Химические процессы и реакторы

Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов. Зависимость константы равновесия от температуры. Законы химической кинетики при выборе технологического режима и моделировании химических процессов.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 24.01.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, в уравнении остаются только два члена, описывающие конвективный перенос вещества J и расход или образование этого вещества в ходе химической реакции.

Оператор конвективного переноса (переноса импульса), записанный в уравнении (4.7) в дифференциальной форме, можно представить для проточного реактора идеального смешения в конечно-разностной форме. В соответствии с допущениями модели идеального смешения в проточном реакторе происходит дискретное конечное (а не бесконечно малое) изменение концентрации J сразу же на входе в реактор. Заменим поэтому градиент концентрации на отношение конечного изменения концентрацииJ к изменению координаты ?z при прохождении реакционного потока через реактор со средней линейной скоростью . Среднюю линейную скорость потока можно заменить через отношение объемного расхода v через реактор к площади поперечного сечения F. Тогда, с учетом того, что произведение F?z равно объему реактора V, член уравнения, описывающий конвективный перенос, примет вид

(5.4)

В выражении (5.4) J равно разности концентраций на выходе из реактора cif и на входе в реактор сJ,0. Окончательно уравнение материального баланса проточного стационарного реактора идеального смешения можно представить так:

Или

. (5.5)

Это же уравнение можно получить и другим путем. Как указывалось, в качестве элементарного объема для реактора идеального смешения можно принять полный объем реактора V. При стационарном режиме работы реактора не происходит изменения постоянных по объему концентраций элементов реакции и во времени, следовательно, в качестве элементарного промежутка времени можно принять любой конечный временной интервал, например единицу времени (1 с, 1 мин или 1 ч).

Количество вещества J, которое за единицу времени войдет в реактор с конвективным потоком, будет равно v0cJ,0, где v0 - объемный расход реакционного потока на входе в аппарат. За это же время выйдет из реактора с конвективным потоком количество вещества J = vfcJ,f, а расход вещества J (или его образование) в ходе химической реакции составит wrJ V. При этом скорость wrJ определяется концентрацией cJ,f.

Стационарность процесса в проточном реакторе можно обеспечить, если объемные расходы на входе v0 и выходе vf равны между собой

(v0 = vf = v).

Тогда

. (5.6)

Очевидно, что уравнение (5.6) тождественно уравнению (5.5).

Величина = V/v в уравнении (5.5) измеряется в единицах времени и характеризует среднее время, в течение которого обновляется содержимое проточного реактора. Эту величину называют средним временем пребывания реагентов в проточном реакторе.

Действительное время пребывания частиц в проточном реакторе смешения является случайной величиной в отличие от времени пребывания реагентов в периодическом реакторе. Пусть, например, в реактор введено N одинаковых частиц. В периодическом реакторе все они будут находиться равное время от загрузки до выгрузки. В проточном реакторе идеального смешения эти частицы мгновенно и равномерно распределяются по всему объему аппарата, и так как из аппарата непрерывно выходит поток продуктов, то в момент ввода частиц в реактор какое-то их количество может сразу же оказаться в выходном потоке. Некоторые частицы, равномерно распределяясь в новых порциях реакционной смеси, вошедшей в аппарат, могут находиться в нем бесконечно долго. Отсюда можно сделать вывод, что действительное время пребывания частиц в проточном реакторе - это случайная величина, которая может изменяться от 0 до ?. Непрерывную случайную величину можно задать с помощью вероятностных характеристик, в частности функций распределения случайной величины. Использование в качестве характеристики времени пребывания частиц в проточном реакторе величины является удобным способом усреднения действительного времени пребывания, так как эта величина связана с конструктивными характеристиками реактора: его объемом и объемным расходом реакционной смеси.

Для решения практических задач удобно концентрацию реагента cJ,f выразить через его степень превращения хJ,f:

. (5.7)

Уравнения материального баланса (5.5)-(5.7) для проточного реактора идеального смешения в стационарном режиме имеют ряд отличий от соответствующих уравнений для периодического реактора (5.2) и (5.3). Следует отметить, что балансовые уравнения стационарного реактора идеального смешения записываются сразу в виде конечного алгебраического уравнения в отличие от дифференциальной формы исходных уравнений для периодического реактора.

В уравнение для периодического реактора скорость wr,J следует подставлять в виде функциональной зависимости от концентрации wr,J(cj) или степени превращения wr,J(xj) и лишь после интегрирования уравнения возможна подстановка числовых значений. Этот факт, как и дифференциальная форма уравнений материального баланса, отражает зависимость параметров процесса в периодическом реакторе от времени. В стационарном режиме в любой точке реактора идеального смешения в любой момент времени концентрация постоянна. Следовательно, скорость реакции характеризуется каким-то одним конкретным числовым значением, определяемым этой концентрацией. Это число может быть сразу поставлено в уравнение материального баланса.

Пример 5.1. Рассчитать среднее время пребывания реагентов в проточном реакторе идеального смешения, необходимое для достижения степени превращения исходного реагента хА,f = 0,8.

