Доказательства и опровержения. Как доказываются теоремы
Улучшение догадки методами устранения исключений, сущность стратегического отступления и безопасной игры. Релятивизация понятий теоремы и строгости в анализе доказательства. Характеристика процесса пересмотра логических и эвристических опровержений.
Рубрика | Философия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 02.02.2016 |
Размер файла | 336,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Так, вместо постепенного отбрасывания исключений я скромно, но с надежностью проведу граничную линию -- «Все выпуклые многогранники являются эйлеровыми». И я надеюсь, вы согласитесь, что в этом нет ничего гадательного, это уже будет теоремой.
Гамма. А как с моим цилиндром? Ведь он выпуклый?
Бета. Это шутка!
Учитель. Забудем на момент об этом цилиндре. Некоторые критические замечания можно выставить даже и без цилиндра. В этой новой видоизмененной версии метода устранения исключений, который так бодро выдумал Бета в ответ на мою критику, постепенный отход заменен стратегическим отступлением в область, которая, как думают, для данной догадки будет твердыней. Вы стремитесь к безопасности. Но так ли вы безопасны, как думаете? У вас нет никаких гарантий, что внутри вашей твердыни но найдется никаких исключений. Кроме того, есть и противоположная опасность. Может быть, вы слишком радикально отступили, оставив за стеной большое количество эйлеровых многогранников? Наша первоначальная догадка могла быть чрезмерным утверждением, но ваш «усовершенствованный» тезис, по-моему, очень сильно смахивает на утверждение с недостатком; и все же вы не можете быть уверены, что он также не будет чрезмерным утверждением.
Мне также хотелось бы выставить мое второе возражение: вы в своей аргументации забываете о доказательстве; делая предположение относительно области правильности догадки, по-видимому, вы совсем не нуждаетесь в доказательстве. Конечно, вы не думаете, что доказательства являются излишними?
Бета. Этого я никогда не говорил.
Учитель. Да, этого вы не сказали. Но вы открыли, что наше доказательство не доказывает нашей первоначальной догадки. А будет ли оно доказывать вашу исправленную догадку? Скажите же мне это35.
Бета. Ну...
Эта. Благодарю вас, сэр, за этот аргумент. Смущение Беты ясно обнаруживает превосходство опороченного метода устранения уродств. Ведь мы говорим, что доказательство доказывает то, что было предложено доказать, и наш ответ совершенно недвусмыслен. Мы не позволяем своенравным контрапримерам свободно уничтожать респектабельные доказательства, даже если они переодеваются в скромные «исключения».
Бета. Я ничуть не смущен тем, что мне приходится разработать, исправить и -- извините меня, сэр,-- усовершенствовать мою методологию под стимулом критики. Мой ответ таков. Я отбрасываю первоначальную догадку как ложную, потому что для нее имеются исключения. Также я отбрасываю и доказательство, потому что те же исключения, по крайней мере для одной из лемм, будут тоже исключениями (по вашей терминологии это значит, что глобальный контрапример является необходимо и локальным). Альфа остановился бы на этом месте, так как опровержения, по-видимому, вполне удовлетворяют его интеллектуальным способностям. Но я иду дальше. Подходящим ограничением сразу и догадки и доказательства их собственной областью я совершенствую догадку, которая теперь становится истинной, и совершенствую в своей основе здравое доказательство, которое становится теперь строгим и, очевидно, уже не будет содержать ложных лемм. Например, мы видели, что не все многогранники после устранения одной грани могут быть растянуты на плоскости в плоскую фигуру. Но это может быть сделано со всеми выпуклыми многогранниками. Поэтому мою усовершенствованную и строго доказанную догадку я имею право назвать теоремой. Я снова формулирую ее: «Все выпуклые многогранники являются эйлеровыми». Для выпуклых многогранников все леммы будут, очевидно, истинными и доказательство, которое в его ложной всеобщности не было строгим, в ограниченной области выпуклых многогранников станет строгим. Итак, сэр, я ответил на ваш вопрос.
Учитель. Итак, леммы, которые когда-то выглядели очевидно истинными до открытия исключения, будут опять выглядеть очевидно истинными, ...пока не открыто новое исключение. Вы допускаете, что положение: «Все многогранники являются эйлеровыми» было догадкой; вы только что допустили, что «Все многогранники без полостей и туннелей являются эйлеровыми» было тоже догадкой, почему же не допустить, что «Все выпуклые многогранники являются эйлеровыми» может тоже оказаться догадкой!
Бета. На этот раз не догадкой, а интуицией!
Учитель. Я ненавижу вашу претенциозную «интуицию». Я уважаю сознательную догадку, потому что она происходит от лучших человеческих качеств: смелости и скромности.
Бета. Я предложил теорему: «Все выпуклые многогранники являются эйлеровыми». Против нее вы произнесли речь. Можете ли вы предложить контрапример?
Учитель. Вы не можете быть уверены, что я этого не сделаю. Вы улучшили первоначальную догадку, но вы не можете требовать признания, что усовершенствовали эту догадку, чтобы достичь совершенной строгости в вашем доказательстве.
Бета. А вы это можете?
Учитель. Я тоже не могу. Но я думаю, что мой метод улучшения догадок будет улучшением вашего, так как я установлю единство, настоящее взаимодействие между доказательствами и контрапримерами.
Бета. Я готов учиться.
г) Метод исправления монстров
Ро. Сэр, могу я мимоходом сказать несколько слов?
Учитель. Пожалуйста.
Ро. Я согласен, что мы должны отбросить данный Дельтой метод устранения монстров как общий методологический подход, потому что этот метод не рассматривает монстры серьезно. Бета тоже не рассматривает свои «исключения» серьезно; он просто составляет их список, а потом уходит в безопасную область. Таким образом, оба эти метода интересны только в ограниченном, привилегированном поле. Мой метод не практикует дискриминации. Я могу показать, что «при более пристальном рассмотрении исключения становятся лишь кажущимися и теорема Эйлера сохраняет свою силу даже для так называемых исключений».
Учитель. В самом деле?
Альфа. А как может быть обыкновенным эйлеровым многогранником мой третий контрапример «морской еж»? (См. рис. 7.) В качестве граней он имеет 12 звездчатых пятиугольников.
