Методика формирования элементарных математических представлений
Методика формирования элементарных математических представлений (ФЭМП) у дошкольников с проблемами в развитии как научная и учебная дисциплина. Теоретические основы курса ФЭМП у детей с проблемами в развитии. Развитие представлений детей о времени.
Рубрика | Педагогика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 09.06.2012 |
Размер файла | 65,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Тема 1. Методика формирования элементарных математических представлений у дошкольников с проблемами в развитии как научная и учебная дисциплина
Лекция 1. Методика формирования элементарных математических представлений как научная и учебная дисциплина
элементарный математический представление дошкольник
Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики -- одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.
Выделившись из дошкольной педагогики, методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью.
Предметом МФЭМП является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания.
К задачам, решаемым методикой относятся:
- научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;
- определение содержания фактического материала для подготовки ребенка в детском саду к усвоению математики в школе;
- совершенствование материала по формированию математических представлений в программе детского сада;
- разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм организации процесса развития элементарных математических представлений;
- разработка на научной основе методических рекомендаций родителям по развитию математических представлений в условиях семьи;
- разработка содержания подготовки высококвалифицированных кадров, способных осуществлять педагогическую и методическую, работу по формированию и развитию математических представлений
Общая задача методики -- исследование и разработка дидактических основ процесса формирования элементарных математических представлений у детей дошкольного возраста.
Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук.
Как система педагогических знаний она имеет и свою собственную теорию, и свои источники.
К последним относятся:
- научные исследования и публикации, в которых отражены
основные результаты научных поисков (статьи, монографии, сборники научных трудов и т. д.);
- программно-инструктивные документы («Программа воспитания и обучения в детском саду», методические указания и т. д.)
- методическая литература (статьи в специализированных журналах, например в «Дошкольном воспитании», пособия для воспитателей детского сада и родителей, сборники игр и упражнений, методические рекомендации и т. д.);
В настоящее время функционирует и совершенствуется научно обоснованная методическая система по формированию элементарных математических представлений у дошкольников. Ее основные элементы -- цель, содержание, методы, средства и формы организации работы -- которые взаимосвязаны между собой и взаимообуславливают друг друга. Ведущим и определяющим среди элементов является цель, так как она социально детерминирована и носит объективный характер.
Обучение и развитие находятся в диалектической связи. Опираясь на наличный уровень развития, обучение должно несколько опережать его. Это значит, что в процессе обучения необходимо ориентироваться не только на то, что способен делать сам ребенок, но и на то, что он может сделать при помощи взрослых, под их руководством, т. е. на перспективу, на «зону ближайшего развития», в которой лежат Обычно новые и более сложные действия и операции, чем те, которыми уже владеет ребенок. При их освоении используется «...не только законченный уже на сегодняшний день процесс развития, не только уже завершенные его циклы, не только проделанные уже процессы созревания, но и те процессы, которые сейчас находятся в состоянии становления, которые только созревают, только развиваются». То, что ребенок недавно мог делать с помощью взрослого, через некоторое время в результате обучения выполняется им самостоятельно. «Зона ближайшего развития» становится «актуальным» уровнем развития.
Обучение ведет за собой развитие, являясь его источником и прокладывая ему пути. Каждый из этих взаимосвязанных процессов имеет свои закономерности. Неправомерно как отождествление, так и противопоставление их друг другу.
Однако до сих пор и в теории, и на практике не изжило себя полностью мнение, что, чем меньше возраст ребенка, тем меньше вмешательства должно быть в процесс его развития. Считается, что приобретение количественных, пространственных, временных представлений совершается само собой, стихийно в повседневной жизни и разнообразной деятельности детей. Существуют попытки жестко определить возрастные возможности в усвоении знаний, отрицать программность обучения маленьких детей. Так, швейцарский психолог Ж. Пиаже считает большой ошибкой думать о том, что ребенок воспринимает понятие числа и другие математические понятия непосредственно в обучении. По его мнению, эти понятия формируются у -ребенка самостоятельно и спонтанно.
По Мнению Ж. Пиаже, его учеников и последователей, овладение математическими понятиями происходит на основе логических операций классификации и сериации, которые ребенок открывает сам и обучиться которым практически невозможно. Они появляются довольно поздно, в 11 --12 лет, т. е. уже в школьном возрасте. Такая точка зрения не решает проблемы математического развития и обучения детей в дошкольном возрасте.
Продуктивный подход к решению этой задачи сложился в советской педагогике и психологии на основе данных многочисленных исследований. Он заключается в следующем: в условиях рационально построенного обучения, учитывая возрастные возможности дошкольников, можно сформировать у них полноценные представления об отдельных математических понятиях. Обучение при этом рассматривается как непременное условие развития, которое в свою очередь становится управляемым процессом, связанным с активным формированием элементарных математических представлений и логических операций. При таком подходе не игнорируется стихийный опыт и его влияние на развитие ребенка, но ведущая роль отводится целенаправленному обучению.
Под математическим развитием дошкольников следует понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций.
Формирование элементарных математических представлений -- это целенаправленный и организованный процесс передачи и усвоения знаний, приемов и способов умственной деятельности, предусмотренных программными требованиями. Основная его цель -- не только подготовка к успешному овладению математикой в школе, но и всестороннее развитие детей.
Тема 2. Теоретические основы курса ФЭМП у детей с проблемами в развитии
Лекция 1. Основные математические теории.
Теоретические основы формирования элементарных математических представлений у дошкольников, так же как и начального обучения математике в I--IV классах школы, получили сравнительно недавно (примерно 20 лет назад) специальное название -- «предматематика» (англ. premathematics). (В дальнейшем для простоты и краткости изложения мы будем пользоваться этим термином.)
