Методология научных исследовательских программ

Отрицательная и положительная эвристика. Теория тяготения Ньютона как пример исследовательской программы. Программа Праута, прогрессирующая в океане аномалий. Программа Бора, прогрессирующая на противоречивых основаниях. Требование непрерывного роста.

Рубрика Философия
Вид контрольная работа
Язык русский
Дата добавления 23.03.2010
Размер файла 64,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Методология научных исследовательских программ

Если рассмотреть наиболее значительные последовательности теорий, имевшие место в истории науки, то видно, что они характеризуются непрерывностью, связывающей их элементы в единое целое. Эта непрерывность есть не что иное, как развитие некоторой исследовательской программы, начало которой может быть положено самыми абстрактными утверждениями. Программа складывается из методологических правил: часть из них - это правила, указывающие, каких путей исследования нужно избегать (отрицательная эвристика), другая часть - это правила, указывающие, какие пути надо избирать и как по ним идти (положительная эвристика) 1.

Даже наука как таковая может рассматриваться как гигантская исследовательская программа, подчиняющаяся основному звристическому правилу Поппера: «выдвигай гипотезы, имеющие большее эмпирическое содержание, чем у предшествующих». Такие методологические правила, как заметил Поппер, могут формулироваться как метафизические принципы 2. Например, общее правило анти-конвенционалистов, по которому исследователь не должен допускать исключений, может быть записано как метафизический принцип: «Природа не терпит исключений». Вот почему Уоткинс называл такие правила «влиятельной метафизикой» 3.

Но прежде всего меня интересует не наука в целом, а отдельные исследовательские программы, такие, например, как «картезианская метафизика». Эта метафизика или механическая картина универсума, согласно которой вселенная есть огромный часовой механизм fh система вихрей), в котором толчок является единственной причиной движения, функционировала как мощный эвристический принцип. Она тормозила разработку научных теорий, подобных ньютоновской теории дальнодействия (в ее «эссенциалистском» варианте), которые были несовместимы с ней, выступая как отрицательная эвристика. Но с другой стороны, она стимулировала разработку вспомогательных гипотез, спасающих ее от явных противоречий с данными (вроде эллипсов Кеплера). выступая как положительная эвристика.

Отрицательная эвристика: «твердое ядро» программы

У всех исследовательских программ есть «твердое ядро». Отрицательная эвристика запрещает использовать modus toltens, когда речь идет об утверждениях, вьюченных в «твердое ядро». Вместо этого мы должны напрягать нашу изобретательность, чтобы прояснять, развивать уже имеющиеся или выдвигать новые «вспомогательные гипотезы», которые образуют защитный пояс вокруг этого ядра; modus tolls п s своим острием направляется именно на эти гипотезы. Защитный пояс должен выдержать главный удар со стороны проверок; защищая таким образом окостеневшее ядро, он должен приспосабливаться, переделываться или даже полностью заменяться, если того требуют интересы обороны. Если все это дает прогрессивный сдвиг проблем, исследовательская программа может считаться успешной. Она неуспешна, если это приводит к регрессивному сдвигу проблем.

Классический пример успешной исследовательской программы - теория тяготения Ньютона. Быть может, это самая успешная из всех когда-либо существовавших исследовательских программ. Когда она возница впервые, вокруг нее был океан «аномалий» (если угодно, «контрпримеров»), и она вступала в противоречие с теориями, подтверждающими эти аномалии. Но, проявив изумительную изобретательность и блестящее остроумие, ньютонианцы превратили один контрпример за другим в подкрепляющие примеры. И делали они это главным образом за счет ниспровержения тех исходных «наблюдательных» теорий, на основании которых устанавливались эти «опровергающие» данные. Они «каждую новую трудность превращали в новую победу своей программы».

Отрицательная эвристика ньютоновской программы запрещала применять modus tollens к трем ньютоновским законам динамики и к его закону тяготения. В силу методологического решения сторонников этой программы это «ядро» полагалось неопровергаемым: считалось, что аномалии должны вести лишь к изменениям «защитного пояса» вспомогательных гипотез и граничных условий.

Ранее мы рассмотрели схематизированный «микро-пример» ньютоновского прогрессивного сдвига проблем 7. Его анализ показывает, что каждый удачный ход в этой игре позволяет предсказывать новые факты, увеличивает эмпирическое содержание. Перед . нами пример устойчиво прогрессивного теоретического сдвига. Далее, каждое предсказание в конечном счете подтверждается, хотя могло бы показаться, что в трех последних случаях они сразу же «опровергались» 8. Если в наличии «теоретического прогресса» (в указанном здесь смысле) можно убедиться немедленно, то с «эмпирическим прогрессом» дело сложнее. Работая в рамках исследовательской программы, мы можем впасть в отчаяние от слишком долгой серии «опровержений», прежде чем какие-то остроумные и, главное, удачные вспомогательные гипотезы, позволяющие увеличить эмпирическое содержание, не превратят - задним числом - череду поражений в историю громких побед. Это делается либо переоценкой некоторых «ложных фактов», либо введением новых вспомогательных гипотез. Нужно, чтобы каждый следующий шаг исследовательской программы направлялся к увеличению содержания, иными словами, содействовал последовательно прогрессивному теоретическому сдвигу проблем. Кроме того, надо, чтобы, по крайней мере, время от времени это увеличение содержания подкрепит «лось ретроспективно, программа в целом должна рассматриваться как дискретно прогрессивный эмпирический сдвиг. Это не значит, что каждый шаг на этом пути должен непосредственно вести к наблюдаемому новому факту. Тот смысл, в котором здесь употреблен термин «дискретно», обеспечивает достаточно разумные пределы, в которых может оставаться догматическая приверженность программе, столкнувшись с кажущимися «опровержениями».

Идея «отрицательной эвристики» научной исследовательской программы в значительной степени придает рациональный смысл классическому конвенционализму. Рациональное решение состоит в том, чтобы не допустить «опровержениям» переносить ложность ra твердое ядро до тех пор, пока подкрепленное эмпирическое содержание защитного пояса вспомогательных гипотез продолжает увеличиваться. Но наш подход отличается от джастификационистского конвенционализма Пуанкаре тем, что мы предлагаем отказаться от твердого ядра в том случае, если программа больше не позволяет предсказывать ранее неизвестные факты. Это означает, что, в отличие от конвенционализма Пуанкаре, мы допускаем возможность того, что при определенных условиях твердое ядро, как мы его понимаем, может разрушиться. В этом мы ближе к Дюгему, допускавшему такую возможность. Но если Дюгем видел только эстетические причины такого разрушения, то наша оценка зависит главным образом от логических и эмпирических критериев.