Ро. Я не Вижу никаких «звездчатых пятиугольников». Разве вы не видите, что в действительности этот многогранник имеет обыкновенные треугольные грани. Их всего 60. Он имеет также 90 ребер и 32 вершины. Его «эйлерова» характеристика равна 2. Двенадцать «звездчатых пятиугольников», их 30 «ребер» и 12 «вершин», дающих характеристику 6, существуют только в. вашей фантазии. Существуют не монстры, а только монстролюбивые толкования. Нужно очистить свой ум от извращенных иллюзий, надо научиться видеть и правильно определять, что видишь. Мой метод терапевтический: там где вы -- ошибочно -- «видите» контрапример, я учу вас узнавать -- правильно -- простой пример. Я исправляю ваше монстролюбивое зрение.
Альфа. Сэр, пожалуйста, объясните ваш метод, прежде чем Ро выстирает наши мозги.
Учитель. Пусть он продолжает.
Ро. Я уже высказал, что хотел.
Гамма. Не могли бы вы поговорить подробнее относительно вашей критики метода Дельты? Вы оба заклинали монстров...
Ро. Дельта попался в плен ваших галлюцинаций. Он согласился, что наш «морской еж» имеет 12 граней, 30 ребер и 12 вершин и не является эйлеровым. Его тезис заключался в том, что «морской еж» даже не является многогранником. Но он ошибся в том и другом смысле. Ваш «морской еж» является и многогранником и притом эйлеровым. Но его звездчато-многогранное понимание было неправильным толкованием. С вашего разрешения, это не воздействие «морского ежа» на здоровый чистый ум, но искаженное воздействие на больной ум, корчащийся в муках.
Каппа. Но как вы можете отличать здоровые мозги от больных, рациональные толкования от уродливых?
Ро. А меня только удивляет, как вы можете их смешивать.
Сигма. А вы, Ро, действительно думаете, что Альфа никогда не замечал, что его «морской еж» мог быть истолкован как треугольный многогранник? Конечно, он мог это заметить. Но более внимательный взгляд открывает, что эти треугольники всегда лежат по пяти в одной плоскости и окружают в телесном угле правильный пятиугольный тайник -- как бы их сердце. Но пять правильных пятиугольников составляют так называемую пентаграмму, которая, по словам Теофраста Парацельза, была знаком здоровья...
Ро. Суеверие!
Сигма. И вот таким образом для здорового ума открывается тайна «морского ежа»: это новое до сих пор еще неведомое правильное тело с правильными гранями и равными телесными углами, красота симметрии которого может открыть нам тайны всеобщей гармонии...
Альфа. Благодарю вас, Сигма, за вашу защиту, которая еще раз убеждает меня, что оппоненты могут причинить меньше помех, чем союзники. Конечно, мою многогранную фигуру можно толковать или как треугольный или как звездчатый многогранник. Я согласен одинаково допустить оба толкования...
Каппа. Вы согласны?
Дельта. Но, конечно, одно из них будет истинным толкованием.
Альфа. Я согласен одинаково допустить оба толкования, но одно из них наверняка будет глобальным контрапримером для догадки Эйлера. Зачем же допускать только то толкование, которое «хорошо подходит» к предвзятым мнениям Ро? Во всяком случае, сэр, не объясните ли вы нам теперь ваш метод?
д) Улучшение догадки методом включения лемм. Рожденная доказательством теорема против наивной догадки
Учитель. Вернемся к раме картины. Во-первых, я признаю, что она является настоящим глобальным контрапримером для эйлеровой догадки, а также настоящим локальным контрапримером для первой леммы моего доказательства.
Гамма. Извините меня, сэр, но каким образом рама картины опровергает первую лемму?
Учитель. Выньте сначала одну грань, а потом попробуйте растянуть ее в плоскую фигуру на доске. Вам это не удастся.
Альфа. Чтобы помочь вашему воображению я скажу, что после вынимания грани вы можете растянуть оставшееся на доске у тех и только тех многогранников, которые надуванием возможно превратить в шар.
Очевидно, что такой «сферический» многогранник можно растянуть на плоскости, когда одна грань будет вынута; также очевидно, что и, наоборот, если многогранник без одной грани можно растянуть на плоскости, то вы можете согнуть его так, чтобы он мог обтянуть круглый сосуд, который затем можно закрыть недостающей гранью, и таким образом получить сферический многогранник. Но нашу картинную раму никак нельзя надуть так, чтобы она обратилась в шар; она может обратиться только в тор.
Учитель. Хорошо. Теперь вопреки Дельте я принимаю эту картинную раму в качестве критики для догадки. Поэтому я устраняю как ложную первоначальную форму догадки, но сразу же выдвигаю видоизмененную ограничивающую версию, а именно догадка Декарта -- Эйлера справедлива для «простых» многогранников, т. е. для таких, которые после выемки одной грани могут быть растянуты на плоскости. Таким образом, из первоначальной гипотезы мы кое-что спасли. Мы имеем: эйлерова характеристика простого многогранника равна 2. Этот тезис не может быть опровергнут ни кубом в кубе, ни тетраэдрами-близнецами или звездчатыми многогранниками, так как ни одно из этих тел не будет «простым». Таким образом, если метод устранения исключений уменьшал область применимости основной догадки и подозрительной леммы, сводя их к общей безопасной области, и поэтому принимал контрапример как критику и основной догадки и доказательства, то мой метод включения лемм сохраняет доказательство, но ограничивает область правильности основной догадки, сводя ее к истинной области подозрительной леммы. Иначе, если контрапример, являющийся одновременно и глобальным и локальным, заставлял устрани теля исключений пересмотреть как леммы, так и первоначальную догадку, то меня он заставляет пересмотреть первоначальную догадку, но не леммы. Вы понимаете?
Альфа. Думаю, что да. Для доказательства, что я понимаю, я опровергну вас
Рис. 12
Учитель. Мой метод или мою исправленную догадку?
Альфа. Вашу исправленную догадку.
Учитель. Тогда может быть вы все же не понимаете моего метода. Но давайте ваш контрапример.
Альфа. Рассмотрим куб с маленьким кубом, поставленным сверху (рис. 12). Это согласно со всеми нашими определениями (определения 1, 2, 3, 4, 4'). Следовательно, это будет настоящим многогранником. И он «простой», так как может быть растянут на плоскости. Таким образом, согласно вашей исправленной догадке, его эйлерова характеристика должна быть равна 2. Тем не менее он имеет 16 вершин, 24 ребра и 11 граней, и его эйлерова характеристика будет 16--24 + 11 = 3. Это будет глобальным контрапримером для вашей исправленной догадки и также, между прочим, для первой теоремы Беты, «устраняющей исключения». Этот многогранник не будет эйлеровым, хотя он не имеет ни полостей, ни туннелей, ни кратной структуры.