Традиционно в качестве теоретических основ обучения принимали соответствующие математические теории в их завершенном виде. Однако дедуктивно построенная математическая теория в ее абстрактном виде не может служить основой для дошкольного и начального школьного обучения математике.
Понятия и факты на предматематическом уровне получаются абстрагированием из конкретных ситуаций или же разъясняются с помощью других понятий, хотя строгих определений здесь нет. Изложение дедуктивной математической теории носит формальный характер, изложение предматематики -- содержательный. Дедукция, наиболее важная черта (и метод) математики, в предматематике играет второстепенную роль, носит локальный характер.
Предматематику не следует принимать за «детскую математику». На предматематическом уровне изучаются некоторые понятия и темы школьного курса математики в средних и старших классах школы. Этот уровень часто используется и в научно-популярной литературе. Что же касается формирования элементарных математических представлений у дошкольников и обучения математике в начальных классах школы, то они полностью находятся на предматематическом уровне, отражают соответствующую стадию развития математических знаний. Поэтому цели и результаты этого обучения правомерно называть «предматематической» подготовкой дошкольников и младших школьников, т. е. их подготовкой к изучению математики.
Основная цель теоретических основ формирования элементарных математических представлений -- математическое описание и уточнение смысла всего того, что практикуется на занятиях с дошкольниками, разъяснение тех понятий, о которых у детей формируют соответствующие представления. Этой цели и подчинено изложение теоретических основ. Мы не будем строить здесь какие-нибудь строгие математические теории. Все изложение ведется на предматематическом уровне. Для иллюстрации различных понятий, фактов или конструкций мы будем пользоваться примерами и играми, моделирующими эти понятия или конструкции, и соответствующим дидактическим материалом. Часто используются при изложении специально разработанные обучающие игры. От них делается переход к описанию тех логических и математических кбнструкций, которые этими играми, моделируются. Таким образом, теоретические основы излагаются в непосредственной связи с элементарными математическими представлениями, формируемыми у дошкольников в процессе их обучения в детском саду. Особенностью этого изложения является также выявление логической структуры мышления, формируемой и развиваемой одновременно с элементарными математическими представлениями. Это дает возможность педагогу повысить развивающий эффект при формировании у дошкольников элементарных математических представлений.
Используемая при изложении теоретических основ специальная логическая и математическая терминология, и символика не предназначена, разумеется, для обучения дошкольников. Всякое свойство можно рассматривать как принадлежность его некоторым предметам.
Например, свойством «быть красным» обладают некоторые цветы, ягоды, автомашины и другие предметы. Свойством «быть круглым» обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др.
Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что множество характеризуется данным свойством, или множество задано указанием характеристического свойства.
Под характеристическим свойством множества понимают такое свойство, которым обладают все предметы, принадлежащие этому множеству (элементы этого множества), и не обладает ни один предмет, не принадлежащий ему (не являющийся его элементом).
Тема 3. Дидактические основы формирования элементарных математических представлений у дошкольников в специальном дошкольном учреждении
Лекция 1-2. Задачи предматематической подготовке детей к школе
Предматематическая подготовка, осуществляемая в детском саду, является частью общей подготовки детей к школе и заключается в формировании у них элементарных математических представлений. Этот процесс связан со всеми сторонами воспитательно-образовательной работы детского дошкольного учреждения и направлен прежде всего на решение задач умственного воспитания и математического развития дошкольников. Отличительными его чертами являются общая развивающая направленность, связь с умственным, речевым развитием, игровой, бытовой, трудовой деятельностью.
При постановке и реализации задач предматематической подготовки дошкольников учитывают:
закономерности становления и развития познавательной деятельности, умственных процессов и способностей, личности ребенка в целом;
возрастные возможности дошкольников в усвоении знаний
и связанных с ними навыков и умений;
принцип преемственности в работе детского сада и школы.
В процессе предматематической, подготовки обучающие, воспитательные и развивающие задачи решаются в тесном единстве и взаимосвязи друг с другом.
Приобретая математические представления, ребенок получает необходимый чувственный опыт ориентировки в разнообразных свойствах предметов и отношениях между ними, овладевает способами и приемами познания, применяет сформированные в ходе обучения знания и навыки на практике. Это создает предпосылки для возникновения материалистического миропонимания, связывает обучение с окружающей жизнью, воспитывает положительные личностныё черты. Остановимся далее на основных задачах предматематической подготовки детей в детском саду.
1. Формирование системы элементарных математических представлений у дошкольников. С содержательной стороны наиболее важными в смысле формирования первичных простейших представлений являются такие фундаментальные математические понятия, как «множество», «отношение», «число», «величина». Эти понятия широко представлены в первоначальном обучении, но не в прямом смысле, с точки зрения пропедевтики формирования лишь представлений о них. Образно говоря, ребенок в детском саду постигает «науку до науки», и естественно это связано с тем, что по своей Психологической структуре элементарные математические представления имеют образную природу. Постепенное усложнение знаний, осваиваемых детьми, заключается в увеличении как объема количественных, пространственных и временных представлений, так и степени их обобщения.
Система знаний и первоначальных представлений о множествах, отношениях, числах и величинах, хотя и весьма ограничена рамками возможностей обучения дошкольников, является значимой для дальнейшего овладения понятиями школьной математики.
Элементарные математические представления формируются на базе освоения детьми в определенной последовательности способов действий (например, предлагается разложить столько предметов на свободной полоске, сколько их нарисовано на образце, наложить полоски разной длины друг на друга, подобрать картинки с предметами к соответствующей геометрической фигуре и т. д.). Способы действий постепенно усложняются; к концу обучения в детском саду вырабатываются простейшие навыки счета предметов, измерения расстояний, объемов жидкостей и сыпучих веществ условной меркой, умения выполнять вычисления при решении арифметических задач в одно действие на сложение и вычитание.