Положительная эвристика: конструкция «защитного пояса» и относительная автономия теоретической науки

Исследовательским программам, наряду с отрицательной, присуща и положительная эвристика.

Даже самые динамичные и последовательно прогрессивные исследовательские программы могут «переварить» свои «контрпримеры» только постепенно. Аномалии никогда полностью не исчезают. Но не надо думать, будто не получившие объяснения аномалии - «головоломки», как их назвал бы Т. Кун,- берутся наобум, в произвольном порядке, без какого-либо обдуманного плана. Этот план обычно составляется в кабинете теоретика, независимо от известных аномалий. Лишь немногие теоретики, работающие в рамках исследовательской программы, уделяют большое внимание «опровержениям». Они ведут дальновидную исследовательскую политику, позволяющую предвидеть такие «опровержения». Эта политика, или программа исследований, в той или иной степени предполагается положительной эвристикой исследовательской программы. Если отрицательная эвристика определяет «твердое ядро» программы, которое, по решению ее сторонников, полагается «неопровержимым», то положительная эвристика складывается из ряда доводов, более или менее ясных, и предположении, более или менее вероятных, направленных на то, чтобы изменять и развивать «опровержимые варианты» исследовательской программы, как модифицировать, уточнять «опровержимый» защитный пояс.

Положительная эвристика выручает ученого от замешательства перед океаном аномалий. Положительной эвристикой определяется программа, в которую входит система более сложных моделей реальности; внимание ученого сосредоточено на конструировании моделей, соответствующих тем инструкциям, какие изложены в позитивной части его программы. На известные “контрпримеры” и наличные данные он просто не обращает внимания 9.

Ньютон вначале разработал свою программу для планетарной системы с фиксированным точечным центром - Солнцем и единственной точечной планетой. Именно в этой модели был выведен закон обратного квадрата для эллипса Кеплера. Но такая модель запрещалась третьим законом динамики, а потому должна была уступить место другой модели, в которой и Солнце, и планеты вращались вокруг общего центра притяжения. Такое изменение мотивировалось вовсе не наблюдениями (не было «данных», свидетельствующих об аномалии), а теоретическим затруднением в развитии программы. Затем им была разработана программа для большего числа планет так, как если бы существовали только гелиоцентрические и не было бы никаких межпланетных сил притяжения. Затем он разработал модель, в которой Солнце и планеты были уже не точечными массами, а массивными сферами. И для этого изменения ему не были нужны наблюдения каких-то аномалий; ведь бесконечные значения плотности запрещались, хотя и в неявной форме, исходными принципами теории, поэтому планеты и Солнце должны были обрести объем. Это повлекло за собой серьезные математические трудности, задержавшие публикацию «Начал» более чем на десять лет. Решив эту «головоломку», он приступил к работе над моделью с «вращающимися сферами» и их колебаниями. Затем в модель были введены межпланетные силы и начата работа над решением задач с возмущениями орбит.

С этого момента взгляд Ньютона на факты стал более тревожным. Многие факты прекрасно объяснялись его моделями (качественным образом), но другие не угадывались в схему объяснения. Именно тогда он начал работать с моделями деформированных, а не строго шарообразных планет и т. д.

Ньютон презирал тех, кто, подобно Р. Гуку, застревал на первой наивной модели и не обладал ни достаточными способностями, ни упорством, чтобы развить ее в исследовательскую программу, полагая, что уже первый вариант и образует «научное открытие». Сам он воздерживался от публикаций до тех пор, пока его программа не пришла к состоянию замечательного прогрессивного сдвига 10.

Большинство (если не все) «головоломок» Ньютона, решение которых давало каждый раз новую модель, приходившую на место предыдущей, можно было предвидеть еще в рамках первой наивной модели; нет сомнения, что сам Ньютон и его коллеги предвидели их. Очевидная ложность первой модели не могла быть тайной для Ньютона 11. Именно этот факт лучше всего говорит о существовании положительной эвристики исследовательской программы, о «моделях», с помощью которых происходит ее развитие. «Модель» - это множество граничных условий (возможно, вместе с некоторыми «наблюдательными» теориями) , о которых известно, что они должны быть заменены в ходе дальнейшего развития программы. Более или менее известно даже каким способом. Это еще раз говорит о том, какую незначительную роль в исследовательской программе играют «опровержения» какой-либо конкретной модели, они полностью предвидимы, и положительная эвристика является стратегией этого предвидения и дальнейшего «переваривания». Если положительная эвристика ясно определена, то трудности программы имеют скорее математический, чем эмпирический характер 12.

«Положительная эвристика» исследовательской программы также может быть сформулирована как «метафизический принцип». Например, ньютоновскую программу можно изложить в такой формуле: «Планеты - вращающиеся волчки приблизительно сферической формы, притягивающиеся друг к другу». Этому принципу никто и никогда в точности не следовал: планеты обладают не одними только гравитационными свойствами, v них есть, например, электромагнитные характеристики, влияющие на движение. Поэтому положительная эвристика является, вообще говоря, более гибкой, чем отрицательная. Более того, время от времени случается, что когда исследовательская программа вступает в регрессивную фазу, то маленькая революция или творческий толчок в ее положительной эвристике может снова подвинуть ее в сторону прогрессивного сдвига 13. Поэтому лучше отделить «твердое ядро» от более гибких метафизических принципов, выражающих положительную эвристику.

Наши рассуждения показывают, что положительная эвристика играет первую скрипку в развитии исследовательской программы при почти полном игнорировании «опровержений»; может даже возникнуть впечатление, что как раз «верификации», а не опровержения создают точки соприкосновения с реальностью 14. Хотя надо заметить, что любая «верификация», n+1 варианта программы является опровержением n-го варианта, но ведь нельзя отрицать, что некоторые неудачи последующих вариантов всегда можно предвидеть. Именно «верификации» поддерживают продолжение работы программы, несмотря на непокорные примеры.

Мы можем оценивать исследовательские программы даже после их «элиминации» по их эвристической силе, сколько новых фактов они дают, насколько велика их способность «объяснить опровержения в процессе роста»? 15.