В реакторе протекает реакция второго порядка 2А R + S, скорость которой описывается при постоянной температуре кинетическим уравнением wrA = 2,5. Начальная концентрация реагента А на входе в реактор сА,0 = 4 кмоль/м3.

Решение. Для определения можно использовать уравнение (5.7); концентрацию реагента в реакторе, необходимую для расчета скорости протекающей в нем реакции, выразим через степень превращения

Таким образом, для достижения степени превращения хА = 0,8 необходимо, чтобы соотношение между объемом реактора и объемным расходом через него = V/v = 2 ч.

Уравнения материального баланса для проточного реактора могут быть использованы не только для определения среднего времени пребывания и затем размеров реакционного пространства (V = v) при заданной глубине химического превращения, но и для решения обратной задачи: при заданных объеме реактора и производительности по исходному реагенту (пропорциональной объемному расходу v) определить концентрацию реагентов на выходе из реактора.

Решение этой задачи не вызывает никаких затруднений, если скорость реакции описывается сравнительно простыми кинетическими уравнениями (уравнениями первого и второго порядка). Например, для реакции первого порядка АR из уравнения материального баланса (5.5)

получим

Зачастую скорость сложных реакций с невыясненным до конца механизмом выражают в виде кинетических уравнений дробного порядка. В этом случае аналитическое решение оказывается невозможным и приходится прибегать к численным методам расчета. В качестве примера рассмотрим весьма наглядный графический метод определения концентрации реагентов на выходе из стационарного проточного реактора идеального смешения.

Запишем уравнение материального баланса (5.5) в следующем виде:

(5.8)

Уравнение (5.8) представляет собой равенство двух разных функций от концентрации. В левой части уравнения записана функция w(сА), представляющая собой кинетическое уравнение реакции. В соответствии с законом действующих масс скорость химических реакций пропорциональна концентрациям реагентов, следовательно, wrA(cA) - это возрастающая функция, которую легко представить графически (рис. 5.3, линия 1). Она пересекает ось абсцисс в точке, соответствующей равновесной концентрации сА,е для обратимых реакций, или исходит из начала координат в случае необратимых реакций.

Рис. 5.3. Зависимость скорости реакции от концентрации реагента на выходе из проточного реактора идеального смешения, используемая для определения конечной концентрации

В правой части уравнения (5.8) записана соответствующая уравнению материального баланса стационарного реактора идеального смешения линейная функциональная зависимость скорости реакции от концентрации исходного реагента, имеющая отрицательный угловой коэффициент (-1/). График этой зависимости - прямая линия, пересекающая ось абсцисс (ось концентраций) в точке сА= сА,0 (линия 2).

Уравнению (5.8) удовлетворяют такие значения концентраций сА, при которых значения функций, стоящих в левой и правой частях этого уравнения, равны. Иначе - такие концентрации, при которых графики этих функций пересекаются. Как видно, линии 1 и 2 пересекаются в единственной точке М. Абсцисса этой точки и есть искомая концентрация реагента на выходе из реактора идеального смешения.

§5.2 Реактор идеального вытеснения

Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме (рис. 5.4). Каждый элемент потока, условно выделенный двумя плоскостями, перпендикулярными оси канала, движется через него как твердый поршень, вытесняя предыдущие элементы потока и не перемешиваясь ни с предыдущими, ни со следующими за ним элементами.

Рис. 5.4. Схема реактора идеального вытеснения

Естественно, что при проведении химической реакции, например реакции, в которой участвуют два или более реагентов, перемешивание участников реакции является необходимым условием ее осуществления, иначе невозможным будет контакт между разноименными молекулами, в результате которого и происходит элементарный акт реакции. Если в реакторе идеального смешения перемешивание носит глобальный характер и благодаря ему параметры процесса полностью выравниваются по объему аппарата, в реакторе идеального вытеснения перемешивание является локальным: оно происходит в каждом элементе потока, а между соседними по оси реактора элементами, как уже указывалось, перемешивания нет.

Идеальное вытеснение возможно при выполнении следующих допущений: 1) движущийся поток имеет плоский профиль линейных скоростей; 2) отсутствует обусловленное любыми причинами перемешивание в направлении оси потока; 3) в каждом отдельно взятом сечении, перпендикулярном оси потока, параметры процесса (концентрации, температуры и т. д.) полностью выравнены.

Следует отметить, что строго эти допущения в реальных реакторах не выполняются. Из гидравлики известно, что даже в очень гладких каналах при движении потока, характеризующегося высокими числами Рейнольдса Re, у стенок канала существует так называемый пограничный вязкий подслой, в котором градиент линейной скорости очень велик. Сравнивая профили скоростей при различных потоках (рис. 5.5), видно, что максимально приблизиться к идеальному вытеснению можно лишь в развитом турбулентном режиме.