Элементарные математические представления и соответствующие им способы действий являются основными составными частями системы знаний для дошкольников.
Усвоение различных понятий, относящихся к наиболее сложным отраслям человеческого знания, должно опираться на чувственный опыт и житейские представления, которые складываются уже в дошкольном возрасте.
Основное отличие понятия от представления состоит прежде всего в том, что в понятии отражаются существенные признаки объекта, абстрагированные от его прочих, несущественных свойств. В представлении же отражаются как существенные, так и несущественные свойства объекта в его непосредственном восприятии.
В экспериментальных исследованиях (П. Я. Гальперин, Л. Ф. Обухова и др.) показана возможность формирования у дошкольников отдельных полноценных математических понятий, но для этого требуются особые условия. Рассмотрим некоторые условия, при которых возможно усвоение понятий и развитие понятийного мышления.
Понятийный способ распознавания объектов возможен на основе метода поэтапного формирования умственных действий (П. Я. Гальперин). Этот метод представляет собой определенную последовательность действий: зная существенный признак понятия, ребенок выделяет свойства рассматриваемого предмета и сопоставляет их с существенным признаком понятия, а затем делает вывод о том, относится анализируемыйv предмет к данному понятию или нет. Сначала сопоставление признаков происходит под руководством педагога. Затем ребенок сам, сопоставляя признаки, рассуждает вслух. На следующем этапе, сопоставляя эти признаки, он рассуждает мысленно, «про себя», по той же схеме, которая служит основой и для речи. Так, постепенно, усваивая последовательность действий, отражаемых во внешней, а затем внутренней речи, ребенок овладевает способом подведения под изучаемое понятие любого предмета, свойства или явления. Развернутое суждение по схеме производимых действий постепенно переходит сначала в план краткой речи «про себя», а затем в план умственного действия. Теперь, овладев способом действия и рассуждения, ребенок сможет решить любую новую задачу самостоятельно.
Обучение, построенное по методу поэтапного развития умственных действий, позволяет приблизиться к формированию понятия числа, основанного на понимании принципа сохранения объема, массы и количества, создать основы для возникновения элементов теоретического мышления (Л. Ф. Обухова).
Повышению уровня в обобщении математических представлений, формированию математических понятий способствует не только особая организация умственной деятельности, но и применение в процессе обучения специальных познавательных средств: моделей, графиков, схем и т. д. Например, «лесенка», составленная из кругов, моделирует количественные и порядковые отношения натуральных чисел, четыре круга -- розового, белого, голубого и черного цвета -- модель частей суток и т. д.
Формирование элементарных математических представлений у дошкольников может осуществляться по-разному. Поскольку опыт и знания у детей невелики, обучение в основном идет так: сначала с помощью взрослого накапливаются конкретные знания, а затем они обобщаются до простейших правил и закономерностей. Однако этот необходимый и важный для умственного развития маленьких детей путь имеет и свои недостатки: дети не могут выйти за пределы тех единичных фактов и случаев, на основании которых были подведены к обобщениям; не в состоянии подвергнуть анализу более широкий круг знаний, что ограничивает развитие их самостоятельной мысли и поиска. Поэтому в обучении необходимо использовать и другой путь, когда мысль и усвоение знаний идут от общего к частному. Усвоенное правило дети должны научиться применять в конкретных условиях.
Рациональное сочетание указанных методов способствует наиболее высокому умственному и математическому развитию детей. Не всегда следует ставить ребенка в позицию «первооткрывателя», вести его от единичных конкретных знаний к выводам и обобщениям. Ребенок должен научиться овладевать и готовыми знаниями, накопленными человечеством, ценить их, уметь пользоваться ими для анализа как своего опыта, так и фактов и явлений окружающей жизни. Например, на определенном этапе дошкольников знакомят с четырехугольниками. Обращаясь к детскому опыту, можно, во-первых, предложить найти и назвать те знакомые фигуры, которые имеют четыре стороны и четыре угла и могут быть отнесены к четырехугольникам, а во-вторых, отыскать предметы или части предметов четырехугольной формы (подобная конкретизация углубляет знания детей об этой геометрической фигуре).
Аналогично детей знакомят и с многоугольниками. Конкретизируя свои знания, дошкольники показывают и называют треугольники, квадраты, прямоугольники разных размеров, относя все эти фигуры к многоугольникам. Представление о многоугольнике как бы надстраивается над всем разнообразием фигур, ограниченных замкнутыми ломаными линиями, правильных и неправильных, больших и малых.
Следовательно, для развития мыслительных способностей детей необходимо пользоваться разными путями, подводить их к пониманию единства общего и единичного, абстрактного и конкретного. Обучение в детском саду -- это не только сообщение знаний, но и развитие у детей умственных способностей, механизмов умственной деятельности, что облегчает переход от эмпирических знаний к понятийным.
2. Формирование предпосылок математического мышления и отдельных логических структур, необходимых для овладения математикой в школе и общего умственного развития. Усвоение первоначальных математических представлений способствует совершенствованию познавательной деятельности ребенка в целом и отдельных ее сторон, процессов, операций, действий. Становление логических структур мышления -- классификации, упорядочивания, понимание сохранения количества, массы объема и т. д. выступает как важная самостоятельная особенность общего умственного и математического развития ребенка-дошкольника.