Дельта. Этот увенчанный куб назовем контрапримером 6.
Учитель. Вы сделали ложной мою исправленную догадку, но не уничтожили моего метода улучшения. Я снова пересмотрю доказательство и постараюсь узнать, почему оно не подходит к вашему многограннику. В доказательстве должна быть еще одна неправильная лемма.
Бета. Ну, конечно, так и есть. Я всегда подозревал вторую лемму. Она предполагает, что в триангуляционном процессе, проводя новое диагональное ребро, вы всегда увеличиваете на единицу числа и ребер и граней. Это неверно. Если мы посмотрим на плоскую сетку нашего увенчанного куба, то найдем кольцеобразную грань (рис. 13, а). В этом случае одно диагональное ребро не увеличит числа граней (рис. 13, б); нужно увеличить число ребер на два, чтобы число граней увеличилось на единицу (рис. 13, в).
Учитель. Примите мои поздравления. Я, конечно, должен еще больше ограничить нашу догадку...
Бета. Я знаю, что вы хотите сделать. Вы скажете, что простые многогранники с треугольными гранями будут эйлеровыми. Вы сохраните триангуляционный процесс и включите эту лемму в условия.
Учитель. Нет, вы ошибаетесь. Прежде чем конкретно указать вашу ошибку, мне хочется остановиться на вашем методе устранения исключений. Когда вы сводите вашу догадку к «безопасной» области, вы по-настоящему не рассматриваете доказательства и действительно для вашей цели это не нужно. Вам достаточно будет лишь сделать небрежное замечание, что в вашей ограниченной области будут справедливы все леммы, какими бы они ни были. Но для меня этого недостаточно. Ту самую лемму, которая была опровергнута контрапримером, я встраиваю в догадку, так что мне нужно отметить ее и сформулировать насколько возможно точно на основании тщательного анализа доказательства. Таким образом, опровергнутая лемма включается в исправленную догадку. Ваш метод не заставляет вас производить очень трудную разработку доказательства, так как в вашей исправленной догадке доказательство не появляется, как в моей. Теперь я возвращаюсь к вашему теперешнему замечанию. Опровергнутая кольцеобразной гранью лемма не формулировалась, как вы, по-видимому, думаете, что «все грани треугольны», но что «всякая грань, рассеченная диагональным ребром, распадается на две части». Вот эту-то лемму я и превращаю в условие. Удовлетворяющие ему грани я называю «односвязными» и могу сделать второе улучшение моей первоначальной догадки: «для простого многогранника, у которого все грани односвязны, V -- Е + F = 2». Причина вашего быстрого неправильного утверждения заключалась в том, что ваш метод не приучил вас к тщательному анализу доказательства. Этот анализ бывает иногда довольно тривиальным, но иногда действительно очень труден.
Рис. 13
Бета. Я понимаю вашу идею. Я тоже должен добавить самокритическое замечание к вашим словам, так как мне кажется, что они открывают целый континуум положений для устранения исключений. В самом худшем случае просто устраняются некоторые исключения и не обращается никакого внимания на доказательство. Мистификация получается, когда мы отдельно имеем доказательство и также отдельно исключения. В мозгу таких примитивных устранителей исключений доказательства и исключения помещаются в двух совершенно разделенных помещениях. Другие могут теперь указать, что доказательство будет действительным только в ограниченной области, в чем, по их мнению, и заключается раскрытие тайны. Но все же их «условия» для идеи доказательства будут посторонними. Лучшие устранители исключений бросают беглый взгляд на доказательство и, как я в настоящую минуту, получают некоторое вдохновение для формулировки условий, определяющих безопасную область. Самые лучшие устранители исключений производят тщательный анализ доказательства и на этом основании дают очень тонкое ограничение запрещенной площади. В этом отношении наш метод действительно представляет предельный случай метода устранения исключений...
Йота ...и обнаруживает фундаментальное диалектическое единство доказательств и опровержений.
Учитель. Я надеюсь, что теперь вы все видите, что доказательства, хотя иногда правильно и не доказывают, но определенно помогают исправить (improve) нашу догадку. Устранители исключений тоже исправляли ее, но исправление было независимым от доказательства (proving). Наш метод исправляет доказывая (improves by proving). Внутреннее единство между «логикой открытия» и «логикой оправдания» является самым важным аспектом метода инкорпорации лемм.
Бета. И, конечно, теперь я понимаю ваши предыдущие удивившие меня замечания, что вы не смущаетесь, если догадка будет одновременно и «доказана» и опровергнута, а также, что вы готовы доказать даже неправильную догадку.
Каппа (в сторону). Но зачем же называть «доказательством» (proof) то, что фактически является «исправлением» (improof) ?
Учитель. Обратите внимание, что немногие люди захотят разделить эту готовность. Большая часть математиков вследствие укоренившихся эвристических догм неспособны к одновременному доказательству и опровержению догадки. Они будут или доказывать, или опровергать ее. В особенности они не способны опровержением исправлять догадки, если эти последние будут их собственными. Они хотят исправлять свои догадки без опровержений; о ни никогда не уменьшают неправильности, по непрерывно увеличивают истинность; таким образом рост знания они очищают от ужаса контрапримеров. Может быть, это и является основой подхода лучшего сорта устранителей исключений; они начинают со «стремления к безопасности» и придумывают доказательство для «безопасной» области, а продолжают работу, подвергая это доказательство глубокому критическому исследованию, испытывая, использовали ли они все поставленные условия. Если этого нет, то они «заостряют» или «обобщают» первую скромную версию их теоремы, т. е. выделяют леммы, от которых зависит доказательство, и инкорпорируют их. Например, после одного или двух контрапримеров они могут сформулировать устраняющую исключения предварительную теорему: «Все выпуклые многогранники являются эйлеровыми», откладывая невыпуклые объекты для cura posterior (дальнейшей работы - Лат.); затем они изобретают доказательство Коши и тогда, открывши, что выпуклость не была реально «использована» в доказательстве, они строят теорему, включающую леммы. Нет ничего эвристически нездорового в процедуре, которая соединяет предварительное устранение исключений с последовательным анализом доказательства и включением лемм.
