Нейронные сети, генетические алгоритмы и нечеткие системы
Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Информатика |
Вид | книга |
Язык | русский |
Прислал(а) | Рено |
Дата добавления | 18.01.2011 |
Размер файла | 4,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
контрольная работа [1,4 M], добавлен 28.01.2011Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат [78,9 K], добавлен 22.01.2015Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.
реферат [270,4 K], добавлен 07.03.2009Исследование методов автоматического проектирования нечетких систем управления (НСУ). Методы автоматической настройки семантики лингвистических переменных. Искусственные нейронные сети, генетические алгоритмы. Коэволюционный алгоритм для формирования НСУ.
дипломная работа [2,3 M], добавлен 02.06.2011Сущность данных и информации. Особенности представления знаний внутри ИС. Изучение моделей представления знаний: продукционная, логическая, сетевая, формальные грамматики, фреймовые модели, комбинаторные, ленемы. Нейронные сети, генетические алгоритмы.
реферат [203,3 K], добавлен 19.06.2010Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.
курсовая работа [1,3 M], добавлен 26.03.2016Основы нейрокомпьютерных систем. Искусственные нейронные сети, их применение в системах управления. Алгоритм обратного распространения. Нейронные сети Хопфилда, Хэмминга. Современные направления развития нейрокомпьютерных технологий в России и за рубежом.
дипломная работа [962,4 K], добавлен 23.06.2012Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Искусственные нейронные сети, строящиеся по принципам организации и функционирования их биологических аналогов. Элементарный преобразователь в сетях. Экспериментальный автопилотируемый гиперзвуковой самолет-разведчик LoFLYTE, использующий нейронные сети.
презентация [1,3 M], добавлен 23.09.2015