Процесс формирования элементарных математических представлений строится с учетом уровня развития наглядно-действенного и наглядно-образного мышления дошкольника и имеет своей целью создание предпосылок для перехода к более абстрактным формам ориентировки в окружающем. Овладение различными практическими способами сравнения, группировки предметов по количеству, величине, форме, пространственному расположению фактически закладывает основы логического мышления. В процессе формирования математических представлений у дошкольников развивается умение применять опосредованные способы для оценки различных свойств предметов (счет -- для определения количества, измерение-- для определения величин и т. д.), предвосхищать результат, по результату судить об исходных данных, понимать не только видимые внешние связи и зависимости, но и некоторые внутренние, наиболее существенные. Определенным итогом обучения дошкольников является не только сформированная система математических представлений, но и основы наглядно-схематического мышления как переходной ступени от конкретного к абстрактному. У детей совершенствуется способность к аналитико-синтетической и классифицирующей деятельности, абстрагированию и обобщению.
3. формирование сенсорных процессов и способностей. Основное направление в обучении маленьких детей -- осуществление постепенного перехода от конкретных, эмпирических знаний к более обобщенным. Эмпирические знания, формируемые на основе сенсорного, опыта,-- предпосылка и необходимое условие умственного и математического развития детей дошкольного возраста.
Уже в раннем детстве начинают складываться представления об окружающем, о признаках и свойствах предметного мира: форме, величине, пространственном расположении предметов и их количестве. В основе познания маленькими детьми качественных и количественных признаков предметов и явлений лежат сенсорные процессы: ощущение, восприятие, представление. Малыш познает свойства и качества предмета в действиях, практическим путем.
«Шкаф сзади тебя»,-- говорят ребенку. «А где это сзади: где спина?» -- уточняет ребенок и прижимается к шкафу спиной, чтобы конкретно ощутить, познать пространственное положение предмета сзади.
«Найди среди игрушек такие, которые похожи на этот треугольник». Ребенок, внимательно рассмотрев треугольник и обследовав его руками, довольно легко отыскивает аналогичные заданной форме предметы.
Детей целенаправленно обучают отдельным приемам и обобщенным способам обследования: обведению контура предмета рукой и взглядом для выявления формы, «взвешиванию» предметов на ладонях обеих рук с целью сравнения их масс, наложению или приложению полосок бумаги для сравнения длины, сопоставлению элементов одной группы предметов с другой для выяснения отношений «больше», «меньше», «равно» и др. Так происходит сравнение по форме, величине, количеству, сопоставление выявленных признаков с тем, что уже имеется в опыте ребенка.
Более высокий уровень ориентировки в количественных, пространственных и временных отношениях обеспечивается умением пользоваться общепринятыми эталонами. Система эталонов сложилась в общественно-исторической практике человека и представляет собой упорядоченные формы (геометрические фигуры), величины (меры длин, массы, объема, времени и т. д.) и другие качества. Овладевая такого рода знаниями, ребенок получает как бы набор мерок, или эталонов, с которыми он может сопоставить любое вновь воспринятое качество, найти ему место в ряду других.
В дошкольном возрасте осуществляется освоение сенсорных эталонов не только на перцептивном, но и на интеллектуальном Маленькие дети овладевают отдельными элементами системы эталонов, применяя обследовательские действия, которым их обучали взрослые. Более старшие дошкольники, используя сериацию и классификацию, приходят к осознанию 'принципа построения таких систем. Работа по освоению и применению детьми сенсорных эталонов в детском саду только лишь начинается, более глубокое ознакомление с ними происходит в школе.
Сенсорные процессы (восприятие, представление) и способности (наблюдательность, глазомер) являются также основой целенаправленном работы, проводимой с детьми в русле их предматематической подготовки. Специальная организация сенсорного опыта создает почну для опосредованного познания, подготавливает к формированию математических понятий.
4. Расширение словаря детей и совершенствование связной речи. Процесс формирования элементарных математических представлений предполагает планомерное усвоение и постепенное расширение словарного запаса, совершенствование грамматического строя и связности речи.
Количественные отношения ребенок отражает с помощью слов много, один, ни одного, столько, сколько, поровну, больше, меньше и т. д., которые осознаются в результате непосредственных действий при сравнении отдельных предметов и их совокупностей. Заимствованные из речи окружающих слова-числительные наполняются смыслом и используются с определенной целью -- узнать, сколько предметов. При счете ребенок учится на интуитивном уровне согласовывать числительное с существительным в роде, числе и падеже. Сравнение совокупностей предметов по количеству, а позже сравнение чисел требует построения и употребления довольно сложных речевых конструкций. В речевую форму облекаются не только результаты познавательной деятельности, но и ее способы. От ребенка требуют рассказать, что он сделал (например, на верхнюю полоску положил 6 красных кружков, а на нижнюю -- 7 синих) и что получилось (синих кружков оказалось больше, чем красных, а красных -- меньше, чем синих). Чем глубже осознаются математические связи, зависимости и отношения, тем более совершенные средства применяются для их отражения в речи.
Детей учат не только на чувственном уровне распознавать величины предметов, но и правильно отражать свои представления в слове, например: шире -- уже, выше -- ниже, толще -- тоньше и т. д., отличая эти изменения от изменений общего объема (больше -- меньше, большой -- маленький). Такая дифференциация вполне доступна детям.
Предлоги, наречия, существительные, обозначающие пространственные отношения, становятся предметом особого внимания, осмысливаются, приобретают обобщенное значение в процессе обучения и, наконец, способствуют совершенствованию пространственной ориентации.
Дети осваивают и словарь временных обозначений: утро, день, вечер, ночь, вчера, сегодня, завтра, быстро, медленно, названия дней недели, месяцев, сезонов. Овладение значением этих слов помогает осмыслить «текучесть», длительность, периодичность времени, развивает «чувство времени».
С помощью слова не только отражаются, но глубже осознаются и обобщаются количественные, пространственные и временные представления. Происходит обогащение речи и за счет овладения некоторыми специальными терминами (названия арифметических действий, общепринятых единиц измерения, геометрических фигур и т. д.). Их объем крайне незначителен, так как основное содержание речи детей составляет «чисто» бытовой словарь.