Мы можем также оценить их по тем стимулам, какие они дают математике. Действительные трудности ученых-теоретиков проистекают скорее из математических трудностей программы, чем из аномалий. Величие ньютоновской программы в значительной мере определяется тем, что ньютонианцы развили классическое исчисление бесконечно малых величин, что было решающей предпосылкой ее успеха.

Таким образом, методология научных исследовательских программ объясняет относительную автономию теоретической науки, исторический факт, рациональное объяснение которому не смог дать ранний фальсификационизм. То, какие проблемы подлежат рациональному выбору ученых, работающих в рамках мощных исследовательских программ, зависит в большей степени от положительной эвристики программ, чем от психологически неприятных, но технически неизбежных аномалий. Аномалии регистрируются, но затем о них стараются забыть, в надежде, что придет время и они обратятся в подкрепления программы. Повышенная чувствительность к аномалиям свойственна только тем ученым, кто занимается упражнениями в духе проб и ошибок или работает в регрессивной фазе исследовательской программы, когда положительная эвристика исчерпала свои ресурсы. (Все это, конечно, должно звучать дико для наивного фальсификациониста, полагающего, что раз теория «опровергнута» экспериментом (то есть высшей для него инстанцией), то было бы нерационально, да к тому же и бессовестно, развивать ее в дальнейшем, а надо заменить старую пока еще неопровергнутой новой теорией).

Две иллюстрации: Праут и Бор

Диалектику положительной и отрицательной эвристики в исследовательской программе лучше всего показать на примерах. Поэтому я обрисую некоторые аспекты двух исследовательских программ, добившихся впечатляющих успехов: программы Праута, в основе которой была идея о том, что все атомы состоят из атомов водорода, и программы Бора с ее основной идеей о том, что световое излучение производится электроном, перескакивающим с одной внутриатомной орбиты на другую.

Приступая к написанию исторического очерка, следует, полагаю, придерживаться следующей процедуры:

1) произвести рациональную реконструкцию данного события;

2) попытаться сопоставить эту рациональную реконструкцию с действительной историей, чтобы подвергнуть критике как рациональную реконструкцию - за недостаток историчности,- так и действительную историю - за недостаток рациональности.

Поэтому всякому историческому исследованию должна предшествовать эвристическая проработка: история науки без философии науки слепи. Но в этой статье я не могу позволить себе подробно останавливаться на второй стадии этой процедуры.

а) Праут: исследовательская программа, прогрессирующая в океане аномалий.

В анонимной статье 1815 г. Праут выдвинул утверждение о том, что атомные веса всех чистых химических элементов являются целыми числами. Он очень хорошо знал об огромном количестве аномалий, но говорил, что эти аномалии возникают потому, что обыкновенно употребляемые химические вещества не были достаточно чистыми. Другими словами, соответствующая «экспериментальная техника» того времени была ненадежной; в принятой нами терминологии можно было бы сказать, что современные Прауту «наблюдательные теории», на основании которых устанавливались значения истинности базисных предложений его теории, были ложными 16. Сторонники теории Праута поэтому были вынуждены заняться весьма нелегким делом: показать несостоятельность теорий, выступающих основаниями для контрпримеров. Для этого требовалось ни много ни мало - революционизировать признанную в то время аналитическую химию, чтобы на новой основе изменить экспериментальную технику, с помощью которой выделялись чистые химические элементы 17.

Теория Праута, по сути дела, опровергала одну за другой теории, ранее применявшиеся в очистке химических веществ. Но при этом некоторые химики, не выдерживая напряжения, отказывались от новой исследовательской программы, первые успехи которой еще никак нельзя было назвать окончательной победой. Например, Стае, доведенный до отчаяния некоторыми упрямыми, не поддающимися объяснению фактами, в 1860 г. пришел к выводу, что теория Праута лишена «каких-либо оснований» 18. В то же время другие химики находились под большим впечатлением от успехов теории и не слишком горевали от того, что успех был неполным. Например, Мариньяк немедленно парировал выводы Стаса: «Хотя эксперименты г. Стаса отличаются вполне удовлетворительной точностью, все же нет доказательств против того, что различия, имеющие место между его результатами и следствиями, из закона Праута могут быть объяснены несовершенством экспериментальных методов» 19. Как заметил Крукс в 1886 г., «немало химиков с безупречной репутацией верили в то, что здесь (в теории Праута) истина заслонена некоторыми остаточными или побочными явлениями, которые пока еще не удалось элиминировать» 20. Это значило, что в «наблюдательных теориях», на которых основывалась «экспериментальная техника» химической очистки и с помощью которых вычислялись атомные веса, должны были иметься какие-то неявные дополнительные ложные допущения. По мнению Крукса, даже в 1886 г.«некоторые атомные веса выражались просто средними значениями»21. Сам Крукс подошел к этой идее, придав ей научную форму (обеспечивающую увеличение содержания): он предложил новые конкретные теории «фракционирования», нового «разделяющего Демона» 22. Но, увы, эти новые «наблюдательные теории» были столь же ложными, сколь смелыми, и, не оказавшись в состоянии предсказывать какие-либо новые факты, они были элиминированы из (рационально реконструированной) истории науки.

Следующим поколениям химиков удалось обнаружить весьма существенное скрытое допущение, вводившее в заблуждение исследователей: оно состояло в том, что два химически чистых элемента могут быть разделены только химическими методами. Идея о том, что два различных химически чистых элемента могут вести себя одинаково во всех химических реакциях, но могут быть разделены физическими методами, требовала изменения, «растяжки» понятия «чистый элемент», что влекло за собой и понятийную «растяжку», расширение самой исследовательской программы 23.

Этот революционный, в высшей степени творческий сдвиг был сделан только школой Резерфорда 24: лишь «после многих превратностей и самых убедительных опровержений эта гипотеза, столь блестяще выдвинутая Праутом, эдинбургским физиком в 1815 г., спустя сто лет стала краеугольным камнем современных теорий строения атомов» 25. Однако этот творческий прорыв фактически был только побочным результатом прогресса в иной, достаточно далекой. исследовательской программе сами же сторонники Праута, не имея этого внешнего стимула, даже не пытались, например, построить мощные центрифуги - механизмы для разделения элементов.

