очевидно, что максимальная интенсивность реактора будет достигнута при проведении процесса с максимально возможной скоростью. Рассмотрим поэтому, как влияет тип кинетического уравнения на выбор температурного режима.
Простые необратимые реакции. Уравнение скорости необратимых экзо- и эндотермических реакций можно записать в виде
(6.26)
Например, для реакции первого порядка
(6.27)
Скорость химической реакции является функцией нескольких переменных: температуры и степеней превращения реагентов (или их концентраций). С ростом температуры константа скорости реакции в соответствии с уравнением Аррениуса монотонно возрастает. Из уравнений (6.26) и (6.27) видно, что принципиальных ограничений повышения температуры с целью увеличения скорости необратимых реакций нет. С ростом степени превращения реагентов скорость реакции падает. Для компенсации этого уменьшения целесообразно увеличивать температуру.
Эндотермическая реакция сопровождается поглощением теплоты. Следовательно, такие реакции невыгодно проводить в адиабатических условиях, так как по мере протекания реакции ее скорость будет падать как из-за увеличения степени превращения, так и из-за уменьшения температуры. Более разумно проводить эндотермические процессы в реакторах с подводом теплоты (изотермических или в реакторах с промежуточным тепловым режимом), поддерживая температуру, максимально допустимую по конструкционным соображениям. Необходимо при этом дополнительно провести оптимизацию температурного режима, сопоставив экономические показатели: увеличение прибыли вследствие роста производительности реактора и возрастания расходов на поддержание высокой температуры.
Для необратимых экзотермических реакций рост степени превращения сопровождается выделением теплоты, и, следовательно, в адиабатическом режиме это приведет к возрастанию температуры реакционной смеси. Уменьшение скорости реакции вследствие увеличения степени превращения будет частично компенсироваться ростом константы скорости реакции с возрастанием температуры. Проводя такую реакцию в проточном адиабатическом реакторе, можно обеспечить высокую скорость химической реакции и высокую производительность реактора в автотермическом режиме без использования посторонних источников теплоты. При этом теплота реакционной смеси, выходящей из реактора, служит для нагрева исходных реагентов на входе в реактор.
Обратимые химические реакции. Проанализируем условия обеспечения оптимального температурного режима обратимых реакций на примере обратимой реакции первого порядка А R. Скорость такой реакции
(6.28)
или [см. уравнение (6.20)]
(6.29)
С одной стороны, как и скорость необратимой реакции [см. выражение (6.27)], она зависит от константы скорости k1 и глубины химического превращения хА, а с другой - определяется степенью приближения реакционной системы к состоянию химического равновесия и значением предельно достижимой степени превращения в равновесных условиях хА,е. Характер изменения скорости с ростом температуры будет разным для эндо- и экзотермических реакций.
Повышение температуры проведения обратимой эндотермической реакции приводит одновременно к росту k1 и увеличению равновесной степени превращения хА,е. Следовательно, при фиксированной степени превращения хА скорость обратимой эндотермической реакции с ростом температуры монотонно увеличивается. Поэтому подход к разработке оптимального температурного режима этих реакций будет таким же, как и для необратимых эндотермических процессов.
Иначе обстоит дело с обратимыми экзотермическими реакциями. Так как скорость реакции - функция нескольких переменных (по меньшей мере, двух - T и хА), то для анализа этой функции удобно использовать ее сечение при постоянстве всех переменных, кроме одной.
Такой подход облегчает и задачу графического представления функции. Функция п переменных f (х1, х2, ..., хn) графически изображается некоторой поверхностью в (п + 1)-мерном пространстве. Сечения функции можно представить в виде семейства графиков на плоскости в координатах f (х1, х2, ..., хn)чхi при постоянстве переменных х1, х2, ..., хi-1, хi+1, ..., хn.
В частности, рассмотрим два вида сечений функций wrA(xA, T): при постоянных значениях хA и при постоянных значениях Т.
