Химические процессы и реакторы

Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов. Зависимость константы равновесия от температуры. Законы химической кинетики при выборе технологического режима и моделировании химических процессов.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 24.01.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При постоянной температуре протекают две параллельные реакции:

характеризующиеся значениями констант скорости k1 = 10-3 с-1, k2 = 10-2 с-1. Перед началом реакции сA,0 = 2 кмоль/м3, cR,0 = CS,0 = 0. Определите значения скорости химической реакции по исходному реагенту А (w > ) и продукту S в момент времени, когда cR = 0,05 кмоль/м3, CS = 0,5 кмоль/м3.

Протекает сложная реакция

при температуре, когда константы скоростей отдельных элементарных реакций имеют следующие значения: k1 = 0,02 м3/(кмоль·с), k2 = 0,0015 с-1, k3 = 0,0028 c-1. Начальный состав реакционной смеси: сА,0 = 0,1 кмоль/м3, сB,0 = 0,3 кмоль/м3, cR,0 = cS,0 = сР,0 = 0. В реакторе установились концентрации продуктов: cR = 0,028 кмоль/м3, ср = 0,05 кмоль/м3; степень превращения исходного реагента хА = 0,2. Определите значения скоростей химической реакции по веществам R и Р.

Протекает сложная реакция

при температуре, когда константы скоростей отдельных элементарных реакций имеют следующие значения: k1 = 0,0028 c-1, k2 = 0,051 c-1, k3 = 0,0032 c-1. Начальная концентрация исходного реагента сА,0=1,65 кмоль/м3; фактическая степень превращения исходного реагента хА составляет 30 % от равновесной степени превращения хА,e; концентрация продукта RcR = 0,15 кмоль/м3. Определите значение скорости реакции по продукту R (wrR).

От каких микрокинетических факторов зависит скорость химической реакции?

В гомогенной химической реакции участвуют два реагента А и В. Реакция имеет первый порядок по реагенту А и второй порядок по реагенту В. Увеличение концентрации какого реагента даст больший эффект увеличения скорости реакции?

Выведите уравнение зависимости дифференциальной селективности от концентрации реагента А для параллельных реакций, имеющих разный порядок по реагенту А.

Вещества А и В участвуют в двух параллельных реакциях, причем частный порядок по реагенту А выше в целевой реакции, а частный порядок по реагенту В выше в побочной реакции. Какие можно сделать рекомендации по изменению концентраций реагентов для обеспечения высокой дифференциальной селективности? Как можно эти рекомендации выполнить при технологическом оформлении процесса?

Запишите уравнение Аррениуса в дифференциальной, интегральной и логарифмической формах. В чем суть уравнения Аррениуса?

Определите энергию активации реакции, если при изменении температуры с 450 до 500 °С ее скорость возрастет в 2,73 раза.

При температуре 748 К константа скорости реакции составляет 3,2·105 ч-1. Определите константу скорости этой реакции при температуре 793 К, если ее энергия активации Е = 87,9 кДж/моль.

При проведении кинетических экспериментов определены следующие значения константы скорости химической реакции (м3/(кмоль·ч)) при различных температурах (К):

Т 298 323 348 373 398 м3/(кмоль·ч).

K 0,510,821,351,922,62 К.

Определите энергию активации реакции.

Для реакции n-го порядка

Продукты

экспериментально получена зависимость концентрации реагента (кмоль/м3) от времени проведения реакции (мин) в периодическом реакторе при постоянной температуре:

ф, мин 0 1 2 3 4 5;

сА, кмоль/м3 2,00 0,96 0,63 0,47 0,39 0,31.

Определите порядок реакции и вычислите константу скорости.

Почему эффективность повышения температуры, как средства относительного увеличения скорости реакции, выше при низких температурах, чем при высоких температурах?

Проанализируйте зависимость дифференциальной селективности от температуры для двух параллельных реакций одинакового порядка.

Две параллельные реакции

а1А + b1В rR + sS (целевая реакция);

a2А + b2В yY + zZ (побочная реакция)

характеризуются кинетическими уравнениями

и энергиями активации E1 = 45 кДж/моль, Е2 = 65 кДж/моль.

Проанализируйте зависимость дифференциальной селективности для такой системы реакций:

а) от концентрации реагента А;

б) от концентрации реагента В;

в) от температуры.

Какие можно дать рекомендации по выбору технологического режима для этого процесса на основе проведенного анализа?

Две параллельные реакции характеризуются одинаковым порядком и различными значениями энергии активации: энергия активации целевой реакции равна 84 кДж/моль, энергия активации побочной реакции - 45 кДж/моль. Как повлияет увеличение температуры на дифференциальную селективность? Во сколько раз изменится дифференциальная селективность ц' при увеличении температуры проведения реакции от 100 до 500 °С?

Глава 4. ОБЩИЕ СВЕДЕНИЯ О ХИМИЧЕСКИХ РЕАКТОРАХ

Центральным аппаратом в любой химико-технологической системе, включающей целый ряд машин и аппаратов, соединенных между собой различными связями, является химический реактор - аппарат, в котором протекает химический процесс. Выбор типа, конструкции и расчет химического реактора, создание системы управления его работой - одна из важных задач химической технологии.