Когда «наблюдательные» или «интерпретативные» теории в конце концов элиминируются, то «точные» измерения, проводившиеся на основании негодных понятийных каркасов, выглядят - задним числом - скорее забавными. Содди высмеивал «экспериментальную точность», если она является самоцелью: «Есть что-то трагичное, если не трагикомичное, в судьбе выдающейся плеяды химиков XIX века, по праву почитавшихся современниками за высшее мастерство и совершенство точных научных измерений.

Ставшие делом их жизни, с таким трудом добытые результаты, по крайней мере на сегодня, выглядят столь же значимыми и интересными как, например, вычищения среднего веса в коллекции бутылок, одни из которых полные, a другие - более или менее пустые».) 26.

Подчеркнем, что в свете методологии исследовательских программ, предложенной здесь, никогда не было рациональных причин, по которым могла бы быть элиминирована программа Праута . Эта программа дала превосходный прогрессивный сдвиг, хотя и сталкивалась с серьезными препятствиями 27. Этот эпизод показывает, как исследовательская программа может бросить вызов внушительному массиву признанного научного знания; она подобна растению, высаженному на неблагоприятной почве, которую затем постепенно преобразует и подчиняет себе.

История программы Праута также очень хорошо показывает, как прогресс науки тормозится джастификационизмом и наивным фальсификационизмом. (Обе эти концепции были на вооружении тех, кто выступал против атомной теории в XIX веке). Исследование этого специфического влияния плохой методологии науки может стать благодарной задачей историка науки.

б) Бор; исследовательская программа, прогрессирующая на противоречивых основаниях.

Краткий очерк исследовательской программы Бора ( ранней квантовой физики) послужит дальнейшей иллюстрацией и расширением нашего тезиса 28. Повествование об исследовательской программе Бора должно включать:

1) изложение исходной проблемы;

2) указание отрицательной и положительной эвристик;

3) проблемы, которые предполагалось решить в ходе ее развития;

4) указание момента, с какого началась ее регрессия (если угодно, «точки насыщения»);

5) программу, пришедшую ей на смену.

Исходная проблема представляла собой загадку: каким образом атомы Резерфорда ( то есть мельчайшие планетарные системы с электронами, вращающимися вокруг положительных ядер) могут оставаться устойчивыми; дело в том, что, согласно хорошо подкрепленной теории электромагнетизма Максвелла-Лоренца. такие системы должны коллапсировать . Однако теория Резерфорда также была хорошо подкреплена. Идея Бора заключалась в том, чтобы не обращать внимания на противоречие и сознательно развить исследовательскую программу, «опровержимые» версии которой несовместимы с теорией Максвелла-Лоренца 29. Он предложил пять постулатов, ставших твердым ядром его программы:

1) Испускание ( или поглощение) энергии происходит не непрерывно, как это принимается в обычной электродинамике, а только при переходе системы из одного «стационарного» состояния в другое.

2) Динамическое равновесие системы в стационарных состояниях определяется обычными законами механики, тогда как для перехода системы между различными стационарными состояниями эти законы недействительны.

3) Испускаемое при переходе системы из одного стационарного состояния в другое излучение монохроматично и соотношение между его частотой и общим количеством излученной энергии Е дается равенством Е = h, где h - постоянная Планка.

4) Различные стационарные состояния простой системы, состоящей из вращающегося вокруг положительного ядра электрона, определяются из условия, что отношение между обшей энергией, испущенной при образовании данной конфигурации, и числом оборотов электронов является целым кратным h/2. Предположение о том, что орбита электрона круговая, равнозначно требованию, чтобы момент импульса вращающегося вокруг ядра электрона был бы целым кратным h/2.

5) «Основное» состояние любой атомной системы, то есть состояние, при котором излученная энергия максимальна, определяется из условия, чтобы момент импульса каждого электрона относительно центра его орбиты равнялся h/2» 30.

Мы должны видеть решительное различие, имеющее важный методологический смысл между тем конфликтом, в котором оказались программа Праута и современное ему химическое знание, и конфликтом с современной физикой, в какой вступила программа Бора. Исследовательская программа Праута объявила войну аналитической химии своего времени; ее положительная эвристика имела назначение разгромить своего противника и вытеснить его с занимаемых позиций. Программа Бора не имела подобной цели. Ее положительная эвристика, как бы ни была она успешна, все же заключала в себе противоречие с теорией Максвелла-Лоренца, оставляя его неразрешенным 31. Чтобы решиться на такое, нужна была смелость даже большая, чем у Праута; Эйнштейн мучился подобной идеей, но посчитал ее неприемлемой и отказался от нее 32.

Мы видим, что некоторые м.ч самых значительных исследовательских программ в истории науки были привиты к предшествующим программам, с которым находились в вопиющем противоречии. Например, астрономия Коперника была «привита» к физике Аристотеля, программа Бора - к физике Максвелла. Джастификационист или наивный фальсификационист назовут такие «прививка иррациональными, поскольку не допускают и мысли о росте знания на противоречивой основе. Поэтому они обычно прибегают к уловкам ad hoс, наподобие теории Галилея о круговой инерции или принципа соответствия, а затем и принципа дополнительности Бора, единственной целью которых является сокрытие этого «порока» 33.

Когда же росток привитой программы войдет в силу, приходит конец мирному сосуществованию, симбиоз сменяется конкуренцией, и сторонники новой программы пытаются совершенно вытеснить старую.

Очень возможно, что успех его «привитой программы» позднее подтолкнул Бора к мысли, что противоречия в основаниях исследовательской программы могут и даже должны быть возведены в принцип, что такие противоречия не должны слишком заботить исследователя, что к ним можно просто привыкнуть. В 1922 г. Н. Бор пытался снизить стандарты научного критицизма: «Самое большее, чего можно требовать от теории (т. е. Программы),- чтобы (устанавливаемые ею) классификации могли быть продвинуты достаточно далеко, с тем что область наблюдаемого расширялась бы предсказаниями новых явлений» 34.

Это высказывание Бора напоминает фразу Даламбера, обнаружившего противоречивость оснований исчисления бесконечно малых величин: “Alles en avant et la foi vous viendra” («Шагайте вперед и вера придет к вам» (фр.- Перев.) Маргенау замечает: «Можно понять тех, кто, воодушевляясь успехами теории, закрывает глаза на уродство ее архитектуры; атомная теория Бора - это башенка в стиле барокко на готическом основании классической электродинамики» 35. Однако в действительности эти архитектурные «уродства» ни для кого не были «тайной»; все видели их, но сознательно игнорировали - кто в большей, кто в меньшей степени - пока программа развивалась прогрессивно 36. С точки зрения методологии исследовательских программа такое отношение рационально, но только до того момента, когда стадия прогресса заканчивается: после этого апологетика «уродства» становится иррациональной).