Бета. Конечно, эта процедура не уничтожает критику, она только отталкивает ее на задний план; вместо прямой критики чрезмерных утверждений критикуются недостаточные утверждения.
Учитель. Я очень рад, Бета, что убедил вас. А как вы, Ро и Дельта, думаете насчет этого?
Ро. Что касается меня, то я совершенно определенно думаю, что проблема кольцеобразных граней является псевдопроблемой. Она происходит от чудовищного истолкования того, что представляют грани и ребра этого соединения двух кубов в один, который вы назвали «увенчанным кубом».
Учитель. Объясните.
Ро. «Увенчанный куб» представляет многогранник, состоящий из двух кубов, припаянных один к другому. Вы согласны?
Учитель. Не возражаю.
Ро. Тогда вы неправильно понимаете термин «припаянный». «Припой» состоит из ребер, связывающих вершины нижнего квадрата маленького куба с соответствующими вершинами верхнего квадрата большого куба. Поэтому вообще не существует никаких кольцеобразных граней.
Бета. Кольцеобразная грань здесь существует! Рассекающих ребер, о которых вы говорите, здесь нет!
Ро. Они только скрыты от вашего ненатренированного глаза (рис. 14, в) ...
Рис. 14.
Бета. Неужели вы думаете, что мы всерьез примем ваши аргументы? Я вижу здесь только суеверие, а ваши «скрытые» ребра неужели это реальность?
Ро. Посмотрите на этот кристалл соли. Скажете ли вы, что это куб?
Бета. Конечно.
Ро. Куб имеет 12 ребер, не так ли?
Бета. Да, имеет.
Ро. Но на этом кубе вообще нет никаких ребер. Они скрыты. Они появляются только в нашей рациональной реконструкции.
Бета. Я подумаю насчет этого. Ясно только одно. Учитель критиковал мою самоуверенную точку зрения, что мой метод приводит к определенности, а также то, что я забыл о доказательствах. Эта критика вполне подойдет и к вашему «исправлению монстров», и к моему «устранению ошибок».
Учитель. А как вы, Дельта? Как вы будете заклинать кольцеобразные грани?
Дельта. Я не буду. Вы обратили меня в вашу веру. Я только удивляюсь, почему вы не добиваетесь полной уверенности и не включаете также и пренебреженную третью лемму? Я предлагаю четвертую и, надеюсь, окончательную формулировку: «эйлеровыми являются все многогранники, которые будут (а) простыми, (b) имеют только односвязные грани и (с) таковы, что треугольники плоской треугольной сети, полученной после растягивания на плоскости и триангулирования, могут быть так перенумерованы, что при устранении их в определенном порядке V--E+F не изменится до достижения последнего треугольника». Я удивляюсь, почему вы не предложили этого сразу. Если вы действительно принимаете серьезно ваш метод, то вы все леммы должны превратить непосредственно в условия. Почему такое «постепенное построение»?
Альфа. Консерватор обратился в революционера! Ваш совет кажется мне слишком утопичным. Потому что ровно трех лемм не существует. А то почему бы не добавить вместе со многими другими еще и такие: (4) «если 1 + 1 = 2» и (5) «если все треугольники имеют три вершины и три угла», так как мы, конечно, эти леммы тоже используем? Я предлагаю в условия превратить только те леммы, для которых был найден контрапример.
Гамма. Мне кажется, что принять это в качестве методологического правила будет слишком оппортунистичным. Включим в целое только те леммы, против которых мы можем ожидать контрапримера, т. е. такие, которые, очевидно, не будут несомненно истинными.
Дельта. Ну, хорошо, кажется ли кому-нибудь вполне очевидной наша третья лемма? Превратим ее в третье условие.
Гамма. А что если операции, выраженные леммами нашего доказательства, не будут все независимыми? Если выполнимы некоторые из этих операций, то может случиться, что и остальные будут необходимо выполнимыми. Я например, подозреваю, что если многогранник простой, то всегда существует такой порядок устранения треугольников в получающейся плоской сети, что V -- Е + F не изменяется. А если так, то инкорпорирование в догадку первой леммы избавит нас от инкорпорирования третьей.
Дельта. Вы считаете, что первое условие предполагает третье. Можете ли вы доказать это?
Эпсилон. Я могу.
Альфа. Действительное доказательство, как бы оно интересно ни было, не может помочь нам в решении нашей задачи: как далеко должны мы идти в исправлении нашей догадки? Охотно допускаю, что вы действительно имеете такое доказательство, как говорите, но это только заставит нас разложить эту третью лемму на несколько новых подлемм. Должны ли мы и их превратить в условия? Где же тогда мы остановимся?
Каппа. В доказательствах существует бесконечный спуск; поэтому доказательства не доказывают. Вы должны понять, что доказывание представляет игру, в которую играют, пока это доставляет удовольствие, и прекращают, когда устанешь.
Эпсилон. Нет, это не игра, а серьезное дело. Бесконечный спуск может быть задержан тривиально истинными леммами, которые уже не надо превращать в условия.
Гамма. Вот я как раз так и думаю. Мы не обращаем в условия те леммы, которые могут быть доказаны на основании тривиально истинных принципов. Также мы не инкорпорируем те леммы, которые могут быть доказаны (возможно с помощью таких тривиально истинных принципов) на основании ранее установленных лемм.
Альфа. Согласен. Мы можем прекратить исправление нашей догадки после того, как превратим в условия эти две нетривиальные леммы. Я действительно думаю, что такой метод исправления при помощи включения лемм не имеет недостатков. Мне кажется, что он не только исправляет, но даже совершенствует догадку. И я отсюда узнал нечто важное, а именно, что неправильно будет утверждать, что целью «задачи на доказательство» является заключительный показ, будет ли некоторое ясно сформулированное утверждение истинным или что оно будет ложным. Настоящей целью «задачи на доказательство» должно быть исправление -- фактически усовершенствование -- первоначальной «наивной» догадки в подлинную «теорему». Нашей наивной догадкой была: «Все многогранники являются эйлеровыми».
Метод устранения монстров защищает эту наивную догадку при помощи истолкования ее терминов таким образом, что под конец мы получаем теорему, устраняющую монстры: «Все многогранники являются эйлеровыми». Но тождественность лингвистических выражений наивной догадки и теоремы, устраняющей монстры, кроме тайных изменений в смысле терминов, скрывает и существенное улучшение.