При формировании математических представлений речевое развитие происходит не изолированно, а во взаимосвязи с сенсорными и мыслительными процессами.
5. Формирование начальных форм учебной деятельности. Важную роль играет предматематическая подготовка и для становления начальных форм учебной деятельности. У детей вырабатываются умения слушать и слышать, действовать в соответствии с указаниями воспитателя, понимать и решать учебно-познавательные задачи определенными способами, использовать по назначению дидактический материал, выражать в словесной форме способы и результаты собственных действий и действий своих товарищей, контролировать и оценивать их, делать выводы и обобщения, доказывать их правильность и другие навыки и умения учебной деятельности. Ребенок овладевает математическими представлениями в основном на занятиях, находясь в коллективе сверстников, тем самым расширяется сфера и опыт коллективных взаимоотношений между детьми. В процессе формирования математических представлений у дошкольников развиваются организованность, дисциплинированность, произвольность психических процессов и поведения, возникают активность и интерес4^ решению задач.
Отмеченные задачи предматематической подготовки дошкольников имеют место в каждой группе детского сада, но конкретизируются с учетом возраста и индивидуальных особенностей. Для правильной ее постановки и реализации необходимо знание педагогом программы развития элементарных математических представлений не только той группы, с которой он работает; использование средств, методов, форм и способов организации работы, адекватных задачам и уровню развития детей; систематическая работа по реализации задач как на занятиях по формированию математических представлений, так и в повседневной жизни.
Задачи решаются не изолированно, а комплексно, в тесной
связи друг с другом. Будучи в основном направленными на мате
матическое развитие детей, они сочетаются с выполнением задач
нравственного, трудового, физического и эстетического воспитания,
т. е. всестороннего развития личности дошкольников. Комплексный
подход к их осуществлению -- наиболее эффективный путь обучения
маленьких детей. Задачи определяют содержание предматемати
ческой подготовки в детском саду. Содержание предматематической подготовки дошкольников в детском саду имеет свои особенности. Они объясняются спецификой математических понятий, историческими и педагогическими традициями в обучении детей дошкольного возраста, требованиями современной школы к уровню общего умственного и математического развития детей.
Математические понятия выражают сложные отношения и формы действительного мира, прежде всего количественные отношения и пространственные формы.
«Чистая математика,-- пишет Ф. Энгельс,-- имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть -- весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо затушевать его происхождение из внешнего мира. Но чтобы быть в состоянии исследовать эти формы и отношения в чистом виде, необходимо совершенно отделить их от их содержания, оставить это последнее в стороне как нечто безразличное...».
Абстрактность объектов математики, с одной стороны, и конкретность, наглядно-действенный и наглядно-образный характер мышления дошкольников, с другой стороны, создают объективные трудности в отборе содержания знаний, методов и способов их представления для первоначального обучения.
Психологические и педагогические исследования, проведенные в последние годы, свидетельствуют о больших потенциальных возможностях и резервах развития детского мышления, которые должны эффективно использоваться в воспитании и обучении детей. В процессе наглядно-действенного и наглядно-образного мышления, как отмечает Н. Н. Поддьяков, ребенок приобретает представления об отдельных предметах и их свойствах, которые объединяются в целостные знания об окружающем мире. Уже в дошкольном возрасте появляется возможность отражения существенных закономерных связей, лежащих в основе той или иной сферы реальности и являющихся одновременно предметом изучения различных наук.
Лекция 3. Содержание обучения ФЭМП в каждой возрастной группе
Содержание обучения отражается в разделе «Развитие элементарных математических представлений» «Программы воспитания и обучения в детском саду». В каждой возрастной группе программа развития элементарных математических представлений состоит из одинаковых по названию разделов: «Количество и счет» (во второй младшей группе этот раздел называется просто «Количество», так как детей еще не учат считать), «Величина», «Геометрические фигуры», «Ориентировка в пространстве», «Ориентировка во времени». Все эти разделы тесно связаны между собой и дают возможность научить детей выделять в предметах и явлениях окружающей действительности такие их стороны, свойства, отношения, которые являются предметом изучения математики. Усваиваемые в детском саду знания с полным правом можно назвать предматематикой, а программу -- программой предматематической подготовки в школе. Она включает в себя также и требования к уровню развития количественных, пространственных и временных представлений у детей на каждом возрастном этапе, что дает возможность использовать ее для контроля и проверки степени усвоения основных программных задач.
Наибольшее влияние на математическое развитие детей оказывает овладение специальными видами деятельности. Среди них можно выделить две группы. К первой относятся ведущие по своему характеру математические виды деятельности: счет, измерение, простейшие вычисления, связанные с выполнением арифметических действий. Ко второй -- пропедевтические, специально сконструированные в дидактических целях, доматематические виды деятельности: сравнение предметов путем наложения или приложения (А. М. Леушина), уравнивание и комплектование (В. В. Давыдов), сопоставление и уравнивание (Н. И. Непомнящая).
Виды деятельности, относящиеся ко второй группе, опираются на конкретную, предметно-чувственную основу. Поэтому они доступны младшим дошкольникам. Первая группа, хотя и не отрывается от предметной опоры, является более сложной, так как способы действий здесь требуют опосредованного подхода и оценки количественных, пространственных и временных отношений. Виды деятельности, относящиеся к этой группе, становятся доступными в старшем дошкольном возрасте.
Между этими двумя группами существует тесная преемственная связь: более сложные виды деятельности вырастают на базе простых, как бы надстраиваются над ними.
Среди всех видов деятельности традиционным является счет, связанный с возникновением представлений о числах натурального ряда. Еще несколько десятков лет тому назад название самой методики было «Методика обучения счету», а занятия назывались «Занятиями по счету в детском саду».