Надо отметить, что в 30-40-е гг. Бор отказался от требования новизны явлений и был готов признать «единственной возможностью согласовывать многообразный материал из области атомных явлений, накаливавшийся день ото дня при исследовании этой новой отрасли знаний» 37. Это означает, что Бор отступил на позицию «спасения явлений», в то время как Эйнштейн саркастически подчеркивал, что «нет такой теории, символы которой кто-то не смог был подходящим образом увязать с наблюдаемыми величинами» 38.

Однако непротиворечивость - в точном смысле этого термина 39 - должна оставаться важнейшим регулятивным принципом (стоящим вне и выше требования прогрессивного сдвига проблем) обнаружение противоречии должно рассматриваться как проблема. Причина проста. Если цель науки - истина, наука должна добиваться непротиворечивости; отказываясь от непротиворечивости, наука отказалась бы и от истины. Утверждать, что «мы должны умерить нашу требовательность» 40, то есть соглашаться с противоречиями - слабыми или сильными - значит предаваться методологическому пороку.

С другой стороны, из этого не следует, что как только противоречие - или аномалия - обнаружено, развитие программы должно немедленно приостанавливаться; разумный выход может быть в другом: устроить для данного противоречия временный карантин при помощи гипотез ad hoс и довериться положительной эвристике программы. Именно так и поступали даже математики, как свидетельствуют примеры первых вариантов исчисления бесконечно малых и наивной теории множеств 41.

С этой точки зрения, интересно отметить двойственную роль, какую «принцип соответствия» Бора играл в его программе. С одной стороны, это был важный эвристический принцип, способствовавший выдвижению множества новых научных гипотез, позволявших, в свою очереди, обнаруживать новые факты, особенно в области интенсивности спектральных линий 42. С другой стороны, он выступал в роли защитного механизма, позволявшего «до предела использовать понятия классических теорий - механики и электродинамики - несмотря на противоречие между этими теориями и квантом действия» 43, вместо того чтобы настаивать на безотлагательной унификации программы. В этой второй роли принцип соответствия уменьшал степень проблематичности баронской программы.

Разумеется, исследовательская программа квантовой теории в целом была «привитой программой» и поэтому вызывала неприязнь у физиков с глубоко консервативными взглядами, например, у Планка. По отношению к «привитой программе» вообще возможны две крайние и равно нерациональные позиции.

Консервативная позиция заключается в том, что развитие новой программы должно быть приостановлено до тех пор, пока не будет каким-то образом устранено противоречие со старой программой, затрагивающее основания обеих программ: работать с противоречивыми основаниями иррационально. «Консерваторы» направляют основные усилия на устранение противоречия, пытаясь объяснить (аппроксимативно) постулаты новой программы, исходя из понятий старой программы, они находят иррациональным развитие новой программы, пока попытки такой редукции не завершатся успешно. Планк избрал именно такой путь. Успеха он не достиг, несмотря на десять лет тяжелого труда 45. Поэтому замечание М. Лауэ о том, что 14 декабря 1900 г., когда был прочитан знаменитый доклад Планка, следует считать «днем рождения квантовой теории», не совсем верно, этот день был днем рождения редукционной программы Планка. Решение идти вперед, допуская хотя бы временно противоречие в основаниях, было принято Эйнштейном в 1905 г., но даже он заколебался, когда в 1913 г. Бор снова вышел вперед.

Анархическая позиция по отношению к привитым программам заключается в том, что анархия в основаниях возводится в ранг добродетели, а ( слабое) противоречие понимается либо как фундаментальное природное свойство, либо как показатель конечной ограниченности человеческого познания; такая позиция была характерна для некоторых последователей Бора.

Рациональная позиция лучше всего представлена Ньютоном, который некогда стоял перед проблемами, в известном смысле похожими на обсуждаемую. Картезианская механика толчка, к которой была первоначально привита механика Ньютона, находилась в (слабом) противоречии с ньютоновской теорией гравитации. Ньютон работал как над своей положительной эвристикой (и добивался успеха), так' и над редукционистской программой (без успеха), за что его критиковали и картезианцы, например. Гюйгенс. считавшие неразумной тратой времени разработку «непостижимой» программы, и некоторые ученики, которые, подобно Коутсу, полагали, что это противоречие не является столь уж серьезной проблемой 46.

Таким образом, рациональная позиция по отношению к «привитым» программам состоит в том, чтобы использовать их эвристический потенциал, но не смиряться с хаосом в основаниях, из которых они произрастают. «Старая» (до 1925г.) квантовая теория в основном подчинялась именно такой установке. После 1925 г. «новая» квантовая теория перешла на «анархистскую позицию», а современная квантовая физика в ее «копенгагенской» интерпретации стала одним из главных оплотов философского обскурантизма.

В этой новой теории пресловутый «принцип дополнительности» Бора возвел (слабое) противоречие в статус фундаментальной и фактуально достоверной характеристики природы и свел субъективистский позитивизм с алогичной диалектикой и даже философией повседневного языка в единый порочный альянс. Начиная с 1925 г. Бор и его единомышленники пошли на новое и беспрецедентное снижение критических стандартов для научных теорий. Разум в современной физике отступил и воцарился анархистский культ невообразимого хаоса. Эйнштейн был против: «Философия успокоения Гейзенберга-Бора - или Религия?- так тонко придумана, что предоставляет верующему до поры до времени мягкую подушку, с которой не так легко спугнуть его» 47. Однако, с другой стороны, слишком высокие стандарты Эйнштейна, быть может, не позволили ему создать (или опубликовать?) модель атома, наподобие боровской, и волновую механику.