Метод устранения исключений вводит элемент, являющийся фактически чуждым аргументации: выпуклость. Устраняющая исключения теорема была: «Все выпуклые многогранники являются эйлеровыми».
Метод включения лемм основывался на аргументации, т.е. на доказательстве -- и ни на чем другом. Он как бы резюмирует доказательство в теореме, включающей леммы: «Все простые многогранники с односвязными гранями являются эйлеровыми».
Это показывает, что (теперь я употребляю термин «доказывание» в традиционном смысле) человек не доказывает того, что он намеревался доказать. Поэтому ни одно доказательство не должно кончаться словами: «Quod erat demonstrandum».
Бета. Одни говорят, что в порядке открытия теоремы предшествуют доказательствам: «Прежде чем доказать теорему, надо угадать ее». Другие отрицают это и считают, что открытие совершается путем вывода заключений из специально установленного ряда предпосылок и выделения интересных заключений, если нам посчастливится найти их. Или, если использовать прекрасную метафору одного из моих друзей, некоторые говорят, что эвристическое «застегивание молнии» в дедуктивной структуре идет снизу -- от заключения -- кверху --- к посылкам, другие же говорят, что оно идет вниз -- от вершины ко дну. Как думаете вы?
Альфа. Что ваша метафора неприложима к эвристике. Открытие не идет ни вниз, ни вверх, но следует по зигзагообразному пути: толкаемое контрапримерами, оно движется от наивной догадки к предпосылкам и потом возвращается назад, чтобы уничтожить наивную догадку и заменить ее теоремой. Интуитивная догадка и контрапримеры не выявляются во вполне готовой дедуктивной структуре: в окончательном продукте нельзя различить зигзаг открытия.
Учитель. Очень хорошо. Однако добавим из осторожности, что теорема не всегда отличается от наивной догадки. Мы не всегда обязательно исправляем доказывая. Доказательства могут исправлять, когда их идея открывает в наивной догадке неожиданные аспекты, которые потом появляются в теореме. Но в зрелых теориях так может и не быть. Так наверняка бывает в молодых растущих теориях. Первичной характеристикой последних является именно это переплетение открытия и подтверждения, исправления и доказательства.
Каппа (в сторону). Зрелые теории могут быть омоложены. Открытие всегда заменяет подтверждение.
Сигма. Эта классификация соответствует моей. Первый вид моих предложений был зрелого типа, третий же растущего...
Гамма (прерывает его). Теорема неверна! Я нашел для нее контрапример.
5. Критика анализа доказательства контрапримерами, являющимися глобальными, но не локальными. Проблема строгости.
а) Устранение монстров в защиту теоремы
Гамма. Я только что понял, что мой контрапример 5 с цилиндром опровергает не только наивную догадку, но также и теорему. Хотя он удовлетворяет обеим леммам, он все же неэйлеров.
Альфа. Дорогой Гамма, не будьте чудаком. Пример с цилиндром был шуткой, а не контрапримером. Ни один серьезный математик не будет считать цилиндр многогранником.
Гамма. Почему же тогда вы не протестовали против контрапримера 3 -- моего «морского ежа?» Разве он менее «чуден», чем мой цилиндр? Конечно, тогда вы критиковали наивную догадку и приветствовали опровержения. Теперь защищаете теорему и ненавидите опровержения! Тогда при появлении контрапримера вы ставили вопрос, в чем недостаток предположения. Теперь спрашиваете, в чем недостаток контрапримера.
Дельта. Альфа, вы обратились в устранителя монстров? Это вас не смущает?
б) Скрытые леммы
Альфа. Согласен. Я, может быть, несколько поторопился. Дайте подумать: имеются три возможных типа контрапримеров. Мы уже обсудили -- первый -- локальный, но не глобальный -- он, конечно, не опровергает теоремы. Вторым типом заниматься не надо; он одновременно и глобальный, и локальный. Он вовсе не опровергает теорему, а подтверждает ее. Теперь мы имеем третий тип -- глобальный, но не локальный. Он, конечно, опровергает теорему. Я не считал это возможным. Но Гамма думает, что его цилиндр как раз таким и будет. Если мы не хотим отбросить его как монстр, то должны допустить, что он является глобальным контрапримером: V -- Е + F = 1. Но, может быть, он принадлежит ко второму безобидному типу? Бьюсь об заклад, что он не удовлетворит по крайней мере одной из наших лемм.
Гамма. Проверим. Он, конечно, удовлетворяет первой лемме; если я выну грань-основание, то легко могу растянуть остальное на доске.
Альфа. Но если вы удалите боковую оболочку, то он распадется на два куска!
Гамма. Ну и что же? Первая лемма требует, чтобы многогранник был «простым», т. е. «чтобы по удалении одной грани его можно было растянуть па доске». Цилиндр удовлетворяет этому требованию, даже если вы начнете с отнимания оболочки. Вы требуете, чтобы цилиндр удовлетворял добавочной лемме, а именно, чтобы получающаяся плоская сетка была тоже связной. Но кто выдвигал когда-нибудь такую лемму?
Альфа. Всякий слово «растянут» понимал как «растянутый одним куском», «растянутый без разрывов». Мы решили не включать третью лемму, так как Эпсилон доказал, что она вытекает из двух первых. Но посмотрите на доказательство: оно основано на допущении, что после растягивания получается связная сеть. Иначе для триангулированной сети V -- Е + F не будет 1.
Гамма. Почему же вы тогда не настаивали на том, чтобы выразить ее явно?
Альфа. Потому что мы считали, что это подразумевается само собой.
Гамма. Вы-то как раз наверняка так и не считали. Ведь вы предположили, что «простой» понимается как «могущий быть сжатым в шарик». Цилиндр может быть сжат в шарик, следовательно, по вашей интерпретации, он удовлетворяет первой лемме.
Альфа. Хорошо... Но вы должны сознаться, что он не удовлетворяет второй лемме, что любая грань, рассеченная диагональю, распадается на два куска. Как вы будете триангулировать круг или оболочку? Односвязны ли эти грани?
Гамма. Конечно.
Альфа. Но на цилиндре диагоналей вообще не проведешь! Диагональ представляет собой ребро, связывающее две прилежащих вершины. А у цилиндра нет вершин!