Определение места и значения счетной деятельности связано с совершенствованием процесса формирования математических представлений и понятий в детском саду и начальной школе. В последнее время критической оценке подверглось развивающее влияние этого вида деятельности, который длительный период был основным и чуть ли не единственным в предматематической подготовке детей.
Умение считать не всегда является показателем математического развития и не гарантирует успешность овладения математикой в школе.
Дети могут механически запоминать последовательность чисел натурального ряда не только до 10, но и даже до 100. Хорошо известно также, что представления о числах у дошкольников не возникают первыми, а базируются на других, исходных представлениях: о множестве (А. М. Леушина), величине (П. %е Гальперин, В. В. Давыдов).
Обучение счету в детском саду является необходимым компонентом в подготовке к школе. Однако счет не может быть единственным содержанием обучения в детском саду и полностью обеспечивать математическое развитие ребенка. В настоящее время повышается удельный вес знаний, создающих прочную базу для сознательного усвоения счета, установлены более тесные связи между различными представлениями, формируемыми у детей.
Преждевременное обучение счетной деятельности неизбежно приводит к тому, что представление о числе и счете приобретает формальный характер. Поэтому обучение счету начинается не сразу. Ему предшествует подготовительная работа: многочисленные и разнообразные упражнения с множествами предметов, в которых дети, применяя приемы приложения и наложения, сравнивают совокупности, устанавливают отношения «больше», «меньше», «равно», не пользуясь при этом числом и счетом. Важно показать независимость числа от пространственно-качественных особенностей предметов. В процессе выполнения упражнений, которые постепенно усложняют на протяжении обучения в дошкольном возрасте, неявно используются основные теоретико-множественные понятия: «множество и его элемент», «подмножество», «взаимно однозначное соответствие», «эквивалентность множеств», «операции над множествами» и др.
Следует шире применять логические игры и упражнения, в том числе на классификацию и сериацию с разнообразными дидактическими средствами, которые способствуют формированию полноценных представлений о числе и общему умственному развитию детей.
Лишь после выполнения различных практических действий с множествами ребенок может быть подготовлен к пониманию смысла чисел и счета. Все это происходит в практической деятельности, руководимой взрослыми и имеющей своеобразный учебно-игровой характер.
Со счетной деятельностью тесно связана измерительная, основная цель которой -- формирование представлений о величинах. Большая подготовительная работа предшествует простейшим измерениям, которыми дети овладевают в детском саду. Она включает обучение измерению размера, объема, массы путем непосредственного сравнения предметов по данным признакам. Чувственно-практическая деятельность, позволяющая определить, какой из нескольких сравниваемых предметов больше (меньше), шире (уже), выше (ниже), толще (тоньше), глубже (мельче), тяжелее (легче) и т. д., является первоосновой для введения измерения условными, а затем и общепринятыми мерами. Измерительная деятельность обладает достаточно высоким развивающим эффектом. Она открывает широкие возможности для формирования целого ряда математических представлений: углубляются и обобщаются представления о числе; более гибким становится навык счета, применяемый в другой ситуации; развиваются представления о части и
целом, дошкольники знакомятся с простейшими видами функциональной зависимости и т. д. ч
Формирование представлений о величине происходит в тесной взаимосвязи с развитием представлений о числе. Число получается и в результате счета, и в результате измерения. Счет и измерение существенно дополняют друг друга, способствуя математическому развитию ребенка.
В старшем дошкольном возрасте дети начинают овладевать элементами вычислительной деятельности, усвоение которой в основном происходит в школе. Счет составляет основу для овладения простейшими приемами вычисления, в процессе которых ребенок оперирует числами и другими математическими категориями.
Формирование пространственно-временных представлений во всех возрастных группах происходит на базе практических ориентировок. Познание пространства и времени дошкольниками осуществляется через их чувственное отражение, осмысление в речи и использование в деятельности (различение и называние геометрических фигур, основных пространственных направлений, отдельных временных отрезков; определение предметов круглой, квадратной, треугольной формы, изменение направления в ходе движения, умение учитывать время в своей деятельности и т. д.).
Линейно-концентрический принцип, который лежит в основе формирования элементарных математических представлений, предполагает в каждом возрастном этапе повторение на более высоком уровне того, что было освоено на предыдущей ступени, и дальнейшее продвижение вперед. Однако в каждом году обучения выделяется одно главное направление. Во второй младшей группе -- формирование представлений о равенстве и неравенстве групп по количеству входящих в них предметов, в средней группе -- формирование представлений о числах в пределах 5, в старшей -- формирование представлений о числах и отношениях между последовательными числами в пределах 10.
Тема 4. Формирование элементарных математических представлений как необходимого компонента умственного развития детей дошкольного возраста в специальных дошкольных учреждениях
Лекция 1. Занимательный математический материал для решения задач умственного развития
Решение задач умственного развития осуществляется через освоение детьми знаний о количественных, пространственных, временных отношениях, способов действий. Для этого используются разнообразные приемы, в том числе и игровые.
Занимательный математический материал является одним из дидактических средств, способствующих формированию математических представлений детей. Он включает в себя занимательные вопросы, задачи -- шутки, игры, головоломки, логические задачи.
Занимательные задачи, головоломки составлены на основе знания законов мышления. Догадке как способу решения головоломки предшествует тщательный анализ, выделение в задаче существенных признаков. Выполняющий задачу-головоломку приходит к решению в результате тщательного ознакомления с задачей, подробного анализа ее условий.
Советские психологи и педагоги Я. А. Пономарев, В. А: Крутецкий, Б. А. Кордемский, А. Насыров определили влияние задач-смекалок на умственное развитие детей.