Как и в случае других аппаратов, используемых в химической промышленности (теплообменных, массообменных и др.), для изучения, расчета и проектирования химических реакторов применяется метод моделирования.

§4.1 Моделирование химических реакторов и протекающих в них химических процессов

Моделирование - это метод изучения различных объектов, при котором исследования проводят на модели, а результаты количественно распространяют на оригинал. Модель может представлять собой уменьшенную по определенным законам (или иногда увеличенную) копию реального объекта. Но моделью может быть и определенная система представлений о реальном объекте, выражаемая как совокупность математических структур: уравнений, неравенств, таблиц, графиков. Такую модель обычно называют математическим описанием объекта, или его математической моделью.

Математическая модель - некоторое упрощенное изображение процесса в реакторе, которое сохраняет наиболее существенные свойства реального объекта и передает их в математической форме. В зависимости от поставленной задачи математическая модель учитывает разное число признаков объекта и поэтому может быть широкой или узкой.

Разработка моделей, в частности моделей реакторов и протекающих в них химических процессов, - задача непростая, так как требования к математической модели часто бывают противоречивыми.

Во-первых, модель должна быть проще реального объекта, наглядно и отчетливо передавать все качественные стороны интересующего нас явления. Только в этом случае можно сохранить «физический контроль» над моделью. Если модель будет сложнее объекта, то моделирование теряет смысл, так как в этом случае для изучения явления легче было бы исследовать сам объект, а не модель. Чем сложнее математическая модель, тем меньше вероятность получения аналитических решений на ее основе, следовательно, тем больше вероятность появления больших ошибок при расчетах на ее основе.

Однако излишнее упрощение модели рискованно из-за вероятности потерять какие-либо существенные стороны изучаемого явления. Исходя из этих соображений, формулируется второе требование: модель должна быть достаточно полной и подробной, точно передавать не только качественные, но и количественные закономерности явления. Если не выполнить этого требования, затруднительно будет использовать разработанную модель для расчета химических реакторов в широких диапазонах изменения условий их работы.

Противоречивость этих требований очевидна: без обстоятельного изучения свойств системы не всегда ясно, какие факторы наиболее существенны, а какими можно пренебречь. При упрощении модели можно не учесть важные элементы изучения явления и этим сделать модель непригодной для расчета реального аппарата, и в то же время полная модель может быть столь сложной в математическом отношении, что достаточно точный расчет на ее основе также станет невозможным. Следовательно, разработка математической модели реактора всегда связана с поиском компромисса между указанными требованиями.

Облегчить эту сложную задачу помогают некоторые общие принципы, в частности использование системного подхода к химическим реакторам и химическим процессам. Химический реактор рассматривают как сложную систему, т. е. множество элементов, находящихся в определенных отношениях друг с другом и образующих целостность, единство. В рамках системного подхода удобно использовать иерархический принцип. Его суть состоит в том, что сложная система рассматривается как совокупность подсистем, связанных между собой. Подсистемы, находящиеся на более высокой ступени иерархии, выполняют все функции подсистемы, принадлежащей более низкой ступени иерархии.

Реактор и реакционный узел, будучи сложными объектами, имеют многоступенчатую структуру, и их математические модели строятся последовательно на основе предварительного построения моделей их составных частей и введения соотношений, связывающих переход с одного уровня на другой. Исследование сложного процесса по частям дает возможность переходить к модели более высокого уровня, включая в нее как составную часть узкую модель более низкого уровня. Первоначально проведенный анализ моделей более низкого уровня существенно упрощает анализ процесса в целом, и в то же время в рамках иерархического подхода легче учесть взаимосвязь между различными уровнями системы.

Конечно, разбиение на иерархические уровни может быть многовариантным. Рассмотрим один из возможных вариантов иерархической структуры химического процесса, протекающего в реакторе (в порядке возрастания ступеней иерархии).

В качестве нижнего уровня иерархии чаще всего рассматривают молекулярный уровень - межмолекулярное взаимодействие на расстояниях, примерно равных размерам молекул, определяемое закономерностями химической кинетики, стехиометрическими соотношениями, устанавливающими количественную взаимосвязь между расходованием различных реагентов и образованием продуктов реакции, а также законы химического равновесия.

Следующим является уровень малого объема - некоторый элемент реакционного объема макроскопического размера, например сфера или цилиндр с поперечным сечением в несколько квадратных миллиметров или сантиметров. Таким элементом может быть одно зерно катализатора, пузырек газа, поднимающийся в барботажном слое, один элемент насадки в насадочной колонне и т. д. Закономерности предыдущего уровня должны быть теперь дополнены закономерностями тепло- и массопереноса.

Уровень рабочей зоны аппарата - статистическая совокупность изученных на предыдущем уровне элементов малого объема, например слой катализатора, насадочный слой, барботажный слой и т. д. На этом уровне необходимо учитывать эффекты, связанные с характером движения потока. В ряде случаев (например, при рассмотрении гомогенных реакций) на этот уровень можно перейти с первого, минуя уровень малого объема.

Уровень аппарата - конфигурация, взаимная связь и взаимное расположение рабочих зон аппарата, например, несколько слоев катализатора, разделенных теплообменниками, в многослойном каталитическом реакторе или несколько барботажных тарелок в колонном аппарате для проведения газожидкостных реакций.