Рис. 5.5. Профили линейных скоростей потока при ламинарном (а), развитом турбулентном (б) и идеальном поршневом (в) режимах течения жидкости

Однако турбулентный поток характеризуется наличием нерегулярных пульсаций, носящих хаотичный характер, в результате чего некоторые частицы потока могут опережать основной поток или отставать от него, т. е. произойдет частичное перемешивание в осевом направлении. Конечно, абсолютные значения таких перемещений будут невелики по сравнению с основным осевым перемещением потока, и при больших линейных скоростях ими можно пренебречь. В то же время турбулентные пульсации в радиальном направлении будут способствовать локальному перемешиванию реагентов и выполнению третьего допущения.

В реальном реакторе можно приблизиться к режиму идеального вытеснения, если реакционный поток - турбулентный и при этом длина канала существенно превышает его поперечный размер (например, для цилиндрических труб L/D > 20).

В соответствии с принятыми допущениями общее уравнение материального баланса (4.7) для элементарного объема проточного реактора можно упростить. Прежде всего, в качестве элементарного объема в этом случае можно рассматривать объем, вырезанный двумя параллельными плоскостями, находящимися друг от друга на бесконечно малом расстоянии dz и перпендикулярными оси канала z (см. рис. 5.4).

В этом элементарном объеме в соответствии с третьим допущением и . Следовательно, конвективный перенос происходит только в направлении оси z. В соответствии со вторым и третьим допущениями диффузионный перенос в реакторе идеального вытеснения отсутствует (как и в реакторе смешения). Следовательно, уравнение (4.7) для реактора идеального вытеснения в нестационарном режиме работы примет вид

. (5.9)

Из уравнения (5.9) видно, что в нестационарном реакторе идеального вытеснения концентрация реагента реакции сJ является функцией двух переменных: координаты z и времени ф. При стационарном режиме уравнение будет еще более простым (в этом случае концентрация является только функцией координаты z):

(5.10)

В реакторе с постоянной площадью поперечного сечения канала линейная скорость потока uz будет величиной постоянной, равной отношению объемного расхода v к площади сечения F(uz= v/F). Тогда, с учетом того, что Fz/v = V/v =, уравнение (5.10) можно записать в таком виде:

. (5.11)

Следует еще раз обратить внимание на то, что величина (среднее время пребывания реагентов в проточном реакторе, характеризующее для реактора вытеснения продолжительность прохождения потоком расстояния от входа в реактор до некоторой точки z на оси реактора) по физическому смыслу отличается от величины ф в правой части уравнения (5.9) - времени, в течение которого в некоторой фиксированной точке внутри реактора происходит изменение параметров процесса. Условно можно рассматривать как некоторую «внутреннюю» характеристику реактора, непосредственно связанную с его размерами, а ф - как «внешнюю» характеристику, никак не зависящую от конструктивных особенностей реактора.

Говоря о среднем времени пребывания для реактора идеального вытеснения, следует помнить, что в силу первого допущения о плоском профиле линейных скоростей действительное время пребывания всех частиц потока в аппарате будет одинаковым и как раз равным . Однако, для единообразия в дальнейшем для всех проточных реакторов, и в том числе для реактора идеального вытеснения, будем использовать как удобную характеристику, пропорциональную объему реактора.

Уравнение (5.11) для стационарного режима реактора идеального вытеснения можно проинтегрировать относительно :

(5.12)

или, если J - исходный реагент,

(5.13)

Уравнения (5.12), (5.13) по виду напоминают уравнения (5.2), (5.3) для периодического реактора идеального смешения.

Если считать, что элементарный объем dV, для которого составлялся материальный баланс, может двигаться вместе с потоком, в поршневом режиме он может рассматриваться как своеобразный периодический микрореактор идеального смешения, время проведения реакции в котором равно среднему времени пребывания реагентов в реакторе идеального вытеснения.

Уравнения (5.12) и (5.13) могут быть использованы для расчета размеров изотермического реактора идеального вытеснения и глубины протекающего в нем процесса.

Пример 5.2. Определить среднее время пребывания реагентов в проточном реакторе идеального вытеснения для условий примера 5.1 (реакция второго порядка 2А R + S, кинетическое уравнение wrA = 2,5сА2, сА0 = 4 кмоль/м3, хА,f = 0,8).

Решение. Используем для расчета уравнение (5.13):

Таким образом, для достижения аналогичных результатов значения = V/v для реактора идеального вытеснения (0,4 ч) существенно меньше, чем значение для проточного реактора идеального смешения.

Пример 5.3. Уравнения материального баланса (5.18) и (5.19) могут быть использованы не только для определения среднего времени пребывания и размеров реакционного пространства при заданной глубине химического превращения (проектный расчет). Но и для решения обратной задачи (поверочного расчета) при заданных размерах аппарата для определения реакционного состава на выходе из него.

Приведем примеры аналитического решения математической модели (5.18) и (5.19) для некоторых частных случаев.