Гамма. Не волнуйтесь. Если вы хотите показать, что круг не односвязен, то проведите диагональ, которая не образует новой грани.
Альфа. Не смейтесь; вы очень хорошо знаете, что я не могу.
Гамма. Тогда допускаете ли вы, что утверждение «в круге имеется диагональ, не образующая новой грани» ложно?
Альфа. Да, допускаю. Ну и что же?
Гамма. Тогда вы обязаны допустить, что отрицание этого суждения будет истинным, а именно, что «все диагонали круга производят новую грань», или, что «круг односвязен».
Альфа. Для вашей леммы: «все диагонали круга производят новую грань» вы не можете привести примера, поэтому ваша лемма не истинна, а лишена смысла. Ваше понимание истины ложно.
Каппа (в сторону). Сначала они ссорились из-за понятия многогранника, а теперь из-за понятия истины.
Гамма. Но вы уже допустили, что отрицание этой леммы было ложным! Может ли предложение А не иметь смысла, а не-А иметь смысл и быть ложным? В вашем понимании «смысла» что-то не в порядке.
Заметьте, я вижу ваше затруднение, но мы можем преодолеть его, изменив слегка формулировку. Назовем грань односвязной в случае, когда «для всех x, если x есть диагональ, то x разрежет грань на две части». Ни круг, ни оболочка не могут иметь диагоналей, так что в их случае при всяком x первая посылка будет всегда ложной. Поэтому условное предложение может быть проверено примером для любого предмета и будет и имеющим смысл, и истинным. Но и круг, и оболочка односвязны -- значит цилиндр удовлетворяет второй лемме.
Альфа. Нет! Если вы не можете проводить диагонали и тем самым триангулировать грани, то никогда не получите плоской треугольной сетки и никогда не сможете завершить доказательство. Как же можете тогда требовать, чтобы цилиндр удовлетворял второй лемме? Разве вы не видите, что в лемме должно быть условие существования? Правильная интерпретация односвязности грани должна быть такой: «Для всех х, если х есть диагональ, то х сечет грань надвое; и имеется по крайней мере один х, который будет диагональю». Наша первоначальная формулировка, возможно, не выразила этого словами, но в ней было сделанное бессознательно «скрытое допущение».
Все грани цилиндра не удовлетворяют ему; следовательно, цилиндр будет противоречащим примером, являющимся одновременно и глобальным, и локальным и он не опровергает теоремы.
Гамма. Вы сначала модифицировали лемму о растягивании введением «связности», а теперь и триангуляционную лемму введением вашего условия существования! И все эти темные разговоры о «скрытых допущениях.» только скрывают тот факт, что мой цилиндр заставил вас изобрести эти модификации.
Альфа. Зачем темные разговоры? Мы уже согласились опускать, т. е. «скрывать», тривиально ясные леммы. Зачем же нам тогда устанавливать и включать тривиально ложные леммы -- они также тривиальны и также скучны! Держите их у себя в уме, но не формулируйте. Скрытая лемма не является ошибкой: это искусная стенография, указывающая на наше знание основ.
Каппа (в сторону). Знание основ -- это когда мы допускаем, что знаем все, а в действительности не знаем ничего.
Гамма. Если бы вы сознательно ввели предположения, то они были бы таковы: (а) вынимание грани всегда оставляет связную сеть и (в) всякая нетреугольная грань может быть диагоналями разделена на треугольники. Пока они были в вашем подсознании, они считались тривиально истинными, но цилиндр заставил их перескочить в сознательный ваш перечень в качестве тривиально ложных. Пока вы не были уличены цилиндром, вы даже не могли думать, чтобы эти две леммы могли быть ложными. Если теперь вы говорите, что вы так думали, то вы переписываете историю, чтобы очистить ее от ошибки.
Тета. Не так давно, Альфа, вы осмеивали «скрытые» дополнительные условия, которые вырастали в определениях Дельты после каждого опровержения. А теперь это вы делаете «скрытые» дополнительные условия в леммах после каждого опровержения; это вы меняете свою позицию и стараетесь скрыть ее, чтобы спасти лицо. Вас это не смущает?
Каппа. Ничто не может так меня позабавить, как припертый к стене догматик. Надевши платье воинствующего скептика для уничтожения меньших порослей догматизма, Альфа теперь приходит в волнение, когда в свою очередь он тоже загоняется в угол такими же скептическими аргументами. Теперь он играет ва-банк, пытаясь одолеть контрапримеры Гаммы сначала при помощи защитного механизма, который он сам же обличил и запретил (устранение монстров), а затем проведя контрабандой резерв «скрытых лемм» в доказательство и соответствующих «скрытых условий» в теорему. Так в чем же разница?
Учитель. Помехой для Альфы был, конечно, догматический подход в его истолковании включения лемм. Он думал, что тщательное рассмотрение доказательства может дать совершенный анализ доказательства, содержащий все ложные леммы (так же, как и Бета думал, что он может перечислить все исключения). Он думал, что при помощи их включения может получить не только улучшенную, но и вполне совершенную теорему, не заботясь о контрапримерах. Цилиндр показал ему, что он не прав, но, вместо того чтобы допустить это, он теперь хочет назвать полным анализ доказательства, если он содержит все относящиеся сюда ложные леммы.
в) Метод доказательств и опровержений
Гамма. Я предлагаю принять цилиндр в качестве настоящего контрапримера для рассматриваемой теоремы. Я изобретаю новую лемму (или леммы), которая этим примером опровергается, и добавляю эту лемму (леммы) к первоначальному списку. Это как раз и делал Альфа. Но, вместо того чтобы «скрывать» их так, чтобы они сделались скрытыми, я возвещаю их публично.
Теперь цилиндр, ставивший ранее в тупик,-- опасный глобальный, а не локальный контрапример (третьего типа) по отношению к старому анализу доказательства и соответствующей старой теореме, этот цилиндр станет безопасным глобальным и одновременно локальным контрапримером (второго типа) по отношению к новому анализу доказательства и соответствующей новой теореме.
Альфа думал, что его классификация контрапримеров была абсолютной; в действительности же она относилась только к его анализу доказательства. По мере роста анализа доказательства контрапримеры третьего типа превращаются в контрапримеры второго типа.