Выберем некоторое значение степени превращения 0 < хА,1 < 1. Для этой степени превращения концентрация исходного реагента при протекании реакции А R составит сА,1 = сА,0(1 - хА,1), а концентрация продукта реакции cR,1 = сА,0хА,1. С ростом температуры увеличивается константа скорости прямой реакции [растет сомножитель k1сА,0 в уравнении (6.29)], но одновременно уменьшается равновесная степень превращения хА,е и при фиксированном значении хА,1 система находится ближе к состоянию равновесия [уменьшится второй сомножитель в уравнении (6.29)]. Таким образом, налицо два противоположных влияния. При низких температурах, когда темп изменения отношения хА,1 /хА,e меньше темпа роста константы скорости k1 с увеличением температуры, преобладает влияние первого (возрастающего) сомножителя. При некоторой температуре T1,e выбранная степень превращения хА,1 становится равновесной (хА,е при температуре T1,е), тогда скорость прямой реакции равна скорости обратной реакции и суммарная скорость реакции будет формально равна нулю. При приближении к этой температуре (слева) преобладает влияние второго сомножителя, характеризующего степень приближения системы к равновесию. Очевидно, что существует какая-то оптимальная температура Т1,т, при которой скорость реакции при заданной степени превращения является максимальной. Найдем эту температуру, пользуясь методами математического анализа (определение экстремума функции). Для этого продифференцируем функцию (6.28) по температуре, считая концентрации сА и cR постоянными, и приравняем производную нулю:
Отсюда при Т = Тт
.
Или
(6.30)
Уравнение (6.30) позволяет определить оптимальную температуру для любой степени превращения кроме хА = 0 и хА = 1, когда функция wrA(T, xA) не имеет максимума.
Теперь можем построить сечение функции wrA(T, хА)хА = xA-1 (рис. 6.9, кривая 1). Для другой степени превращения хА,2 > хА,1 функция wrА(T, хА)xА = xA,2 также имеет максимум. Точка Т2,е пересечения графика с осью абсцисс находится левее T1,е, так как у обратимых экзотермических реакций большая равновесная степень превращения достигается при меньшей температуре (при меньшей температуре наступает равенство хА,2 и хА,е).
Рис. 6.9. Сечения функции wrA = wrA(xA, T) при постоянных температурах: 1, 2, 3 - зависимости wrA (T) для степеней превращения xA,1, xА,2, xА,3 (xА,1 < хА,2 < хАу); 4 - зависимость wrA (T) для хА = 0
Из уравнения (6.30) следует, что с ростом степени превращения оптимальная температура Т2т также уменьшается, потому что функция
у - хА(1 - хА) в знаменателе уравнения является возрастающей. Таким образом, кривая wrA(T)хA = хA,2 (кривая 2) будет находиться ниже кривой wrA(T)хA = хA,1 (кривая 1) и ее максимум будет сдвинут влево.
Соединив точки максимумов (рис. 6.10) на различных сечениях wrA(T), получим линию оптимальных температур.
Рис. 6.10. Зависимость скорости окисления диоксида серы на ванадиевом катализаторе от температуры при различных степенях превращения SO2: 1 - xSO2 = 0,7; 2 - xSO2 = 0,8; 3 - xSO2 = 0,85; 4 - xSO2 = 0,9; 5 - xSO2 = 0,95; штриховая линия - линия оптимальных температур
Проведение процесса по линии оптимальных температур предполагает, что по мере увеличения степени превращения температуру в реакторе нужно уменьшать, чтобы скорость реакции всегда оставалась максимально возможной.
Чтобы убедиться в том, что скорость реакции действительно не может быть выше, чем при проведении процесса по линии оптимальных температур, рассмотрим сечения функции wrA(T, xA) при фиксированных температурах, т. е. зависимость скорости реакции от степени превращения.
Если Т - Т1 = const, величины k1 и хА,е, зависящие от температуры и входящие в уравнение (6.29), также являются постоянными. Тогда уравнение (6.29) описывает прямую, пресекающую ось абсцисс в точке хА = хА,е и ось ординат в точке wrA = k1(Т1) сА,0 (рис. 6.11, линия 1). Для другой температуры Т2 > T1, точка пересечения прямой с осью абсцисс сдвинется влево, а точка пересечения с осью ординат - вверх.
Подобные документы
Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.
реферат [48,6 K], добавлен 16.11.2009Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.
лекция [46,2 K], добавлен 18.02.2009Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.
реферат [74,3 K], добавлен 27.01.2009Методы построения кинетических моделей гомогенных химических реакций. Расчет изменения концентраций в ходе химической реакции. Сравнительный анализ численных методов Эйлера и Рунге-Кутта. Влияние температуры на выход продуктов и степень превращения.
контрольная работа [242,5 K], добавлен 12.05.2015Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.
лабораторная работа [282,5 K], добавлен 08.10.2013Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.
контрольная работа [41,1 K], добавлен 13.02.2015Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.
контрольная работа [1,1 M], добавлен 18.01.2014Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.
презентация [2,2 M], добавлен 19.10.2014Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.
реферат [773,3 K], добавлен 25.07.2010Методы построения кинетических моделей гомогенных химических реакций. Исследование влияния температуры на выход продуктов и степень превращения. Рекомендации по условиям проведения реакций с целью получения максимального выхода целевых продуктов.
лабораторная работа [357,5 K], добавлен 19.12.2016