Простая элементарная реакция А R. Скорость такой реакции wrA = kсAсB. Подставляем это кинетическое уравнение в уравнение материального баланса

и интегрируем

Тогда

и

Обратимая реакция А R. При условии, что cR,0 = 0,

Подставим это значение wrA в формулу (5.12):

Интеграл может быть записан в таком виде:

Из последнего выражения

или

откуда

Параллельная реакция . Для этой реакции скорость по компоненту A wrA = (k1 + k2)cA и выражения для сА и хА будут:

Выражение скорости по компоненту R

Интегрируя левую часть равенства в пределах от cR,0 до cR и правую - от нуля до (при этом cR,0 = 0), получим

Аналогично находим

§5.3 Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения

Как видно из примеров 5.1 и 5.2, при одинаковых условиях проведения одной и той же реакции для достижения равной глубины превращения среднее время пребывания реагентов в проточном реакторе идеального смешения больше, чем в реакторе идеального вытеснения. Этот факт легко может быть объяснен характером распределения концентрации реагентов по объему указанных реакторов. Если в проточном реакторе идеального смешения концентрации во всех точках равны конечной концентрации (рис. 5.6, линия 1), то в реакторе идеального выяснения в двух соседних точках на оси реактора концентрации реагентов уже отличаются (линия 2). Например, в соответствии с уравнением (5.12) в случае реакции первого порядка (wrA = А) формула распределения концентрации реагента А по длине реактора идеального вытеснения имеет вид

Скорость реакции, согласно закону действующих масс, пропорциональна концентрации реагентов. Следовательно, в реакторе идеального вытеснения она всегда выше, чем в проточном реакторе идеального смешения. А при большей скорости протекания реакции для достижения той же глубины превращения требуется меньшее время пребывания реагентов в реакторе.

Более наглядно эти положения можно проиллюстрировать, сравнивая среднее время пребывания реагентов в проточных реакторах как площади геометрических фигур.

Сравним эффективность работы идеальных проточных реакторов для случая проведения в них простых реакций, не осложненных побочными взаимодействиями. Зададимся одинаковой степенью превращения исходного реагента, и будем считать более эффективным тот реактор, в котором для достижения заданных результатов требуется меньшее среднее время пребывания = V/v.

Рис. 5.6. Распределение вдоль оси реактора концентрации исходного реагента в проточных реакторах идеального смешения (1) и идеального вытеснения (2)

Для проточного реактора идеального смешения при заданной глубине превращения (концентрации исходного реагента А в выходном потоке сА,f или соответствующей степени превращения хА,f) среднее время пребывания ф в соответствии с уравнениями (5.5) и (5.7) можно определить как произведение двух постоянных величин:

Или

т. е. геометрически представить в виде прямоугольника с соответствующими сторонами.

Для стационарного реактора идеального вытеснения

Или

т. е. величина B как определенный интеграл выражается геометрически площадью криволинейной трапеции, ограниченной прямыми cA = cA,f, cA = cA,0, графиком функции l/wrA = f(cA) и осью абсцисс (см. рис. 5.7, а). Или в соответствии с уравнением (5.7), площадью криволинейной трапеции, ограниченной прямыми хА = 0, хА = xA,f графиком функции l/wrA = f(хА) и осью абсцисс (см. рис. 5.7, б).

Из рис. 5.7 видно, что площади криволинейных трапеций, соответствующие B, меньше площадей прямоугольников, соответствующих С, причем разница тем больше, чем больше достигаемая в реакторе степень превращения исходного реагента. Следовательно, при равном объемном расходе для достижения одинаковых результатов реактор идеального вытеснения должен иметь меньший объем, чем проточный реактор идеального смешения. Интенсивность реактора идеального вытеснения (1 = П / У = vcA,0xA/V) будет выше. Объяснить это можно более высокой скоростью реакции в реакторе вытеснения вследствие более высокой концентрации реагентов, одинаковых результатов. Реактор идеального вытеснения должен иметь меньший объем, чем проточный реактор идеального смешения. Интенсивность реактора идеального вытеснения (1 = П / У = ucA,0xA/V) будет выше. Объяснить это можно более высокой скоростью реакции в реакторе вытеснения вследствие более высокой концентрации реагентов.

Рис. 5.7. Графическое сравнение проточных реакторов идеального смешения и идеального вытеснения как площадей геометрических фигур.

Однако не всегда стремятся к поддержанию более высоких концентраций исходных реагентов. Так, в § 3.3 было показано, что при проведении параллельных реакций разного порядка, в том случае, если порядок целевой реакции меньше порядка побочной реакции (n1 < п2), при низких концентрациях исходных реагентов обеспечиваются более высокие значения дифференциальной селективности (см., например, рис. 3.1).

Сравним проточные реакторы идеального вытеснения и идеального смешения при проведении параллельных реакций разного порядка

(I)

по выходу целевого продукта R. Будем считать, что в обоих типах реакторов достигается одинаковая степень превращения исходного реагента А (т. е. заранее примем, что B < c).

Выход целевого продукта R для параллельных реакций (I)

(5.14)

[см. уравнение (1.11)].