Использование иерархического подхода существенно упрощает задачи анализа и синтеза математических моделей химических реакторов.

§4.2 Структура математической модели химического реактора

Математические модели высоких уровней иерархии включают в себя, как правило, несколько уравнений, как конечных, не содержащих операторов дифференцирования, так и дифференциальных, обыкновенных и в частных производных. Поэтому в общем случае математическая модель реактора - это достаточно сложная система уравнений, и количественные расчеты на основании этой модели целесообразно проводить, используя электронные вычислительные машины. Правильно разработанная модель химического реактора или химико-технологического процесса позволяет разработать и систему управления реактором или процессом в целом с использованием ЭВМ.

В то же время при описании химического процесса на нижних уровнях иерархической структуры часто возможно применение сравнительно простых математических методов. При этом достаточно отчетливо может просматриваться физическая сущность изучаемых явлений.

Протекающий в реакторе химический процесс представляет собой единство химической реакции и процессов переноса (тепло-, массопереноса и переноса импульса). Уравнения, входящие в математическую модель, должны учесть все эти явления. Однако, если для описания каждого из них использовать свои уравнения, математическая модель получится многомерной, что даже на низких уровнях иерархии затруднит нахождение решений такой системы уравнений, т. е. по сути дела осложнит технологический расчет реактора.

Поэтому при разработке математической модели стоит задача понизить размерность модели - по возможности объединить сущность отдельных элементов химического процесса в одном-двух уравнениях. Для уверенности в правильности выбора уравнений целесообразно в качестве исходных посылок использовать какие-либо фундаментальные законы, например законы сохранения. Поэтому правильно было бы составлять математическую модель химического процесса и химического реактора, отталкиваясь от законов сохранения массы и энергии.

Математическим выражением законов сохранения являются балансовые уравнения, прежде всего уравнения материального и энергетического балансов. В уравнении материального баланса можно учесть все изменения, которые происходят с веществом во времени и пространстве в результате химической реакции и диффузионных явлений (массопереноса) или при движении элементов потока в реакторе (при переносе импульса). Аналогично уравнение энергетического (теплового) баланса может учесть все энергетические изменения в реакторе, имеющие место как в ходе химической реакции, так и в результате процессов переноса.

Таким образом, сочетание только лишь двух уравнений - материального и теплового балансов может обеспечить получение достаточно полной математической модели химического процесса.

Так как химический процесс в реакторе протекает во времени и в пространстве, то для составления балансовых уравнений нужно предварительно выбрать некоторые элементарный объем ?V и элементарный промежуток времени ?ф.

Будем считать, что элементарным является такой объем, выделенный внутри реактора, в пределах которого можно пренебречь неравномерностью распределения концентраций и температуры. Элементарный объем неподвижен относительно аппарата и не передвигается вместе с реакционным потоком. В общем случае элементарный объем ?V бесконечно мал во всех измерениях, но в некоторых частных случаях (например, для аппарата идеального смешения) его можно считать равным всему объему реактора.

Элементарным промежутком времени ?ф является такой, в течение которого можно пренебречь изменениями концентрации и температуры внутри элементарного объема ?V. Элементарный промежуток времени бесконечно мал для нестационарных режимов работы реактора и может быть выбран любым для стационарных режимов, например равным 1 ч или 1 мин.

Рассмотрим общую структуру балансовых уравнений.

Уравнения материального баланса (одно или несколько) составляют по тому или иному компоненту - участнику реакции (реагенту или продукту), отражая в уравнении все изменения, происходящие с этим компонентом. Если реакция сложная, математическое описание, как правило, включает в себя несколько уравнений материального баланса по нескольким веществам, каждое из которых участвует, по меньшей мере, в одной из простых реакций, составляющих сложную.

Уравнение материального баланса по веществу J учитывает все виды поступления, и расходования этого компонента в пределах элементарного объема ?V течение промежутка времени ?ф:

где nJ,вх - количество вещества J, внесенное в элементарный объем ?V за время ?ф с потоком участников реакции; пJ,вых - количество вещества J, вынесенное из объема ?V за время ?ф с потоком участников реакции;

nJ,хр - количество вещества J, израсходованное на химическую реакцию (или образовавшееся в результате ее протекания) в объеме ?V за время ?ф; nJ,нак - накопление вещества J в объеме ?V за время ?ф (изменение количества вещества J, одновременно содержащегося в объеме ?V).

Аналогично составляют и уравнение теплового баланса. Для элементарного промежутка времени ?ф рассматривают все тепловые потоки, которые входят, выходят или образуются внутри элементарного объема ?V. Их алгебраическая сумма равна накоплению (изменению количества) теплоты в объеме ?V за промежуток времени ?ф:

где Qвx - теплосодержание веществ, входящих в объем ?V за время ?ф; Qвых - теплосодержание веществ, выходящих из объема ?V за время ?ф; Qхр - теплота, выделившаяся или поглотившаяся в результате протекания химической реакции в объеме ?V за время ?ф; Qто - теплота, израсходованная на теплообмен объема ?V с окружающей средой за время ?ф; Qнак - накопление теплоты за время ?ф в объеме ?V.

