• Структура хромосоми задачі оптимізації розкладу клініки. Згортання векторного критерію обмежень та перехід від багатокритеріальної оцінки до однокритеріальної як результат використання алгоритму нечіткої логіки підвищеної точності. Переваги підходу.

    статья (2,7 M)
  • Розробка ефективного методу кодування інформації та вибору виду базисних функцій у штучній нейронній мережі церебральної моделі артикуляційного контролера. Дослідження методу гешування інформації для покращення апроксимуючих мережевих властивостей.

    автореферат (44,3 K)
  • Понятие искусственных нейронных сетей, способы обработки информации человеческим мозгом. Разработка концепции гомеостатической искусственной нейронной сети на основе представлений о гомеостатических механизмах обработки информации в естественных системах.

    статья (439,0 K)
  • Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.

    контрольная работа (443,7 K)
  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат (41,9 K)
  • Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.

    реферат (55,6 K)
  • Модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Когнитивная аналитическая система "Эйдос". Искусственные нейронные сети, проблемы и перспективы. Моделирование иерархических структур обработки информации.

    научная работа (4,3 M)
  • Рассмотрение нейрокомпьютера как вычислительной системы с архитектурой MSIMD. Базовые архитектуры нейронных сетей. Правило коррекции по ошибке, обучение Больцмана и правило Хебба. Особенности программирования средств аппаратной поддержки нейровычислений.

    реферат (224,8 K)
  • Сеть встречного распространения. Первый слой Кохонена. Выход слоя Гроссберга. Обучение сети встречного распространения. Осуществление интерполяции кодов. Послойность сети и матричное умножение. Градиент квадратичной формы, начальная точка и длина шага.

    презентация (130,2 K)
  • Особенности программирования модели формального нейрона и персептрона Розенблатта, алгоритм и правило Хебба. Искусственный нейрон с активационной сигмоидальной логистической функцией. Персептронная система распознания изображений и сетевой поверхности.

    лабораторная работа (450,3 K)
  • Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.

    реферат (25,5 K)
  • Примеры определения масштаба функций в нейронных сетях. Математическое описание цифровых моделей в нейронных сетях. Выбор интервала дискретизации, описание процесса квантования по времени. Оптимальная коррекция динамических погрешностей измерений.

    контрольная работа (175,4 K)
  • Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.

    презентация (79,1 K)
  • Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.

    учебное пособие (193,1 K)
  • Применение модуля программы, спроектированного на основе сверточной нейронной сети. Исследование способности нейронной сети к обучению на небольшом наборе данных в задаче классификации оружия на изображениях. Анализ результатов тестирования программы.

    статья (632,2 K)
  • Определение нейронных сетей методом Давидона-Флетчера-Пауэлла. Расчет с индивидуальными данными начальной точки для негладких функций. Кластеризация данных на основе графовых моделей и статистических методов с индивидуальным заданием точек наблюдения.

    контрольная работа (7,9 M)
  • Искусственные нейронные сети, основы описания многомерных тестовых данных. Построение области допустимых изменений параметров однородных групп, модели регрессии. Определение компонент дискретного конечного множества элементов. Нейронная сеть Хопфильда.

    учебное пособие (1,2 M)
  • Область применения и принципы проектирования нечетких систем управления, их внутренняя структура и компоненты. Нечеткие нейронные сети и системы управления на их основе, принцип работы и сферы применения. Адаптивные системы управления с нечеткой логикой.

    контрольная работа (106,0 K)
  • Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.

    курсовая работа (1,1 M)
  • Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.

    книга (4,3 M)
  • Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.

    реферат (113,1 K)
  • Алгоритм обучения нейронной сети с помощью процедуры обратного распространения. Диаграмма сигналов в сети. Программирование нейронной сети с применением объектно-ориентированного подхода. Иерархия классов библиотеки для сетей обратного распространения.

    статья (114,1 K)
  • Вклад исследований Уоррена Мак-Каллока и Уолтера Питтса в развитие теории искусственных нейронных сетей. Специфические особенности устройства нейросинаптического процессора, построенного на базе комплементарной структуры металл-оксид-полупроводника.

    статья (373,3 K)
  • Аналіз задач і методів ущільнення зображень. Розробка методів, програмних модулів для виконання досліджень, оптоелектронних елементів і вузлів для систем ущільнення зображень з використанням нейронних мереж типу двовимірної карти Кохонена, їх дослідження.

    автореферат (36,0 K)
  • Использование нейросетевых технологий в биологических исследованиях. Модель появления и пропадания генов в ходе эволюции. Новая архитектура нейронной сети, позволяющая оценивать вероятности появления, исчезновения генов на ветвях филогенетического дерева.

    статья (292,7 K)
  • Селективное зрительное внимание и его роль в жизнедеятельности животных и человека. Последовательное циклическое переключение внимания по всем целевым объектам. Архитектура и принципы функционирования нейросетевой модели. Синхронизующие локальные связи.

    статья (741,6 K)
  • Исследование возможности применения ИНС для создания поведенческой модели оператора, сопряженное с необходимостью накопления ретроспективных данных с частотой дискретизации, достаточной для принятия решения оператором. Работа печи под его управлением.

    статья (170,2 K)
  • Методы обнаружения сетевых атак на вычислительную систему. Разработка новых методов и средств защиты вычислительных систем от сетевых атак. Возможность использования искусственных нейронных сетей для анализа сетевого трафика и модель фильтрации.

    статья (642,2 K)
  • Математическая модель для решения дилеммы идентичности с помощью привязки нейронных сетей к предыстории характера движения мобильного агента. Прогноз значения координат в случае изменения состояний полета квадрокоптера, появления оптических шумов.

    статья (1,3 M)
  • Разработка принципов и создание системы распознавания номеров железнодорожных вагонов. Ее отличия от систем распознавания автомобильных номерных знаков. Анализ существующих и предложен ряд новых алгоритмов, предназначенных для повышения его точности.

    статья (1,1 M)