Достигаемая на выходе из реактора концентрация целевого продукта cR будет определяться, с одной стороны, выбранным типом реактора, а с другой - кинетическими особенностями реакции (I), которые могут быть учтены через дифференциальную селективность ц', равную отношению скорости расходования реагента А на целевую реакцию к общей скорости его расходования. Для удобства дальнейшего рассмотрения представим систему стехиометрических уравнений (I) в эквивалентном виде:

(Ia)

(это нужно сделать, если стехиометрические коэффициенты а1 и а2 не равны). Скорость расходования А на целевую реакцию можно выразить через скорость образования целевого продукта, которая в соответствии с определением скорости [см. уравнение (3.3)] равна

Тогда (5.15)

Проинтегрировав дифференциальное уравнение (5.15), получим зависимость концентрации cR от дифференциальной селективности ц':

Подставляя выражение для cR в уравнение (5.14), получим

(5.16)

Дифференциальная селективность ц', стоящая под знаком интеграла, является в общем случае убывающей или возрастающей функцией концентрации исходного реагента А, и в том случае, если концентрация сА не постоянна, для определения ФR нужно провести интегрирование этой функции. В частности, такую операцию необходимо сделать при расчете выхода продукта R в реакторе идеального вытеснения. Если сА постоянна по объему реактора и во времени (в стационарном реакторе идеального смешения), то и дифференциальная селективность ц' будет характеризоваться постоянным числовым значением, следовательно, уравнение (5.16) для реактора идеального смешения можно упростить:

. (5.17)

Выход целевого продукта ФR, определенный по уравнениям (5.16) для реактора идеального вытеснения и (5.17) для реактора идеального смешения, можно представить графически в виде площадей криволинейной трапеции (ФR,B) и прямоугольника (ФR,С). Соотношение между этими площадями зависит от характера функции ц'(cА).

Если порядок целевой реакции превышает порядок побочной параллельной реакции (n1 > n2), выход целевого продукта ФR выше в реакторе идеального вытеснения (рис. 5.8, а). При этом, как указано выше, и среднее время пребывания для достижения заданной степени превращения реагентов меньше, чем в реакторе идеального смешения.

Если порядок целевой реакции меньше порядка побочной реакции (n1 < п2), более высокое значение выхода целевого продукта достигается в реакторе идеального смешения (рис. 5.8, б). Однако в рассматриваемом случае, т. е. при одинаковой степени превращения исходного реагента, среднее время пребывания в реакторе идеального смешения больше, чем в реакторе идеального вытеснения.

Если целевая и побочная реакции имеют одинаковый порядок (n1= n2), выход целевого продукта при равной степени превращения исходного реагента не зависит от типа выбранного реактора (рис. 5.8, в).

Рис. 5.8. Графическое сравнение выхода целевого продукта в проточных реакторах идеального вытеснения (1) и идеального смешения (2) при проведении параллельных реакций разного порядка

Проведенное сравнение показывает, что в ряде случаев для достижения высокого выхода целевого продукта эффективнее реактор идеального вытеснения, а иногда реактор идеального смешения. При этом следует отметить, что даже при достижении более высокого выхода целевого продукта при равной степени превращения реактор идеального смешения имеет больший объем, чем реактор идеального вытеснения.

При сравнении не учитывался ряд факторов, ограничивающих применение аппаратов, работающих в режиме, близком к идеальному вытеснению. К ним следует отнести, например, большое гидравлическое сопротивление трубчатых реакторов, трудность чистки таких аппаратов и т. д. Конструктивно проточные аппараты с интенсивным перемешиванием проще, но обладают тем характерным недостатком, что в них устанавливается низкая концентрация исходного реагента (равная конечной) и, следовательно, низкой будет скорость химической реакции. Для использования преимуществ реакторов смешения и в то же время поддержания в реакционной системе более высоких концентраций реагентов можно создать каскад реакторов идеального смешения последовательным включением нескольких реакторов.

§5.4 Каскад реакторов идеального смешения

Каскад представляет собой несколько последовательно соединенных проточных реакторов (секций) идеального смешения (рис. 5.9). Реакционная смесь проходит через все секции. Можно рассматривать в качестве примера такой модели не только систему последовательно расположенных отдельных аппаратов, но и проточный реактор, тем или иным образом разделенный внутри на секции, в каждой из которых осуществляется перемешивание реакционной смеси (рис. 5.10). Например, близка к такому типу аппарата тарельчатая барботажная колонна.

Рис. 5.9. Схема каскада реакторов идеального смешения

Pиc. 5.10. Схема секционного аппаратаис перемешиванием

Для каскада реакторов идеального смешения должны выполняться следующие допущения об идеальности:

· в каждой секции каскада выполняются условия реактора идеального смешения, т. е. мгновенное изменение параметров процесса, равенство параметров во всех точках секции и в потоке, выходящем из нее;

· отсутствие обратного влияния: каждый последующий реактор не влияет на предыдущий.

На рис. 5.11 сравнивается характер изменения концентрации исходного реагента при прохождении реакционной смеси через различные реакторы.

Рис. 5.11. Изменение концентрации реагента при прохождении реакционной смеси через последовательные секции единичного реактора идеального смешения (1), реактора идеального вытеснения (2) и каскада реакторов идеального смешения (3)

Математическая модель каскада реакторов идеального смешения, работающего в изотермическом режиме, представляет собой систему уравнений материального баланса по какому-либо участнику реакции, включающую, по меньшей мере, N уравнений по числу секций каскада.