При моделировании химических реакторов с использованием системного (иерархического) подхода можно идти двумя путями. Первый путь - от простого к сложному. Сначала целесообразно рассмотреть заведомо более простые (идеализированные) случаи протекания химических процессов в химических реакторах, а затем постепенно, снимая упрощающие ограничения, перейти к более общей модели.

Второй путь - обратный, от сложного - к более простому. Сначала, не вводя никаких упрощающих допущений, разработать математическую модель, пусть даже и сложную с точки зрения ее решения. Затем для определенных групп химических реакторов и режимов их работы ввести упрощающие допущения, справедливые только для этой группы реакторов, и получить более простые уравнения или системы уравнений, которые могут быть использованы в пределах действия принятых допущений.

Второй путь, по всей видимости, является, более общим. Используя его, выведем уравнение материального баланса, пригодное для описания любого реактора и любого режима его работы.

§4.3 Уравнение материального баланса для элементарного объема проточного химического реактора

Прежде чем рассмотреть отдельные типы химических реакторов в соответствии с приведенной классификацией, составим уравнение материального баланса по произвольному участнику реакции - веществу J - для элементарного объема произвольного проточного химического реактора и элементарного промежутка времени.

Рассмотрим поток жидкости, протекающей через реактор. О ходе химического процесса в реакторе будем судить по изменению молярной концентрации вещества J в жидкости сJ. Так как, в общем случае, в реакторе имеет место то, или иное распределение концентрации сJ по объему, а в каждой произвольно выбранной точке еще и распределение концентрации во времени, то считается, что сJ является функцией четырех переменных: трех пространственных координат х, у, z и времени ф: сJ = сJ(х, у, z, ф).

В соответствии с рассмотренными в § 4.2 требованиями к размеру элементарного объема и значению элементарного промежутка времени выберем в качестве элементарного промежутка времени бесконечно малый интервал dф (dф 0), а в качестве элементарного промежутка пространства - параллелепипед с бесконечно малыми сторонами dx, dy и dz и объемом dV = dxdydz (рис. 4.1).

В уравнении материального баланса по веществу J должны быть отражены, как указано выше, все изменения, которые произойдут за время dф с веществом J при прохождении потоком элементарного объема. Эти изменения могут быть связаны с тремя причинами: конвективным переносом, диффузионным переносом и химической реакцией.

Рис. 4.1. Элементарный объем химического реактора:

1, 1/ - конвективный и 2, 2/ - диффузионный потоки соответственно на входе в элементарный объем и на выходе из него

Конвективный перенос, или перенос импульса, вызван движением потока со скоростью u в результате какого-либо внешнего воздействия (например, из-за перепада давления, созданного насосом или компрессором). При макроскопическом движении жидкости каждый данный ее участок передвигается как целое с неизменным составом, и в результате происходит чисто механическое перемешивание: хотя состав каждого передвигающегося участка жидкости может оставаться неизменным (если нет химической реакции) в каждой неподвижной точке пространства (неподвижном элементарном объеме), концентрация жидкости будет со временем меняться. Охарактеризовать конвективный перенос можно изменением импульса единицы объема жидкости с, и.

Диффузионный перенос вызван наличием неравномерного распределения вещества J в пространстве. Вследствие выравнивания концентрации молекулярным переносом веществ реакционной смеси из одного участка жидкости в другой также происходит изменение состава внутри элементарного объема. Охарактеризовать диффузионный перенос можно в соответствии с законами Фика изменением диффузионного потока вещества J, равного D grad cJ (D - коэффициент диффузии).

Протекание химической реакции в элементарном объеме - неотъемлемая часть любого химического процесса. Расход или образование вещества J в ходе химической реакции пропорционален скорости реакции wrJ.

Алгебраическая сумма всех этих трех изменений должна быть равна накоплению (положительному или отрицательному) вещества J в элементарном объеме, т. е. изменению количества вещества J, находящегося внутри элементарного объема, за тот промежуток времени, для которого составляется материальный баланс.

Запишем теперь отдельные составляющие уравнения материального баланса.

Количество вещества, попадающее за время dф в элементарный объем с конвективным потоком, можно рассматривать как сумму составляющих потока, которые войдут через отдельные грани параллелепипеда. В направлении оси z через грань dx dy за время dф войдет cJ иz dx dy dt моль вещества J.

Аналогично через грань dy dz войдет cJ ux dy dz dф моль вещества J, а через грань dx dz cJ uy dx dz dф моль J.

Суммарно с конвективным потоком в элементарный объем будет внесено

cJ (uzdxdy + uxdydz + uydxdz) dф (4.1)

При прохождении элементарного объема произойдет изменение импульса единицы объема (так как в общем случае и сJ и скорость и имеют неравномерное распределение в пространстве). В результате количество вещества J, которое будет вынесено за тот же промежуток времени dф через противоположные грани параллелепипеда, составит:

· в направлении оси z

· в направлении оси у

· в направлении оси х

Суммарно по всем осям:

cs(uzdxdy + uxdydz + uydxdz)dф + [u grad cj + cj div u] dxdydzdф, (4.2)

где .