Так, Б. А. Кордемский подчеркивал особое значение задач-смекалок в развитии у обучающихся существенных элементов математического мышления: математической инициативы, сообразительности, логичности, гибкости и критичности ума1. Задачи-смекалки интересны своей занимательностью, вызывают желание во что бы то ни стало решить их самостоятельно.
К решению занимательных задач дети приходят в процессе поисковых проб. Причем действия детей имеют разный характер: это практические пробы, предназначенные для угадывания решения в результате постоянных действий. Большинство детей в зависимости от возраста и уровня развития мышления решают задачи в уме, этому сопутствует разносторонний анализ. Под влиянием обучения характер поисковых действий претерпевает существенные изменения: дети переходят от практических к мысленным пробам, уменьшается их количество, так как вырабатываются умения.
Результатом поиска решения, как правило, является догадка, которая представляет собой нахождение пути решения.
Появление догадки свидетельствует о развитии у детей таких качеств умственной деятельности, как смекалка и сообразительность.
Смекалка -- это особый вид проявления творчества, нахождение способа решения. Она выражается в результате анализа, сравнений, обобщений, установления связей, аналогий, выводов, умозаключений.
О проявлениях сообразительности свидетельствует умение обдумывать конкретную ситуацию, устанавливать взаимосвязи, на основе которых решающий задачу приходит к выводам, обобщениям. Сообразительность является показателем умения оперировать знаниями.
Проявление детьми смекалки и сообразительности при решении задач возрастает по мере овладения детьми определенными схемами анализа, переноса усвоенных общих принципов, способов решения простых задач на более сложные.
Обучение решению занимательных задач способствует развитию самостоятельности детей. Ребенок, решающий задачу, на основе имеющихся у него знаний, умений, усвоенных принципов решения, логики проявляет смекалку, сообразительность, самостоятельность, что помогает ему найти правильный ответ. Итак, значение элементарных математических занимательных игр, задач состоит в формировании у детей интереса к изучению математики в дальнейшем, развитии умственных способностей, смекалки, сообразительности.
Тема 5. Методы и приемы обучения ФЭМП дошкольников с проблемами в развитии
Лекция 1. Влияние МФЭМП на умственное развитие ребенка
В умственном развитии детей выделяют две стороны: приобретение знаний и выработку приемов умственной деятельности.
Овладение приемами умственной деятельности осуществляется практически и теоретически. Практический путь представляет собой усвоение приемов в результате многократного повторения одних и тех же ситуаций. В этом случае остается в тени собственная умственная деятельность, внимание обращается лишь на содержание умственных действий.
Теоретический путь овладения приемами умственной деятельности состоит в обучении этим приемам, когда обучающийся управляет своей интеллектуальной деятельностью.
В любом задании внимание дошкольников направлено на конечную цель, на результат деятельности, меньше -- на способы ее выполнения. Это объясняется, с одной стороны, возрастными особенностями психики детей, с другой -- информированностью учебной деятельности. Для возникновения мыслительной деятельности ребенка и формирования понятий необходимо подвести их к осознанию способов выполнения какого-либо задания. Это возможно при условии последовательного формирования учебной деятельности детей. Переориентировка сознания ребенка с конечного результата деятельности на способы ее выполнения приведет к осознанию им своих действий.
Таким образом, обучение дошкольников способам и приемам выполнения учебного задания способствует совершенствованию их мыслительной деятельности.
Занимательный математический материал является одним из средств развития приемов умственной деятельности. Способ (путь) решения любой, даже очень простой занимательной задачи неизвестен, его нельзя передать решающему в готовом виде без опасения сообщить результат. Поиск пути решения, результата (ответа) всегда сопровождается активной самостоятельной мыслительной деятельностью: анализом условия, пространственного расположения, обобщением ряда фигур, свойств, сходных признаков.
Одним из видов занимательного математического материала, способствующего развитию приемов умственной деятельности, являются логические задачи и упражнения.
Логических задач создано много. Они направлены на развитие умения мыслить последовательно, обобщать изображенные предметы по признакам или находить отличия. Это задачи на продолжение ряда, нахождение ошиб ки, устные задачи на поиск ответа путем рассуждений и т. д. В старшем дошкольном возрасте используются такие разновидности логических задач, как задачи на поиск недостающей в ряду фигуры или на признак отличия одной группы фигур от другой.
При решении их наиболее полно проявляются приемы умственной деятельности: сравнение, обобщение, абстрагирование.
Задачи на поиск недостающей в ряду фигуры являются более простыми, поэтому их надо использовать первыми в обучении детей старшего дошкольного возраста.
Ребенку предлагается рассмотреть нарисованные по горизонтальным рядам фигуры. Из фигур, изображенных внизу и пронумерованных, надо найти ту, которую необходимо поместить на место недостающей (рис. 11). Для проведения упражнений с группой детей задачи перерисовываются на большой лист бумаги.
В ответ на поставленную задачу найти недостающую фигуру дети указывают обычно на несколько фигур. Как правило, вначале они ошибаются, не обнаруживают и не анализируют самостоятельно закономерности, лежащие в основе построения рядов фигур как по горизонтали, так и по вертикали. Выслушав ответ, воспитатель предлагает: «Докажите, что именно этот самолет нужно поместить в квадрат». Доказательство, в результате которого ребенок должен убедиться в правильности или ошибочности ответа, приводит воспитатель: «Посмотрите, какие фигуры нарисованы в первом, верхнем ряду!» (Обращается внимание детей на форму корпуса, крыльев самолета, на количество иллюминаторов.) Анализ фигур первого ряда заканчивается обобщением: «В первом ряду нарисованы 3 самолета: с корпусом овальной, прямоугольной и треугольной формы; крыльями прямоугольной, четырехугольной и треугольной формы, с одним, двумя и тремя иллюминаторами. А какие самолеты изображены во втором ряду?»