Уравнения материального баланса для любой секции каскада однотипны. Материальный баланс по компоненту J для i-й секции в стационарном режиме работы каскада имеет вид

(5.18)

[см. уравнение (5.6)] или

где i - среднее время пребывания реакционной смеси в i-й секции;

V - реакционный объем i-й секции; CJ,j-1 - концентрация участника реакции J на входе в i-ю секцию, равная концентрации на выходе из (i-1)-й секции; сJ,i - концентрация компонента J на выходе из i-й секций.

Расчет каскада реакторов идеального смешения обычно сводится к определению числа секций заданного объема, необходимых для достижения определенной глубины превращения, или к определению состава реакционной смеси на выходе из i-й секции каскада.

Допущения об отсутствии обратного влияния в каскаде реакторов идеального смешения существенно упрощают расчет. Он сводится к последовательному решению уравнений материального баланса для каждой секции относительно концентрации реагента (или продукта) на выходе. Выходной параметр для первой секции (концентрация сJ,i), полученный из первого уравнения, является входным параметром для второй секции, выходной параметр второй секции - входным для третьей и т. д.

Различают аналитический метод и численные методы расчета каскада. Применение аналитического метода возможно в том случае, если уравнения материального баланса могут быть аналитически решены относительно концентрации сJ. Это можно сделать, например, если протекающие реакции описываются кинетическими уравнениями первого или второго порядка. Рассмотрим определение концентрации реагента А на выходе из каскада реакторов, включающего в себя N секций равного объема (V1 = V2 = ... = Vi...= VN) при проведении реакции первого порядка, скорость которой описывается уравнением wrA = kсА. Из уравнения материального баланса для первой секции

Определяем

Полученное значение сА,1 подставляем в качестве входной концентрации в уравнение материального баланса для второй секции:

из него определяем

При равенстве объемoв секций 1 =2 = ... = i = ... =

Продолжая аналогичные расчеты, для N-Pi (последней) секции каскада, получим

(5.19)

Если учесть, что , уравнение (5.19) можно записать в виде

и тогда можно рассчитать число секций заданного объема, необходимых для достижения степени превращения хА:

Если полученное при расчете по уравнению (5.20) N является дробным числом, его округляют в большую сторону для того, чтобы было выполнено условие сА,N < cA,f.

Уравнение (5.20) справедливо, естественно, только для реакции первого порядка.

Для реакций, описываемых кинетическими уравнениями, не позволяющими аналитически решить уравнение (5.18) относительно с (например, реакции дробного порядка), при расчете каскада приходится прибегать к численным методам. Так как уравнения материального баланса для всех реакций однотипны, можно составить алгоритм решения этих уравнений для i-й секции и последовательно применить его N paз.

Наглядным является графический способ расчета каскада реакторов, использующий описанный выше графический метод определения концентрации реагентов на выходе из реактора идеального смешения. Принцип расчета остается прежним. Сначала, графически решая уравнение для первой секции

находят концентрацию сА,1 (рис. 5.12), построив кинетическую кривую wrA(cA) и прямую с тангенсом угла наклона (-1/i), пересекающую ось абсцисс в точке сА,0. Определив сА,1, решают уравнение для второй секции:

Для расчета концентрации на выходе из N-го реактора графическое решение повторяют N раз.

Если требуется рассчитать число секций N, необходимое для достижения заданной степени превращения хА, графическое построение продолжают до тех пор, пока абсцисса точки пересечения прямой

и кривой wr,R(cA) не будет удовлетворять условию сА,1 ? сА,0(1 - хА).

Рис. 5.12. Зависимости скорости реакции от концентрации для расчета каскада реакторов идеального смешения, состоящего из секций одинакового объема

Пример 5.4. Реакцию, описанную в примерах 5.1 и 5.2 (реакция второго порядка 2А R + S, кинетическое уравнение wr,A = 2,5с, конечная степень превращения хА,f = 0,8, сА,0 = 4 кмоль•м-3), проводят в каскаде реакторов идеального смешения. Все секции каскада имеют одинаковый объем, подобранный таким образом, что среднее время пребывания в каждой из них i равно 1/10 среднего времени пребывания в единичном реакторе идеального смешения, рассчитанного в примере 5.1 (i = 0,2 ч). Определить, сколько таких секций потребуется для достижения заданной степени превращения.

Решение. Для решения используем графический метод. Для этого построим графики функции wrA = 2,5с (парабола) и

(прямая с тангенсом угла наклона tgб = -(1/ф) = -5,0).

Точка пересечения этих линий M1 (см. рис. 5.13), позволяет определить концентрацию на выходе из первой секции каскада. Проводя параллельные прямые

до тех пор, пока не будет выполнено условие сА,i < 0,8 кмоль·м-3 (так как cA,f = са,0 (1 - xA,f) = 4(1 - 0,8) = 0,8 кмоль•м-3), получаем, что для достижения указанной степени превращения необходимо четыре секции. Оказывается, что на выходе из четвертой секции степень превращения даже выше, чем задана по условию, но в трех секциях степень превращения не достигается.