Эйнштейну и его сторонникам не удалось победить в этой борьбе. Сегодняшние учебники физики наперебой твердят нечто вроде следующего: «Квантовая и электромагнитно-полевая концепции дополнительны в смысле Бора. Эта дополнительность - одно из величайших достижений натуральной философии. Копенгагенская интерпретация квантовой теории разрешила древний конфликт между корпускулярной и волновой теориями света. Эта контроверза пронизала всю историю оптики: от Герона из Александрии, указавшего прямолинейность распространения света и геометрические свойства процессов отражения (1 в. н.э.) к Юнгу и Максвеллу, исследовавшим интерференцию и волновые свойства (Х1Х в.). Лишь в первой половине XX века квантовая теория излучения, вполне по-гегелевски, полностью разрешила этот спор» 48.

Теперь вернемся к логике открытия старой квантовой теории, в частности, остановимся подробнее на ее положительной, эвристике. По замыслу Бора, вначале должна была войти в игру теория атома водорода. Его первая модель состояла из ядра-протона и электрона на круговой орбите, во второй модели он вычислил эмпирическую орбиту электрона в фиксированной плоскости; затем он отказывается от явно искусственных ограничений, связанных с неподвижностью ядра и фиксированностью носкости вращения электрона; далее, он хотел учесть возможность вращения (спин) электрона: 49 затем он надеялся распространить свою программу на структуру сложных атомов и молекул, учитывая воздействие на них электромагнитных полей, и т. д. Этот замысел существовал с самого начала; идея аналогии между строением атома и планетной системой уже намечала в общих чертах весьма обнадеживающую, хотя длительную и нелегкую, программу исследований и даже указывала достаточно ясные принципы, которыми эта программа должна была руководствоваться 50 «В 1913 г. казалось, что тем самым найден подходящий ключ к проблеме спектра, и нужны только время и терпение, чтобы разрешить эту проблему окончательно» 51.

Знаменитая статья Н. Бора 1913 г. была первым шагом в реализации этой исследовательской программы. В ней содержалась первая модель (обозначим ее М1) которая уже была способна предсказывать факты, до этого не предсказуемые ни одной из предшествующих теорий: длины волн спектральных линий водорода (в ультрафиолетовой и дальней инфракрасной областях) . Хотя некоторые длины волн водородного спектра были известны до 1913 г. (серии Бальмера (1885) и серии Лащена (1908)), теория Бора предсказывала значительно больше, чем следовало из этих известных серий. Опыты вскоре подкрепили это новое содержание теории: дополнительные боровские серии были открыты Лайманом (1914) , Брэккетом (1922) и Пфундом (1924).

Поскольку серии Бальмера и Лащена были известны до 1913 г., некоторые историки видят в этом пример бэконовского «индуктивного восхождения»: 1) хаос спектральных линий: 2) «эмпирический закон» (Бальмер) , 3) теоретическое объяснение (Бор) . Это сильно напоминает три «этажа» Уэвелла. Но прогресс науки наверняка был бы замедлен, если полагаться на набивший оскомину метод проб и ошибок остроумного школьного учителя: магистраль научной абстрагирующей мысли, продолженная смелыми умозрениями Планка, Резерфорда, Эйнштейна и Бора, дедуктивным образом привела бы к результатам Бальмера как к проверочным предложениям по отношению к их теориям, обходясь без так называемого «первопроходчества» Бальмера. Рациональная реконструкция истории науки не обещает авторам «наивных догадок» достойного вознаграждения за их муки 52.

На самом деле проблема Бора заключалась не в том, чтобы объяснить серии Бальмера и Лащена, а в том, чтобы объяснить парадоксальную устойчивость атома Резерфорда. Более того. Бор даже не знал об этих формулах до того, как была написана первая версия его статьи 53.

Не все новое содержание первой боровской модели М1 нашло подкрепление. Например, М1 претендовала на предсказание всех спектральных линий водорода. Однако были получены экспериментальные свидетельства о таких водородных сериях, которых не могло быть по боровской М1. Это были аномальные ультрафиолетовые серии Пикеринга-Фаулера.

Пикеринг нашел эти серии в 1896 г. в спектре звезды Кормы. Фаулер, после того как первый член серий был подтвержден также наблюдениями во время солнечного затмения в 1898 г., получил всю серию в экспериментах с разрядной трубкой, содержащей смесь водорода и гелия. Конечно, можно было предположить, что линии-монстры не имели ничего общего с водородом, поскольку и Солнце и звезда Кормы содержат множество газов, а разрядная трубка содержала также гелий. И в самом деле серия не могла быть получена в трубке с чистым водородом. Но «экспериментальная техника» Пикеринга и Фаулера, с помощью которой была фальсифицирована гипотеза Бальмера, имела достаточно разумное, хотя никогда специально не проверявшееся, теоретическое основание: а) их серии имели то же число схождения, что в серии Бальмера, и, следовательно, могли считаться водородными сериями; б) Фаулер дал приемлемое объяснение, почему гелий не должен приниматься в расчет при образовании этих серий 54.

Однако результаты «авторитетных экспериментаторов» не произвели на Бора особого впечатления. Он не сомневался в «точности экспериментов» или «осуществимости их наблюдений»; под сомнение была поставлена «наблюдательная теория». И, действительно, Бор предложил альтернативу. Вначале он разработал новую модель (М2) своей исследовательской программы: ионизованный атом гелия, ядро которого имело заряд, равный удвоенному заряду протона, с единственным электроном на орбите.

Эта модель предсказывала ультрафиолетовые серии в спектре ионизованного гелия, которые совпадали с сериями Пикеринга-Фаулера. Это была уже соперничающая теория. Затем он предложил «решающий эксперимент»: он предсказал, что серии Фаулера могут быть получены - и даже с более сильными линиями - в разрядной трубке со смесью хлора и гелия. Более того. Бор объяснил экспериментаторам, даже не взглянув на их приборы, каталитическую роль водорода в эксперименте Фаулера и хлора в предложенном им самим эксперименте 55. И он был прав 56. Таким образом первое очевидное поражение исследовательской программы Бора было превращено в славную победу.

Однако эта победа вскоре была оспорена. Фаулер признал, что его серии относились не к водороду, а к гелию. Но он заметил, что «укрощение монстра» (monster-adjustments) 57 нельзя признать действительным: длины волн в сериях Фаулера значительно отличались от значений, предсказанных М2 Бора. Следовательно, эти серии, хотя не противоречили М1, опровергали М2, но так как М1 и М2 тесно связаны между собой, то это опровергает и М1 58.