После вычитания выражения (4.2) из (4.1) получим (с учетом того, что для несжимаемой жидкости div u = 0) изменение количества вещества в элементарном объеме в результате конвективного переноса за время dф:

?nJ, конв = -и grad сJ dVdф. (4.3)

Аналогично получим член уравнения материального баланса, описывающий изменение количества вещества J в результате диффузионного переноса. Диффузионный поток на входе в параллелепипед через грань dxdy (в направлении оси z) в соответствии с первым законом Фика равен

При прохождении потока через элементарный объем произойдет изменение градиента концентрации dcJ/dz на величину (d2cJ /dz2)dz, следовательно, диффузионный поток на выходе из параллелепипеда через противоположную грань составит

Изменение количества вещества J в результате диффузионного переноса через все грани параллелепипеда за время dф

(4.4)

Расход вещества на химическую реакцию (или его образование в ходе химической реакции) внутри элементарного объема dV за элементарный промежуток времени dф пропорционален скорости реакции wrJ (она определяется концентрацией вещества JcJ, установившейся внутри элементарного объема), объему dV и времени dф:

(4.5)

Следует отметить, что в соответствии с формальным правилом о знаках при составлении кинетических уравнений (см. §3.2) ?nJ,хр положительно, если вещество J - реагент, и отрицательно, если J - продукт. Поэтому для сохранения физического смысла в уравнение материального баланса член ?nJ,хр должен всегда входить со знаком «минус».

Накопление вещества J за время dф внутри элементарного объема может произойти в результате приращения концентрации сJ при изменении времени на величину dф. Это изменение концентрации равно (дcjф)dф. Соответственно накопление вещества в элементарном объеме dV

(4.6)

Таким образом, уравнение материального баланса по веществу J в соответствии с выражениями (4.3)-(4.6) можно записать как:

или, сократив все его члены на dFdx,

(4.7)

Уравнение (4.7) достаточно полно описывает химический процесс, протекающий в любом химическом реакторе (при его выводе не было принято никаких допущений об его применимости только к какому-то одному определенному типу химических реакторов). В нем отражен перенос импульса (первый член уравнения), диффузионный перенос (второй член) и протекание химической реакции (третий член).

Уравнение (4.7) вместе с уравнением теплового баланса, учитывающим явления теплопереноса в элементарном объеме реактора, составят полную математическую модель реактора. Таким образом, будет решен вопрос и о небольшом числе уравнений, составляющих математическую модель, и об ее полноте.

Однако уравнение (4.7) слишком сложно для решения (дифференциальное уравнение второго порядка в частных производных). Следовательно, реальный путь создания математических моделей, пригодных для решения практических инженерных задач по расчету и проектированию химических реакторов, заключается в упрощении математической модели, которое можно провести для различных частных случаев.

В соответствии с такой концепцией рассмотрим математические модели различных типов реакторов:

· реакторов для гомогенных процессов, работающих в изотермическом режиме;

· в неизотермическом режиме;

· реакторы для гетерогенных процессов.

§4.4 Классификация химических реакторов и режимов их работы

Химические реакторы для проведения различных процессов отличаются друг от друга по конструктивным особенностям, размеру, внешнему виду. Однако, несмотря на существующие различия, можно выделить общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор метода расчета.

Наиболее употребимы следующие признаки классификации химических реакторов и режимов их работы:

1) режим движения реакционной среды (гидродинамическая обстановка в реакторе);

2) условия теплообмена в реакторе;

3) способ организации теплообмена;

4) фазовый состав реакционной смеси;

5) способ организации процесса;

6) характер изменения параметров процесса во времени;

7) конструктивные характеристики.

Классификация реакторов по гидродинамической обстановке. В зависимости от гидродинамической обстановки можно разделить все реакторы на реакторы смешения и вытеснения.

Реакторы смешения - это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Реакторы вытеснения - трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока и ее флуктуациями, а также завихрениями.

В теории химических реакторов обычно сначала рассматривают два идеальных аппарата: реактор идеального, или полного, смешения и реактор идеального, или полного, вытеснения.

Для идеального смешения характерно абсолютно полное выравнивание всех характеризующих реакцию параметров по объему реактора.

Идеальное вытеснение предполагает, что любое количество реагентов и продуктов через реактор перемещается по длине реактора (в пространстве); в соответствии с особенностями реакции и сопровождающих ее физических явлений устанавливается определенное распределение концентраций участников реакции, температуры и других параметров.

Реальные реакторы в большей или меньшей степени приближаются к модели идеального вытеснения или идеального смешения. Внесение определенных поправок на неидеальность позволяет использовать модели идеальных аппаратов в качестве исходных для описания реальных реакторов.

Классификация по условиям теплообмена. Протекающие в реакторах химические реакции сопровождаются тепловыми эффектами (это тепловые эффекты химических реакций и сопровождающих их физических явлений, таких, например, как процессы растворения, кристаллизации, испарения и т. п.). Вследствие выделения или поглощения теплоты изменяется температура и возникает разность температур между реактором и окружающей средой, а в определенных случаях температурный градиент внутри реактора. Разность температур ?Т является движущей силой теплообмена.

При отсутствии теплообмена с окружающей средой химический реактор является адиабатическим. В нем вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен - на нагрев или охлаждение реакционной смеси.