Рис. 5.13. Зависимости скорости реакции от концентрации для расчета числа секций каскада реакторов идеального смешения

Таким образом, суммарное среднее время пребывания реагентов в каскаде реакторов идеального смешения для условий примера 5.3 составляет фУкаск = 4i = 0,8 ч, т. е. оно больше, чем в случае реактора идеального вытеснения (фВ = 0,4 ч; см. пример 5.2), и меньше, чем в единичном реакторе идеального смешения (B = 2 ч; см. пример 5.1).

Вопросы и упражнения

для повторения и самостоятельной работы

Сформулируйте допущения модели идеального смешения.

Каковы основные причины отклонения от идеальности в реальных реакторах смешения?

Почему при составлении балансовых уравнений для реактора идеального смешения в качестве элементарного объема может быть принят полный объем реактора?

Составьте уравнение материального баланса для периодического реактора идеального смешения.

Проанализируйте основные недостатки и достоинства реактора периодического действия. В каких производствах чаше встречаются такие реакторы?

Составьте уравнение материального баланса для стационарного проточного реактора идеального смешения.

В чем заключается различие между действительным и средним временем пребывания реагентов в проточном реакторе? Для какого типа проточных реакторов действительное и среднее время пребывания совпадают?

Определите объем проточного реактора идеального смешения, необходимый для достижения степени превращения исходного реагента хА = 0,85 при проведении реакции 2АR + S, если сА,0=2,5 кмоль/м3, k = 18,2 м3/(кмоль·ч), реагенты подают в реактор с объемным расходом v = 1,2 м3/ч.

Определите степени превращения реагентов А и В на выходе из проточного реактора идеального смешения объемом 0,5 м3 при проведении реакции А + В R + S, если сА,0 = 1,2 кмоль/м3, сB,0 = 1,6 кмоль/м3, объемный расход v = 5 м3/ч, константа скорости k = 12 м3/(кмоль•ч).

В проточном реакторе идеального смешения проводят реакцию 2А R + S, протекающую в газовой фазе при температуре 800 К и давлении 6•105 Па. В реактор подают смесь, объемная доля реагента А в которой составляет 70 %, а объемная доля инертного компонента - 30 %. Определите среднее время пребывания , необходимое для достижения степени превращения хА = 0,8, если константа скорости k = 414,7 м3/(кмоль•ч).

В проточном реакторе идеального смешения проводят обратимую реакцию . Определите объем реактора, необходимый для достижения степени превращения, составляющей 75 % равновесной, если объемный расход v = 0,01 м3/ч, k1 = 0,18 ч-1, k2 = 0,24 ч-1.

В проточном реакторе идеального смешения при температуре 330 К проводят реакцию второго порядка А + В R + S. В реактор подают реагенты с объемным расходом v = 2 м3/ч и начальными концентрациями сА,0 = сВ,0= 1 кмоль/м3. Константа скорости реакции задана в виде выражения

Определите объем реактора, необходимый для достижения степени превращения xА = 0,8.

В каких случаях появляется необходимость численного (например, графического) решения уравнения материального баланса проточного реактора идеального смешения для определения концентрации реагента на выходе из реактора? В чем суть такого решения?

Определите концентрацию реагента А на выходе из проточного реактора идеального смешения объемом 1,2 м3, если для проведения реакции А R + S, кинетика которой описывается уравнением w= 3cAl,5, подают реагент А с начальной концентрацией сA,0 = 1,5 кмоль/м3 и объемным расходом v = 3 м3/ч.

Определите максимально возможную концентрацию промежуточного продукта R при проведении в изотермическом реакторе идеального смешения последовательных реакций

если k1 = 0,14 ч-1, k2 = 0,2 ч-1, сА,0 = 0,7 кмоль/м3.

Определите максимально возможную производительность по промежуточному продукту R при проведении в изотермическом реакторе идеального смешения последовательных реакций

если k1 = 0,4 ч-1, k2 = 0,15 ч-1, объемный расход v = 0,5 м3/ч, сА,0 = 0,7 кмоль/м3. Какой объем реактора для этого потребуется? Какая селективность будет достигнута?

Сформулируйте допущения модели идеального вытеснения. При каких условиях можно приблизиться в реальном реакторе к идеальному вытеснению?

Почему при ламинарном течении реакционного потока в проточном реакторе режим идеального вытеснения не может быть достигнут?

Составьте уравнение материального баланса реактора идеального вытеснения в дифференциальной форме. Какие явления переноса (импульса, теплоты, массы) отражены в этом уравнении?

Определите объем реактора идеального вытеснения для проведения реакции 2АR + S, если k = 5 м3/(кмоль•ч), сА,0 = 2 кмоль/м3, объемный расход v = 12 м3/ч, необходимая степень превращения хА - 0,75.

Определите объем реактора идеального вытеснения для проведения обратимой реакции с целью достижения степени превращения, составляющей 70 % равновесной, если k1 = 0,18 ч-1, k2 = 0,24 ч-1, объемный расход v = 1 м3/ч.