Бор отверг аргументы Фаулера: ну, разумеется, ведь он никогда не относился к М2 с полной серьезностью. Предсказанные им значения основывались на грубых подсчетах, в основу которых было положено вращение электрона вокруг неподвижного ядра: разумеется, на самом деле электрон вращается вокруг общего центра тяжести, разумеется, как всегда, когда решается проблема двух тел, нужно заменить редуцированную массу: 59. Эта была уже модифицированная модель Бора - М3. И Фаулер должен был признать, что Бор опять прав 60.

Явное опровержение М2 превратилось в победу М3, стало ясно, что М2 и М3 могли быть разработаны в рамках исследовательской программы Бора, как и М17 или М2о. без каких бы то ни было стимулов со стороны наблюдения или эксперимента. Именно в это время Эйнштейн сказал о теории Бора: «Это одно из величайших открытий» 61.

Развитие исследовательской программы Бора затем шло как по заранее намеченному плану. Следующим шагом было вычисление эллиптических орбит. Это было сделано Зоммерфельдом в 1915 г. с тем неожиданным результатом, что возрастание числа стационарных (возможных) орбит не вело к увеличению числа возможных энергетических уровней, так что, по видимости, не было возможности решающего экспериментам способного выбрать между эллиптической и круговой теориями. Однако электроны вращались вокруг ядра с очень высокой скоростью, следовательно, в соответствии с механикой Эйнштейна, их ускорение приводило к заметному изменению массы. Действительное вычисляя такие релятивистские поправки, Зоммерфельд получил новый порядок энергетических уровней и «тонкую структуру» спектра.

Переключение на новую релятивистскую модель потребовало значительно большей математической изощренности и таланта, чем разработка нескольких первых моделей. Достижение Зоммерфельда носило главным образом математический характер.

По иронии судьбы дублеты водородного спектра уже были открыты Майкельсоном в 1891 г. 62 Мозли сразу же после первой публикации Бора заметил, что «гипотеза Бора не может объяснить появление второй, более слабой линии, обнаруживаемой в каждом спектре» 63. Это также не огорчило Бора, он был убежден, что положительная эвристика его исследовательской программы должна рано или поздно объяснить и даже исправить наблюдения Майкельсона 64. Так и произошло. Конечно, теория Зоммерфельда была несовместима с первыми моделями Бора; более тонкие эксперименты - с исправленными старыми наблюдениями! - дали решающие доказательства в пользу боровской программы. Многие недостатки первых моделей Бора были превращены Зоммерфельдом и его мюнхенской школой в победы исследовательской программы Бора.

Интересно, что точно так же, как Эйнштейн на фоне впечатляющего прогресса квантовой физики в 1913 г. остановился в нерешительности. Бор притормозил в 1916 г.: и так же, как ранее Бор перехватил инициативу у Эйнштейна, теперь Зоммерфельд перехватил инициативу у самого Бора. Различие между атмосферой копенгагенской школы Бора и мюнхенской школы Зоммерфельда было очевидным: «В Мюнхене использовались более конкретные и потому более понятные формулировки; там были достигнуты большие успехи в систематизации спектров и в применении векторной модели. Но в Копенгагене полагали, что адекватный язык для новых явлений еще не найден, были сдержаны по отношению к слишком определенным формулировкам, выражались более осторожно и более обще - поэтому их было гораздо труднее понять» 65. Все это показывает, как наличие прогрессивного сдвига обеспечивает доверие - и рациональность - по отношению к исследовательской программе с противоречием в основаниях. М. Борн в статье. посвященной памяти М. Планка, дает убедительное описание этого процесса: «Разумеется, само по себе введение кванта действия еще не означало возникновения истинной квантовой теории. Трудности, вызываемые введением кванта действия в общепризнанную классическую теорию, были ясны с самого начала. Со временем они не уменьшались, а возрастали, хотя по ходу исследований кое-какие из них преодолевались, в теории все равно зияли бреши, которые не могли не тревожить самокритичных теоретиков.

В основу теории Бора легла гипотеза, которая несомненно была бы отвергнута любым физиком предшествующего поколения. С тем что некоторые внутриатомные квантованные (т. е. выделенные квантовым принципом) орбиты играют особую роль, еще можно смириться: труднее было согласиться с тем, что электроны, движущиеся с ускорением по криволинейным траекториям, не излучают энергию. Но допущение о том, что точно определенная частота излучаемого кванта световой энергии должна отличаться от частоты излучения электрона, в глазах теоретика, воспитанного в классической школе, выглядело невероятным монстром.

Тем не менее вычисления [а точнее сказать, прогрессивные сдвиги проблем решают все, и столы начинают вертеться. Если вначале это выглядело как остроумный прием, с помощью которого новый и странный элемент с наименьшим трением подгонялся под существующую систему общепринятых представлений, то затем захватчик, освоив чужую территорию, стал изгонять с нее прежних обитателей, теперь уже ясно, что старая система треснула по швам, и вопрос только в том, какие швы и в какой мере еще можно сохранить» 66.

Важным уроком анализа исследовательских программ является тот факт, что лишь немногие эксперименты имеют действительное значение для их развития. Проверки и «опровержения» обычно дают физику-теоретику столь тривиальные эвристические подсказки, что крупномасштабные проверки или слишком большая суета вокруг уже полученных данных часто бывают лишь потерей времени. Чтобы понять, что теория нуждается в замене, как правило, не нужны никакие опровержения; положительная эвристика сама ведет вперед, прокладывая себе дорогу. К. тому же, прибегать к жестким «опровергающим интерпретациям», когда речь идет о совсем юной программе,- это опасная методологическая черствость. Первые варианты такой программы и применяться-то могут только к «идеальным», несуществующим объектам; нужны десятилетия теоретической работы, чтобы получить первые новые факты, и еще больше времени, чтобы возникли такие варианты исследовательской программы, проверка которых могла бы дать действительно интересные результаты, когда опровержения уже не могут быть предсказаны самой же программой.

Диалектика исследовательских программ поэтому совсем не сводится к чередованию умозрительных догадок и эмпирических опровержений. Типы отношений между процессом развития программы и процессами эмпирических проверок могут быть самыми разнообразными, какой из них осуществляется - вопрос конкретно-исторический. Укажем три наиболее типичных случая.