Ламбда. Это верно. Анализ доказательства будет «строгим», или «имеющим силу», и соответствующая математическая теорема -- истинной тогда и только тогда, если не будет для них контрапримеров третьего типа. Я называю этот критерий принципом обратной передачи ложности, так как он требует, чтобы глобальные контрапримеры были также локальными: ложность должна быть передана обратно от интуитивной догадки к леммам, от последующей части теоремы к предшествующей. Если какой-нибудь глобальный, но не локальный контрапример нарушает этот принцип, мы восстанавливаем его добавлением к анализу доказательства подходящей леммы. Таким образом, принцип обратной передачи ложности является регулятивным принципом для анализа доказательства in statu nascendi (в сстоянии зарождения), а глобальный, но не локальный контрапример -- ферментом в росте анализа доказательства.
Гамма. Вспомните, раньше, даже не найдя ни одного опровержения, мы все же сумели обнаружить три подозрительные леммы и продвинуться в анализе доказательства!
Ламбда. Это верно. Анализ доказательства может начинаться не только под давлением глобальных контрапримеров, но также и когда люди уже выучились остерегаться «убедительных» доказательств.
В первом случае все глобальные контрапримеры появляются в виде контрапримеров третьего типа и все леммы начинают свою карьеру в качестве «скрытых лемм». Они приводят нас к постепенному построению анализа доказательства и так один за другим превращаются в контрапримеры второго типа.
Во втором случае -- когда мы уже начинаем подозревать и ищем опровержений,-- мы можем прийти к далеко зашедшему вперед анализу доказательства без всяких контрапримеров. Тогда мы имеем две возможности. Первая возможность состоит в том, что нам при помощи локальных контрапримеров удастся опровергнуть все леммы, содержащиеся в нашем анализе доказательства. Мы можем установить, как следует, что они будут также глобальными контрапримерами.
Альфа. Вот именно так я и открыл раму картины: я искал многогранник, который после удаления одной грани не мог быть развернут в один лист на плоскости.
Сигма. Тогда не только опровержения действуют как ферменты для анализа доказательства, но и анализ доказательства может действовать как фермент для опровержения. Какой нехороший союз между кажущимися врагами!
Ламбда. Это верно. Если догадка кажется вполне допустимой или даже самоочевидной, то должно доказать ее; может оказаться, что она основана на весьма софистических и сомнительных леммах. Опровержение лемм может привести к какому-нибудь неожиданному опровержению первоначальной догадки.
Сигма. К опровержениям, порожденным доказательством!
Гамма. Тогда «мощь логического доказательства заключается не в том, что оно принуждает верить, а в том, что оно наводит на сомнения».
Ламбда. Но позвольте мне вернуться ко второй возможности: когда мы не находим никаких локальных контрапримеров для подозреваемых лемм.
Сигма. То есть когда опровержения не помогают анализу доказательства. Что же тогда может случиться?
Ламбда. Мы тогда окажемся общепризнанными чудаками. Доказательство приобретает абсолютную респектабельность и леммы сбросят всякое подозрение. Наш анализ доказательства скоро будет забыт. Без опровержений нельзя поддерживать подозрение; прожектор подозрения скоро выключается, если контрапример не усиливает его, направляя яркий свет опровержения на пренебреженный аспект доказательства, который остался незамеченным в сумерках «тривиальной истины».
Все это показывает, что мы не можем поместить доказательство и опровержение на отдельные полочки. Вот почему я предлагаю наш «метод включения лемм» перекрестить в «метод доказательств и опровержений». Позвольте мне выразить его основные черты в трех эвристических правилах.
Правило 1. Если вы имеете какую-нибудь догадку, то попробуйте доказать ее и опровергнуть ее. Тщательно рассмотрите доказательство, чтобы приготовить список нетривиальных лемм (анализ доказательства); найдите контрапримеры и для догадки (глобальные контрапримеры) и для подозрительных лемм (локальные контрапримеры).
Правило 2. Если у вас есть глобальный контрапример, то устраните вашу догадку, добавьте к вашему анализу доказательства подходящую лемму, которая будет опровергнута им, и замените устраненную догадку исправленной, которая включила бы эту лемму как условие. Не позволяйте отбрасывать опровержения как монстры. Сделайте явными все «скрытые леммы».
Правило 3. Если у вас есть локальный контрапример, то проверьте его, не будет ли он также глобальным контрапримером. Если он будет им, то вы можете легко применить правило 2.
г) Доказательство против анализа доказательства. Релятивизация понятий теоремы и строгости в анализе доказательства
Альфа. Что в вашем Правиле 2 вы подразумевали под термином «подходящая»?
Гамма. Это совершенно безразлично. Может быть добавлена любая лемма, которая отвергается рассматриваемым контрапримером: любая такая лемма восстановит силу анализа доказательства.
Ламбда. Что такое! Значит, лемма вроде-- «Все многогранники имеют но крайней мере 17 ребер» -- будет иметь отношение к цилиндру! И всякая другая случайная догадка ad hoc будет вполне пригодной, если только ее можно будет отвергнуть при помощи контрапримера.
Гамма. А почему нет?
Ламбда. Мы уже критиковали устранителей монстров и исключений за то, что они забывают о доказательствах. А теперь вы делаете то же самое, изобретая настоящий монстр: анализ доказательства без доказательства! Единственная разница между вами и устранителем монстров состоит в том, что вы хотели бы заставить Дельту сделать явными свои произвольные определения и включить их в теорему в качестве лемм. И нет никакой разницы между устранением исключений и вашим анализированием доказательства. Единственным предохранителем против таких методов ad hoc будет употребление подходящих лемм, т. е. лемм, соответствующих духу мысленного эксперимента! Или вы хотите изгнать из математики доказательства и заменить их глупой формальной игрой?
Гамма. Лучше это, чем ваш «дух мысленного эксперимента»! Я защищаю объективность математики против вашего психологизма.
Альфа. Благодарю вас, Ламбда, вы снова поставили мой вопрос: новую лемму не изобретают с потолка, чтобы справиться с глобальным, но не локальным контрапримером; скорее, с усиленной тщательностью рассматривают доказательство и в нем открывают эту лемму. Поэтому я, дорогой Тета, не делал скрытых лемм и я, дорогой Каппа, не проводил их «контрабандой» в доказательство. Доказательство содержит все такие леммы, но зрелый математик понимает все доказательство уже по короткому очерку. Мы не должны смешивать непогрешимое доказательство с неточным анализом доказательства. Все еще существует неопровержимая главная теорема -- «Все многогранники, над которыми можно выполнить мысленный эксперимент, или, короче, все многогранники Коши будут эйлеровыми». Мой приблизительный анализ доказательства провел пограничную линию для класса многогранников Коши карандашом, который -- я допускаю -- не был особенно острым. Теперь эксцентрические контрапримерьт учат нас острить наш карандаш. Но, во-первых, ни один карандаш не является абсолютно острым (и если мы переострим его, то он сломается), и, во-вторых, затачивание карандаша не является творческой математикой.