В реакторе идеального вытеснения проводят реакцию А + В R + S. Определите производительность по продукту R, если сА,0 - сB,0 = 2 кмоль/м3, объем реактора V= 1,4 м3 объемный расход

и = 28 м3/ч, константа скорости k = 18 м3/(кмоль•ч).

Определите степень превращения на выходе из реактора идеального вытеснения объемом 1 м3 при проведении реакции, если объемный расход v = 2 м3/ч, константа скорости прямой реакции k1 = 4,6 ч-1, константа равновесия Кс = 4.

В реакторе идеального вытеснения проводят реакцию А + 2В R + 2S, кинетика, которой описывается уравнением . Определите объем реактора для достижения степени превращения реагента хА = 0,6, если k1 = 1,0 ч-1 сB,0 = 0,8 кмоль/м3, сА,0 = 0,6 кмоль/м3, объемный расход v = 0,01 м3/ч.

Назовите основную причину, по которой для достижения той же степени превращения при одинаковых условиях проведения реакции в проточном реакторе идеального смешения требуется существенно большее время пребывания реакционной смеси, чем в реакторе идеального вытеснения или в периодическом реакторе идеального смешения?

Проанализируйте достоинства и недостатки проточного реактора, режим которого близок к идеальному смешению, по сравнению с реактором, режим в котором близок к идеальному вытеснению.

В проточном реакторе идеального смешения при проведении реакции первого порядка АR достигнута степень превращения реагента А хА = 0,8 при температуре, когда константа скорости k = 0,2 ч-1.

Во сколько раз меньший объем реактора идеального вытеснения потребуется для проведения этой же реакции при прочих равных условиях (объемный расход и температура)?

В реакторе идеального вытеснения при проведении реакции 2А R + S получена степень превращения хА= 0,75 при условии, что сА,0 = 1,2 кмоль/м3, среднее время пребывания в реакторе = 0,5 ч. Определите, какая степень превращения будет достигнута в реакторе идеального смешения при тех же значениях сА,0 и .

Реакция А + В R описывается кинетическим уравнением второго порядка. При ее проведении в реакторе идеального вытеснения объемом V достигается степень превращения хА= 0,9, если сB,0: сА,0= 2. Каким должно быть отношение начальных концентраций исходных реагентов, чтобы в реакторе идеального смешения равного объема V при равном объемном расходе реакционной смеси достигалась та же степень превращения?

Сформулируйте основные допущения модели каскада реакторов идеального смешения.

Докажите, что модель каскада реакторов идеального смешения является промежуточной между моделями идеального вытеснения и идеального смешения.

Определите степень превращения реагента А при проведении реакции А + В R + S в двух последовательно соединенных реакторах идеального смешения равного объема V1 = V2 = 0,5 м3, если сA,0=сB,0=2,2 кмоль/м3, объемный расход v = 3 м3/ч, k = 2,5 м3/(кмоль•ч).

Определите производительность по продукту R при проведении обратимой реакции А R в каскаде из двух реакторов идеального смешения равного объема V1 = V2 = 0,3 м3, если сА,0= 1,5 кмоль/м3, объемный расход V - 1 м3/ч, k1 = 0,32 ч-1, k2 = 0,18 ч-1.

В каскаде из двух реакторов идеального смешения проводят реакцию первого порядка А R. Какой объем (V1 = V2) должны иметь секции каскада для достижения степени превращения хА = 0,75, если

k = 2 ч-1, объемный расход v = 2,5 м3/ч?

В каскаде реакторов идеального смешения равного объема

(Vi = 1 м3) проводят реакцию первого порядка А R. Определите число секций каскада для достижения степени превращения хА= 0,9, если объемный расход v = 1 м3/ч, k = 0,32 ч-1.

Определите число секций каскада реакторов идеального смешения равного объема, необходимых для достижения степени превращения хА = 0,65, при проведении реакции 2А R + 2S, если

сА,0 = 20 кмоль/м3, k1 = 1 м3/(кмоль•ч), k2 = 0,8 м3/(кмоль•ч), среднее время пребывания в каждой секции = 0,05 ч.

Определите число секций каскада реакторов идеального смешения равного объема V = 0,5 м3, необходимых для достижения степени превращения хА = 0,65 при проведении реакции A + 2B > R + 2S, кинетика которой описывается уравнением wrA = kсA0,5сB1,5, если k = 2,5 м3/(кмоль•ч),


Подобные документы

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция [46,2 K], добавлен 18.02.2009

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Методы построения кинетических моделей гомогенных химических реакций. Расчет изменения концентраций в ходе химической реакции. Сравнительный анализ численных методов Эйлера и Рунге-Кутта. Влияние температуры на выход продуктов и степень превращения.

    контрольная работа [242,5 K], добавлен 12.05.2015

  • Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

    лабораторная работа [282,5 K], добавлен 08.10.2013

  • Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.

    контрольная работа [41,1 K], добавлен 13.02.2015

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

  • Методы построения кинетических моделей гомогенных химических реакций. Исследование влияния температуры на выход продуктов и степень превращения. Рекомендации по условиям проведения реакций с целью получения максимального выхода целевых продуктов.

    лабораторная работа [357,5 K], добавлен 19.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.