Реактор называется изотермическим, если вследствие теплообмена с окружающей средой в нем обеспечивается постоянство температуры. В этом случае в любой точке реактора в результате теплообмена полностью компенсируется выделение или поглощение теплоты.

В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется теплообменом с окружающей средой, а частично вызывает изменение температуры реакционной смеси.

Классификация по способу организации теплообмена. В зависимости от способа организации теплообмена реакторы подразделяют на реакторы с внешним, внутренним и комбинированным теплообменом.

Особо следует выделить автотермические реакторы, в которых необходимая температура процесса поддерживается без использования внешних источников энергии. Обычно стремятся к тому, чтобы химические реакторы, особенно применяемые в крупнотоннажных производствах, были автотермическими.

Классификация по фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения гетерогенных процессов, в свою очередь, подразделяют на газожидкостные реакторы, реакторы для процессов в системах газ - твердое вещество, жидкость - твердое вещество и др. Особо следует выделить реакторы для проведения гетерогенно-каталитических процессов.

Классификация по способу организации процесса. По способу организации процесса (способу подвода реагентов и отвода продуктов) реакторы подразделяют на: периодические, непрерывно действующие и полунепрерывные (полупериодические).

В реакторе периодического действия все отдельные стадии протекают последовательно, в разное время. Все реагенты вводят в аппарат до начала реакции, а смесь продуктов отводят по окончании процесса. Продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени.

Между отдельными реакционными циклами в периодическом реакторе необходимо выполнить вспомогательные операции - загрузку реагентов и выгрузку продуктов. Поскольку во время этих вспомогательных операций не может быть получено дополнительное количество продукта, их наличие обусловливает снижение производительности периодического реактора.

В реакторе непрерывного действия (проточном) все отдельные стадии процесса химического превращения вещества (подача реагирующих веществ, химическая реакция, вывод готового продукта) осуществляются параллельно, одновременно и, следовательно, непроизводительные затраты времени на операции загрузки и выгрузки отсутствуют. Поэтому на современных крупнотоннажных химических предприятиях, где требуется высокая производительность реакционного оборудования, большинство химических реакций осуществляют в непрерывно действующих реакторах.

Время пребывания отдельных частиц потока в непрерывно действующем реакторе, в общем случае, - случайная величина. Так как от времени, в течение которого происходит реакция, зависит глубина химического превращения, то она будет разной для частиц с различным временем пребывания в реакторе. Средняя глубина превращения определяется видом функции распределения времени пребывания отдельных частиц, зависящим, в свою очередь, от характера перемешивания, структуры потоков в аппарате.

В реакторе полунепрерывного (полупериодического) действия один из реагентов поступает в него непрерывно, а другой - периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выводятся непрерывно или наоборот.

Классификация по характеру изменения параметров процесса во времени. В зависимости от характера изменения параметров процесса во времени одни и те же реакторы могут работать в стационарном и нестационарном режимах.

Рассмотрим некоторую произвольную точку, находящуюся внутри химического реактора. Режим работы реактора называют стационарным, если протекание химической реакции в произвольно выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов, температуры, скорости и других параметров процесса в любой момент времени. В стационарном режиме параметры потока на выходе из реактора не зависят от времени. Обычно это постоянство выходных параметров обеспечивается постоянством во времени параметров на входе в реактор.

Если в произвольно выбранной точке происходят изменения параметров химического процесса во времени по тому или иному закону, режим работы реактора называют нестационарным. Нестационарный режим является наболее общим. Стационарный режим возможен для непрерывно действующих проточных реакторов. Но даже эти реакторы работают в нестационарном режиме в моменты их пуска и остановки. Нестационарными являются все периодические процессы.

Нестационарные реакторы характеризуются положительным или отрицательным накоплением вещества или энергии в реакторе. Например, для периодического реактора характерно положительное накопление продуктов реакции и отрицательное накопление (убыль) исходных реагентов. При протекании в таком реакторе экзотермической реакции в отсутствие теплообмена с окружающей средой будет иметь место накопление теплоты, которое приведет к росту температуры.

Стационарные проточные реакторы проще для моделирования (описываются более простыми уравнениями); протекающие в них процессы легче автоматизировать.

Нестационарность процесса в реакторе, естественно, вносит определенные усложнения и в описание реактора, и в управление его работой, однако во многих случаях нестационарные режимы технологических процессов, протекающих в химических реакторах, легче приблизить к оптимальным режимам.

Классификация по конструктивным характеристикам. Химические реакторы отличаются друг от друга и по ряду конструктивных характеристик, оказывающих влияние на расчет и изготовление аппаратов. По этому принципу классификации можно выделить такие типы реакторов:

· емкостные реакторы (автоклавы; реакторы-камеры; вертикальные и горизонтальные цилиндрические конверторы и т. п.);

· колонные реакторы (реакторы-колонны насадочного и тарельчатого типа;

· каталитические реакторы с неподвижным, движущимся и псевдоожиженным слоем катализатора; полочные реакторы);

· реакторы-теплообменники;

· реакторы типа реакционной печи (шахтные, полочные, камерные, вращающиеся печи) и т. д.

Вопросы и упражнения

для повторения и самостоятельной работы

В чем заключается метод моделирования?

Сформулируйте основные требования, предъявляемые к математической модели химического реактора.