Ребенок должен убедиться в том, что нарисованы самолеты с тем же набором свойственных им признаков.
«Покажите, какой самолет надо нарисовать в квадрате» -- спрашивает педагог. Ребенок объясняет: «Тот у которого корпус прямоугольный, крылья четырехугольные, одно окошко».
Руководя решением задач, педагог анализирует фигуры по горизонтальным рядам, выявляет закономерности повторяемых признаков.
Для повышения самостоятельности детей в решении задач воспитатель формулирует задание таким образом: «Посмотрите внимательно и догадайтесь, какой фигуры недостает в третьем ряду».
Детям предлагается найти фигуру и объяснить сделан ный выбор самостоятельно, выделив все закономерности, лежащие в основе построения ряда. Далее воспитатель спрашивает: «Чем отличаются между собой самолеты в первом ряду? Во втором? Как узнать, какого самолета не хватает в третьем ряду?». Педагогические приемы решения таких задач следующие: поочередное рассматривание всех фигур общей группы («Рассмотри, какие фигуры, как нарисованы»); выделение, обобщение существенных признаков, свойственных всем фигурам одной группы («Рассмотри, что нарисовано, какого цвета, размера»).
После ответов детей следует обобщение педагога: «Слева нарисованы цепочки из маленьких кругов. В каждой цепочке есть черный кружок, он находится на конце. Справа нарисованы цепочки, черный кружок в которых находится в центре» (показывает на каждую из шести фигур слева и справа.
Затем находят ответ, сопоставляя признаки двух групп фигур: «Слева все фигуры -- треугольники, а справа -- четырехугольники». Головоломки относятся к нестандартному, нетиповому математическому материалу. Их нельзя решить на основе усвоенного способа решения. Они предназначены для развития у детей сообразительности. Решение каждой из таких задач осуществляется в процессе активного поиска, длительность которого зависит от накопленного опыта. Этим же определяется и характер поисковых действий, уровень развития их у обучающихся.
Лекция 2. Три основных этапа в развитии поисковых действий
В ходе обучения выделяются три последовательных этапа в развитии поисковых действий.
На первом этапе у детей формируется умение воспринимать задачу (что сделать), в результате практических поисков приходить к решению (составить, видоизменить фигуру), видеть и называть получившиеся геометрические фигуры (квадраты, треугольники, четырехугольники, прямоугольники), понимать значение слова общая по отношению к стороне, смежной для двух фигур, а также слова присоединил, говоря о способе составления.
Для этого используются задачи на составление фигур (квадрата из 7 палочек), на элементарное видоизменение в домике, составленном из б палочек (переложить 2 так, чтобы получился флажок).
Воспитатель предварительно предлагает подумать и наметить возможное построение, преобразование, обучая детей частичному планированию поиска в уме. У решающего должна возникнуть идея решения (как решать), способ (какие палочки и куда переложить). Такие элементарные проявления предвидения решения возникают у детей в ходе самих практических действий или несколько опережают их. На этом этапе обучения можно научить детей осуществлять осознанные практические действия, отбрасывать способы, не приводящие к правильному решению, не бояться необычных подходов. Так воспитываются гибкость, подвижность мышления.
Подобные документы
Формы формирования элементарных математических представлений у дошкольников. Роль различных анализаторов в развитии у дошкольников элементарных математических представлений. Конспекты уроков по формированию элементарных математических представлений.
курсовая работа [99,9 K], добавлен 10.07.2011Изучение понятия "формирование элементарных математических представлений" и динамики взглядов на математическое развитие дошкольников. Правила использования игровых приемов в процессе формирования элементарных математических представлений у дошкольников.
дипломная работа [590,2 K], добавлен 15.11.2010Своеобразие обучения маленьких детей элементам математических знаний. Сенсорное развитие как чувственная основа умственного и математического развития детей. Особенности математических представлений детей с проблемами в интеллектуальном развитии.
реферат [25,6 K], добавлен 17.03.2013Особенности формирования математических представлений у детей. Качественные изменения в познавательной деятельности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций.
реферат [38,8 K], добавлен 26.05.2009Теоретические основы формирования математических представлений детей старшего дошкольного возраста. Сказка и ее возможности в воспитании математических представлений детей 5-6 лет. Конспект занятий по развитию математических представлений дошкольников.
контрольная работа [44,0 K], добавлен 06.10.2012Значение педагогических программных средств в развитии дошкольников. Требования к организации работы в компьютерном зале. Методика использования компьютерных учебных программ в работе с детьми по формированию элементарных математических представлений.
контрольная работа [3,3 M], добавлен 12.08.2013Основы формирования элементарных математических представлений. Методические рекомендации для воспитателей и дефектологов по использованию информационных компьютерных технологий в процессе формирования математических представлений у старших дошкольников.
дипломная работа [817,3 K], добавлен 29.10.2017Специфика дошкольного обучения. Основы формирования элементарных математических представлений у детей дошкольного возраста на примере детей 3-4 лет в разных видах деятельности. Содержание математического развития дошкольников: основные программные задачи.
курсовая работа [132,5 K], добавлен 22.07.2015Психологические особенности обучения детей элементарных математическим представлениям через дидактическую игру. Экспериментальная работа по формированию элементарных представлений у дошкольников в дидактических играх. Методика обучения основам математики.
курсовая работа [80,8 K], добавлен 15.06.2017Особенности формирования математических представлений у детей дошкольного возраста с нарушениями речи. Содержание обучения математическим представлениям детей, анализ освоения математических представлений у детей, соответствующие игры и упражнения.
реферат [23,2 K], добавлен 19.10.2012