Гамма. Я сбился с толку. Какова же ваша позиция? Сначала вы были чемпионом по опровержениям.
Альфа. Ох, мне все больнее! Зрелая интуиция сметает в сторону споры.
Гамма. Ваша первая зрелая интуиция привела вас к «совершенному анализу доказательства». Вы думали, что ваш «карандаш» был абсолютно острым.
Альфа. Я забыл о трудностях лингвистических связей -- особенно с педантами и скептиками. Но сердцем математики является мысленный эксперимент -- доказательство. Его лингвистическая артикуляция -- анализ доказательства -- необходима для сообщения, но не относится к делу. Я заинтересован в многогранниках, а вы в языке. Разве вы не видите бедности ваших контрапримеров? Они лингвистичны, но не многогранны.
Гамма. Тогда опровержение теоремы только выдает нашу неспособность понять ее скрытые леммы? Такая «теорема» будет бессмысленна, пока мы не поймем ее доказательства?
Альфа. Так как расплывчатость языка делает недостижимой строгость анализа доказательства и превращает образование теорем в бесконечный процесс, то зачем же беспокоиться о теореме? Работающие математики этого, конечно, не делают. Если будет приведен еще какой-нибудь незначительный контрапример, то они не допустят, чтобы их теорема была отвергнута, но самое большее, что «область ее применимости должна быть подходящим образом сужена».
Ламбда. Итак, вы не заинтересованы ни в контрапримерах, ни в анализе доказательства, ни во включении лемм?
Альфа. Это правда. Я отбрасываю все ваши правила. Вместо них я предлагаю только одно единственное: стройте строгие (кристально ясные) доказательства.
Ламбда. Вы придерживаетесь мнения, что строгость анализа доказательства недостижима. А достижима ли строгость доказательства? Разве «кристально ясные» мысленные эксперименты не могут привести к парадоксальным или даже противоречивым результатам?
Альфа. Язык расплывчат, но мысль может достичь абсолютной строгости.
Ламбда. Но ведь ясно, что «на каждой стадии эволюции наши отцы думали, что они достигли ее. Если они обманывали себя, то разве и мы также не плутуем сами с собой?»
Альфа. «Сегодня достигнута абсолютная строгость». (Смех в аудитории).
Гамма. Эта теория «кристально ясного» доказательства представляет чистый психологизм.
Альфа. Все же лучше, чем логико-лингвистический педантизм вашего анализа доказательства.
Ламбда. Отбросив бранные слова, я тоже являюсь скептиком в отношении вашего понимания математики как «существенно безъязычной деятельности ума». Каким образом деятельность может быть истинной или ложной? Только членораздельная мысль может питать истину. Доказательство может быть недостаточным: нам также надо установить, что доказывает доказательство. Доказательство представляет только одну стадию работы математика, за которой следует анализ доказательства и опровержения и которая заключается строгой теоремой. Мы должны комбинировать «строгость доказательства» со «строгостью анализа доказательства».
Подобные документы
Отличие опровержения от доказательства. Основные составляющие доказательства: тезис, аргументы, доводы и демонстрация. Ведение разделительного косвенного доказательства по одной из схем разделительно-категорического силлогизма. Правила закона тождества.
контрольная работа [15,5 K], добавлен 13.08.2010Доказательность как важное качество правильного мышления. Структура доказательства, правила по отношению к тезисам, аргументам и демонстрациям и их возможные нарушения. Прямое и косвенное доказательства. Процесс опровержения допущения в форме контртезиса.
контрольная работа [26,0 K], добавлен 12.10.2009Правила доказательства и опровержения и основные ошибки, возникающие при их нарушении. Правила по отношению к тезисам и аргументам. Argumentum ad hominem — аргумент к человеку. их разновидности: к авторитету, к публике, к силе, к жалости и нелепые доводы.
реферат [18,2 K], добавлен 22.02.2009Выводы из сложных суждений. Виды дедуктивных умозаключений: условный, разделительный и условно-разделительный силлогизм. Методы установления причинных связей. Содержание важнейших формально-логических законов, суть доказательства и опровержения.
контрольная работа [28,9 K], добавлен 21.10.2011Изучение логической структуры доказательства - логической процедуры установления истинности какого-либо утверждения при помощи других утверждений, истинность которых уже установлена. Виды доказательства и опровержение. Условия и правила доказательства.
реферат [30,2 K], добавлен 20.09.2010Основные формы и особенности абстрактного мышления. Виды понятий и отношения между ними. Функции естественных и искусственных языков. Изучение дедуктивного умозаключения, элементов доказательства рассуждения. Гипотезы, их построение и этапы проверки.
контрольная работа [19,7 K], добавлен 21.10.2013Предмет и методы исследования логики как самостоятельной науки, ее семантические категории. Законы правильного мышления. Сущность и приемы образования понятий, характер отношений между ними. Типы суждений, умозаключений, доказательств и опровержений.
курс лекций [448,8 K], добавлен 16.04.2013Логическая форма и законы мышления. Содержание и форма мысли. Виды понятий по содержанию. Таблицы истинности тождества и отрицания. Непосредственные умозаключения из сложных суждений. Прямые и косвенные доказательства.
контрольная работа [27,6 K], добавлен 26.01.2007Смысл и значение логических законов. Характеристика типичных ситуаций нарушения закона тождества. Определение несуразных, ложных и истинных высказываний. Сущность единичных, общих и нулевых понятий. Виды отношений между понятиями и подбор однозначных.
контрольная работа [13,5 K], добавлен 17.03.2009Требования формально-логических законов. Логическая характеристика понятий: "Диктатура", "Следователь", "Бескорыстие". Виды деления понятий. Объединенная классификация суждений. Вид сложного суждения. Разбор силлогизма. Дедуктивная форма обоснования.
контрольная работа [18,6 K], добавлен 14.12.2008