В чем заключается иерархический принцип моделирования химических процессов и реакторов?

Какие признаки могут быть положены в основу классификации химических реакторов?

Каковы различия в условиях перемешивания в проточных реакторах смешения и вытеснения?

Какой режим работы химического реактора называется стационарным? Возможен ли стационарный режим в периодическом реакторе? В полунепрерывном реакторе?

Каким условиям должен удовлетворять элементарный объем, для которого составляются балансовые уравнения?

Каким должен быть элементарный промежуток времени при составлении балансовых уравнений для реакторов, работающих в стационарном режиме? В нестационарном режиме?

Почему именно балансовые уравнения (уравнения материального и энергетического балансов) составляют основу математической модели химического реактора?

Какими математическими операторами описывается перенос импульса и массоперенос?

Почему при стационарном режиме работы химического реактора в нем не происходит накопления вещества и теплоты?

Глава 5. ХИМИЧЕСКИЕ РЕАКТОРЫ С ИДЕАЛЬНОЙ СТРУКТУРОЙ ПОТОКА В ИЗОТЕРМИЧЕСКОМ РЕЖИМЕ

Рассмотрение химических реакторов как сложных объектов в рамках иерархического подхода целесообразно провести на основе предварительного построения моделей частных подсистем, находящихся на нижних уровнях иерархии, и постепенного перехода к более высоким уровням.

Рассмотрим сначала химические реакторы, работающие в изотермическом режиме. Так как в таких реакторах внутри их объема отсутствует движущая сила теплообмена (?Т = 0), то из математической модели реактора первоначально можно исключить уравнение теплового баланса. В таком случае математическая модель сводится к уравнению материального баланса, учитывающему химическую реакцию, массообмен и перенос импульса.

Для дальнейшего упрощения математической модели можно выделить в самостоятельную группу реакторы с идеальной структурой потока - идеального смешения и идеального вытеснения. Допущения об идеальной структуре потока позволяют исключить ряд операторов из общего уравнения материального баланса (4.7) и тем самым существенно упростить расчеты на основе этого уравнения.

§5.1 Реактор идеального смешения

Для модели идеального смешения принимается ряд допущений. Допускается, что в результате интенсивного перемешивания устанавливаются абсолютно одинаковые условия в любой точке реактора: концентрации реагентов и продуктов, степени превращения реагентов, температура, скорость химической реакции и т. д. Например, в некоторый момент времени фj во всех точках ректора (рис. 5.1) выполняются следующие условия:

где x, у, z - пространственные координаты.

В проточном реакторе идеального смешения концентрации элементов реакции в выходном потоке в рассматриваемый момент времени фi строго равны концентрациям тех же веществ в реакторе.

Чтобы перечисленные допущения могли быть выполнены, необходимо принять еще одно допущение: переход от одной концентрации к другой в реакторе идеального смешения не должен иметь протяженности во времени. Изменение концентрации исходного реагента от начальной cJ,0 во входном потоке в данный момент времени фi до концентрации в реакторе сJ в этот же момент времени должно происходить мгновенно (скачкообразно).

Приблизиться к режиму идеального смешения можно, обеспечив интенсивное перемешивание реакционной смеси механическими мешалками разного типа или циркуляционными насосами, создающими высокую кратность циркуляции. Смешение, близкое к идеальному смешению, легче выполнить в емкостных аппаратах с приблизительно равным диаметром и высотой.

Так как в реакторе идеального смешения концентрации элементов реакции равномерно распределены по объему, то уравнение материального баланса (4.7), выведенное для элементарного объема, можно распространить на полный объем реактора.

Рассмотрим два частных случая: периодический реактор идеального смешения и проточный реактор идеального смешения, работающий в стационарном режиме.

Периодический реактор идеального смешения. В периодический реактор все реагенты вводят до начала реакции, а все продукты выводят из него только по окончании процесса. В ходе реакционного цикла никаких веществ в реактор не вводят и из него не выводят, так что общая масса реакционной смеси в реакторе остается постоянной, изменяется лишь ее состав. При составлении математического описания принимают, что реакционная смесь однородна по объему аппарата и ее состав зависит только от времени пребывания в периодическом реакторе.

Рис. 5.1. Схемы реакторов идеального смешения с механическим перемешивающим устройством (а) и циркуляционным контуром (б)

Из общего уравнения материального баланса (4.7) в случае периодического реактора идеального смешения можно исключить два первых оператора, описывающих явления конвективного и диффузионного переноса вещества в аппарате. При отсутствии перемещения потока через реактор в произвольный момент времени между началом и окончанием процесса средняя линейная скорость элемента потока равна нулю, следовательно, и конвективный перенос в непроточном реакторе отсутствует. Заключение об отсутствии диффузионного переноса вытекает из допущений модели идеального смешения, так как диффузия возможна лишь при наличии градиента концентраций, а при равномерном распределении концентраций по объему он равен нулю. (Этот вывод справедлив не только для периодического, но и для проточного реактора идеального смешения.)

Следовательно, уравнение материального баланса для периодического реактора идеального смешения примет вид

(5.1)

В уравнении (5.1) частная производная заменена на полную, так как в соответствии с допущениями идеального смешения концентрация с внутри реактора является функцией только одной переменной - времени.