1) Пусть каждый из следующих друг за другом вариантов Н1, Н2, Из успешно предсказывают одни факты и не могут предсказать другие, иначе говоря, каждый из этих вариантов имеет как подкрепления, так и опровержения. Затем предлагается Н4, который предсказывает некоторые новые факты, но при этом выдерживает самые суровые проверки. Мы имеем прогрессивный сдвиг проблем и к тому же благообразное чередование догадок и опровержений в духе Поппера 67. Можно умиляться этим классическим примером, когда теоретическая и экспериментальная работы шествуют рядышком, рука об руку.

2) Во втором случае мы имеем дело с каким-нибудь одиноким Бором ( может быть, даже без предшествующего ему Бальмера), который последовательно разрабатывает Н1, Н2, Н3, Н4, но так самокритичен, что публикует только Н4. Затем Н4 подвергается проверке, и данные оказываются подкрепляющими Н4 - первой (и единственной) опубликованной гипотезы. Тогда теоретик, имеющий дело только с доской и бумагой, оказывается, по-видимости, идущим далеко впереди экспериментатора; перед нами период относительной автономии теоретического прогресса.

3) Теперь представим, что все эмпирические данные, о которых шла речь, уже известны в то время, когда выдвигаются Н1, Н2, НЗ и Н4. Тогда вся эта последовательность теоретических моделей не выступает как прогрессивный сдвиг проблем, и поэтому, хотя все данные подкрепляют его теории, ученый должен работать над новыми гипотезами, чтобы доказать научную значимость своей программы 68. Так может получиться либо из-за того, что более ранняя исследовательская программа, вызов которой брошен той программой, которая реализуется в последовательности H1,.. Н4) уже произвела все эти факты, либо из-за того, что правительство отпустило слишком много денег на эксперименты по коллекционированию спектральных линий и все рабочие лошади науки пашут именно это поле.

Правда, второй случай крайне маловероятен, ибо, как сказал бы Каллен, «число ложных фактов, заполоняющих мир, бесконечно превышает число ложных теорий» 69; в большинстве случае: когда исследовательская программа вступает в конфликт с известными фактами, теоретики будут видеть причину этого в «экспериментальной технике», считать несовершенными «наблюдательные теории», которые лежат в ее основе: исправлять данные, полученные экспериментаторами, получая таким образом новые факты 70.

После этого методологического отступления вернемся снова к программе Бора. Когда была впервые сформулирована ее положительная эвристика, не все направления развития этой программы можно было предвидеть и планировать. Когда появились некоторые неожиданные трещины в остроумных моделях Зоммерфельда (не были получены некоторые предсказанные спектральные линии), Паули предложил глубокую вспомогательную гипотезу («принцип исключения»), с помощью которой не только были закрыты бреши теории, но придан новый вид периодической системе элементов и предсказаны ранее неизвестные факты.

В мои намерения не входит развернутое изложение того, как развивалась программа Бора. Но тщательный анализ ее истории - поистине золотое дно для методологии: ее изумительно быстрый прогресс - на противоречивых основаниях! - потрясает, ее красота, оригинальность и эмпирический успех ее вспомогательных гипотез, выдвигавшихся блестящими и даже гениальными учеными, беспрецедентны в истории физики.

Иногда очередной вариант программы требовал только незначительного усовершенствования (например, замены массы на уменьшающуюся массу).

Иногда, однако, для получения очередного варианта требовалась новая утонченная математика (например, математический аппарат, применяемый при решении задач со многими телами) либо новые остроумные физические вспомогательные гипотезы. Добавочная математика или физика черпались либо из наличного знания (например, из теории относительности), либо изобретались заново (например, принцип запрета Паули). В последнем случае имел место «креативный сдвиг» в положительной эвристике.


Подобные документы

  • Идея концепции Лакатоса и ее цель. Наука, теория, методология. Недопустимость абсолютизации и субъективизации методологии. "Логика открытия" и ее четыре формулы. Односторонность априоризма и антитеоретизма. Социально-культурный фон научной методологии.

    реферат [23,9 K], добавлен 16.04.2009

  • Эвристика как наука о продуктивном мышлении и о закономерностях организации процессов творческого мышления. Эвристика репрезентативности — оценка вероятности степенью, в которой А символизирует Б, то есть степенью их сходства. Краткий обзор примеров.

    презентация [402,4 K], добавлен 23.05.2015

  • Качественное отличие эвристического обучения от развивающего и проблемного. Эвристика как общенаучная теория решения задач, возникающих в деятельности и общении, ее связь с творческой деятельностью и творчеством. Эвристический подход к образованию.

    презентация [55,7 K], добавлен 16.08.2015

  • Теория как основа научного исследования. Осуществление предсказаний, научных предвидений будущего на основе теоретического объяснения и познанных законов. Типология научных теорий. Основные типы научных теорий как элементы современных научных систем.

    реферат [43,1 K], добавлен 24.04.2009

  • Чередование в развитии науки экстенсивных и революционных периодов - научных революций, приводящих к изменению структуры науки и принципов ее познания. Возникновение квантовой механики - пример общенаучной революции. Характерные черты научных революций.

    лекция [19,4 K], добавлен 16.01.2010

  • История развития научного познания. Общая классификация методов научных исследований. Структура и содержание исследовательского процесса. Применение логических законов и правил аргументирования. Оформление результатов научно-исследовательской работы.

    курс лекций [153,7 K], добавлен 16.02.2011

  • Философия науки, как ветвь аналитической философии, которая занимается изучением науки как особой сферы человеческой деятельности. Методологическая концепция науки в трудах К. Поппера. Роль парадигм в науке. Методология научно-исследовательских программ.

    реферат [48,2 K], добавлен 27.04.2017

  • Осваивая действительность самыми разнообразными методами, научное познание проходит различные этапы. Каждому из них соответствует определенная форма развития знания. Характеристика и анализ основных из них: факт, теория, проблема, гипотеза, программа.

    реферат [23,1 K], добавлен 01.04.2010

  • Анализ взглядов Имре Лакатоса - венгерского философа и методолога науки, яркого представителя "критического рационализма". Фальсификационизм как методологическая основа теории научной рациональности. Методология исследовательских программ Имре Лакатоса.

    реферат [20,1 K], добавлен 08.03.2015

  • Сознание как философская проблема. Понятие феноменологии, психические феномены. Мозг как материальный носитель сознания. Наследственные программа организмов. Отождествление терминов душа, сознание, мышление. Культурно-исторических основаниях сознания.

    реферат [30,5 K], добавлен 15.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.