Уравнение материального баланса периодического реактора идеального смешения (5.1) совпадает с уравнением (3.2), дающим определение скорости химического превращения. Из одинакового вида уравнений косвенно можно сделать вывод, что гидродинамическая обстановка в периодическом реакторе идеального смешения не накладывает ограничений на химическую кинетику.

Для проведения расчетов по уравнению (5.1) в его левую часть вместо wrJ(cJ) вводят конкретное кинетическое уравнение. Тогда можно рассчитать, например, время реакционного цикла, необходимое для достижения заданной глубины превращения (заданной конечной концентрации сJ,f):

(5.2)

Если вещество J - исходный реагент, то концентрацию cs можно выразить через его степень превращения:

Тогда

и уравнение (5.2) примет вид

(5.3)

Уравнения (5.2) и (5.3) позволяют также рассчитать зависимость концентрации реагента сJ или его степени превращения хJ от времени пребывания в реакторе (продолжительности реакционного цикла). В разные моменты времени условия в периодическом реакторе различные (концентрация реагентов, продуктов, скорость реакции и т. д.), однако в каждый данный момент времени из-за допущения об идеальности эти параметры строго одинаковы в объеме реактора (рис. 5.2).

Время, рассчитанное по уравнению (5.2) или (5.3), является «чистым» временем, необходимым для проведения химического превращения. Однако для осуществления процесса в периодическом реакторе кроме этого «реакционного» времени нужно затратить вспомогательное время на загрузку реагентов, выведение реактора на нужный технологический режим, разгрузку и очистку. Полное время одного цикла работы периодического реактора суммируется из основного фхр и вспомогательного фвсп.

Рис. 5.2. Изменение концентрации исходного реагента в периодическом реакторе идеального смешения во времени (а) и по объему аппарата (б)

Наличие фвсп как составной части времени цикла приводит к снижению производительности химического реактора (количество продукта, получаемого в единицу времени) и является одним из существенных недостатков периодических процессов вообще. Другие их недостатки - большие затраты ручного труда, сложность решения задач автоматизации (так как условия в реакторе во времени постоянно меняются).

Однако периодические реакторы обычно можно приспособить к широкому диапазону условий реакций, что удобно при необходимости производить на одной установке различные химические продукты, например, в промышленности химических реактивов.

Периодические реакторы с интенсивным перемешиванием, приближающимся к идеальному смешению, применяют в производствах реактивов, органических красителей, лекарственных препаратов - там, где для достижения достаточной глубины превращения требуется сравнительно длительное время, а объемы производства невелики.

Периодические реакторы смешения часто применяют в микробиологической промышленности для культивирования аэробных микроорганизмов. Процесс культивирования для большинства микроорганизмов длится 48-72 ч, т. е. достаточно длителен. Интенсивное перемешивание в ферментаторе позволяет обеспечить равномерное распределение температуры, что особенно важно в таких процессах, так как даже небольшие локальные разогревы могут привести к гибели микроорганизмов. Изолированность реакционной системы в периодическом реакторе позволяет устранить опасность отравления микроорганизмов случайными примесями, которые могут попасть в аппарат при непрерывной подаче реагентов.

Окончательное решение о целесообразности применения периодического или непрерывного процесса можно вынести лишь на основании экономической оценки (сравнения расходов на эксплуатацию, амортизацию, электроэнергию, пар, сырье и т. д.). Как правило, при проведении такого сравнения оказывается, что периодические процессы выгодны при относительно невысокой производственной мощности в тех случаях, когда получают дорогостоящие продукты.

Проточный реактор идеального смешения в стационарном режиме. Если необходимо обеспечить получение большого количества продукта одинакового качества, химический процесс предпочитают проводить в непрерывно действующих реакторах с установившимся режимом. Распространенным видом таких проточных аппаратов являются реакторы смешения. Проточный реактор смешения может работать как в нестационарном режиме (пуск, выход на режим, остановка), так и в стационарном, установившемся режиме.

Рассмотрим уравнение материального баланса для стационарного проточного реактора идеального смешения без циркуляции. Получим его, опять упрощая общее уравнение материального баланса (4.7). Для любого реактора идеального смешения, и в частности для проточного, из уравнения можно исключить оператор, описывающий диффузионный перенос. При стационарном режиме работы реактора из уравнения исключается производная дсJ/дф, не равная нулю только при наличии накопления вещества в реакторе.


Подобные документы

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция [46,2 K], добавлен 18.02.2009

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Методы построения кинетических моделей гомогенных химических реакций. Расчет изменения концентраций в ходе химической реакции. Сравнительный анализ численных методов Эйлера и Рунге-Кутта. Влияние температуры на выход продуктов и степень превращения.

    контрольная работа [242,5 K], добавлен 12.05.2015

  • Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

    лабораторная работа [282,5 K], добавлен 08.10.2013

  • Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.

    контрольная работа [41,1 K], добавлен 13.02.2015

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

  • Методы построения кинетических моделей гомогенных химических реакций. Исследование влияния температуры на выход продуктов и степень превращения. Рекомендации по условиям проведения реакций с целью получения максимального выхода целевых продуктов.

    лабораторная работа [357,5 K], добавлен 19.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.